Bull. Aust. Math. Soc. 87 (2013), 207-215
doi:10.1017/S0004972712001074

A NEW PROOF OF THE REALISATION OF CUBIC
TABLEAUX

FEI YANG ™ and YONGCHENG YIN

(Received 3 March 2012; accepted 8 November 2012; first published online 25 January 2013)

Abstract

By means of the dynamics on trees introduced by Emerson, DeMarco and McMullen, we give a new
proof of the realisation of cubic tableaux.
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1. Introduction

The dynamics of cubic polynomials has been studied extensively. A classic work
is due to Branner and Hubbard [1, 2]. In [2], they introduced a powerful tool, the
tableau, which was used to describe combinatorial structures of the Julia sets of cubic
polynomials. They also considered the realisation problem of tableaux. Namely, when
can a tableau with a single critical point be realised by a cubic polynomial?

Recall that for a cubic polynomial f with complex coefficients, the set

K(f) = {z € C| the sequence {f"(2)},>1 is bounded}

is called the filled-in Julia set of f, where f°" is the nth iteration of f. The complement
Q(f):=C\ K(f) is the basin of infinity, and the Julia set J(f) is defined as the
boundary of K(f). It is well known that the escape rate function G : C — [0, +00),
defined by

G(2) = lim = log" |2,
n—oco 3N
is continuous and satisfies G(f(z)) = 3G(z) and K(f) = G~'(0); see [1, 8].
Suppose that the Julia set of a cubic polynomial f is disconnected. Then there
exists at least one critical point which lies in the basin Q(f). Let ¢y and c; be two
critical points of f and suppose that ¢ is the faster-escaping one, which means that

G(co) > G(cy). Write ry = G(cp) > 0. For every k>0, the locus G1([0, ry/35 1)) is
the disjoint union of a finite number of open topological discs. Each such open disc
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is called a puzzle piece Py of depth k. For each integer N > 1 such that G(c()/3" <
G(c1) < G(cp)/3V"! and 0 <k < N + 1, the critical puzzle piece Pi(cy) is defined as
the component of G~'([0, ro/3*"")) containing c;. Here N is allowed to be infinity,
which means ¢, is not escaping, and therefore G(c;) = 0 and there are infinitely many
critical puzzle pieces.

The (cubic) tableau or marked grid of f of size N is an array {M(j, k) € {0, 1} | j, k >
0 and j + k < N}, defined by the condition

M(j,ky=1 if and only if f**(c;) € P(c1).

A position M(J, k) is said to be marked if M(j, k) = 1. The marked grid can be depicted

as a subset in the 4th quadrant of the Z>-lattice, where j >0 denotes the distance

to the positive x-axis and k > 0 denotes the distance to the negative y-axis. Branner

and Hubbard [2] showed that the marked grids of cubic polynomials must satisfy

some rules. An (abstract) marked grid of size N (allowed to be infinity) is an array

M ={M(j, k)€{0,1}]| j, k> 0and j+ k < N} which satisfies the following rules [2, 4].

(RO) Foreachn <N, M(n,0)= M0, n) = 1.

(R1) If M(j, k) =1, then M(i, k) =1 for all i < j.

R2) It M(j,k)=1,then M(j—i,k+i)=M(j—i,i)forall0<i< .

R3) If j+k<N, M(jk)=1, M(j+1,k)=0, M(j—1i,i)=0 for 0<i<m, and
M(G-m+1,m)=1,then M(j—m+ 1,k +m)=0.

RA) Ifj+hk<N, MG, k)=1,M1, j)=0,M(j+1,k)=0,and M(j — i, k + i) = O for
all0<i< j, then M(1, j+k)=1.

The rule (R4) was omitted in [2], but is necessary in their proof. The original rule
(R4) first appeared in the literature in [6], but was just a special case of (R4) stated
above. Later, the correct statement was found by Kiwi [7], and independently by
DeMarco and McMullen [3].

A marked grid M of size N is said to be realised by a cubic polynomial f, if the
tableau of f coincides with M. Branner and Hubbard proved the following theorem.

Tueorem 1.1 (Realisation of tableaux, [2]). Every marked grid can be realised by a
cubic polynomial.

In general, the polynomial which realises a given marked grid is not unique. In
this paper, we will use dynamics on trees to give a new proof of Theorem 1.1. The
main idea is to show that a marked grid of size N can be realised by a ‘nice’ cubic
children preserving map (see Section 3) of the same size, and this nice cubic children
preserving map can be extended to a polynomial-like tree with degree three. Since
every cubic polynomial-like tree can be realised by a cubic polynomial (Theorem 2.2),
Theorem 1.1 then follows.

2. Dynamics on trees and preliminary results

To record the combinatorial information of the dynamics of f on Q(f), dynamics
on trees was introduced in [5, 3] successively.
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First, we recall some definitions related to dynamics on abstract trees defined in [3].
A simplicial tree T is a nonempty, connected, locally finite, one-dimensional simplicial
complex without cycles. The set of vertices and edges (unoriented, closed) of 7" will
be denoted by V(T) and E(T), respectively. The edges adjacent to a given vertex
ve V(T) form a finite set E,(T), whose cardinality val(v) is defined as the valence
of v. The space of ends of T, denoted by 0T, is the totally disconnected space obtained
as the inverse limit of the set of connected components of 7\ K as K ranges over all
finite subtrees.

A map F : T — T, between simplicial trees is called a branched covering if: (1) F
is proper, open and continuous; and (2) F is simplicial (every edge of T maps linearly
to another edge in 73). A local degree function for a branched covering F' : Ty — T is
amapdeg: E(T)) U V(T)) = {1,2,3, ...} satistying for every v € V(T) the inequality

2deg)-2> ) (deg(e) - 1), 2.1)

eckE\(T1)

as well as for every e € E,(T) the equality

deg(v) = Z deg (). (2.2)
e’€E,(T1):F(e’)=F(e)

The global degree deg(F) is defined by

deg(F)= » degle)= ) deg(v) 2.3)

F(er)=ez F()=v,

for any edge e, and vertex v, in T,. It is easy to verify that (2.3) is well defined by
using (2.2) and the connectedness of 7. In this paper, we only consider the case in
which deg(F) = 3.

Dermvition 2.1. Let F : T — T be a branched covering map of a simplicial tree to itself.
Two points x, y € T are in the same grand orbit if F°"(x) = F°"(y) for some m, n > 0.
The branched covering map F : T — T is called polynomial-like if:

(1) there exists a unique isolated end oo € 9T';

(2) there is a local degree function satisfying (2.1) and (2.2);

(3) the tree T has no leaves (vertices of valence one); and

(4) the grand orbit of any vertex includes a vertex of valence three or more.

Moreover, the 2-tuple (7', F) is called a polynomial-like tree.

Theorem 2.9 in [3] shows that if a branched covering map F : T — T has a local
degree function which satisfies (2.1) and (2.2), then the local degree function is unique.
More detailed information about polynomial-like trees can be found in [3].

Let f be a cubic polynomial with disconnected Julia set, and 7 be the quotient
space, which is a simplicial tree obtained by identifying points in each component of
the level set of G into a single point. Then f induces a map F : T — T on the quotient
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tree. The 2-tuple 7(f) = (T, F) is called the quotient of f. By [3, Theorem 3.1], the
quotient 7(f) of f is a polynomial-like tree. One of the main results in [3] is the
following theorem.

Tueorem 2.2 (Realisation of trees, [3]). Every polynomial-like tree (T, F) arises as
the quotient of a polynomial f.

Let T be a simplicial tree which has at least one isolated end. (Note that the leaves
of T are not included.) Choose one of them, marked by co. Then every vertex close
enough to oo has valence two. If T has one vertex of valence three or more, then there
must exist a unique vertex vy of valence three or more which is closest to co, and we
call it the base of T. If every vertex of T has valence less than three, choose one vertex
with valence two, marked by vy.

The combinatorial height function h:V(T) — Z is defined by setting |h(v)| to be
the minimal number of edges needed to connect v to vo. Moreover, the sign of & is
determined by the condition that 2(v) < 0 if v lies on the unique shortest path from vy
to co, while A(v) > 0 otherwise.

A vertex v is called a child of vertex w if h(v) = h(w) + 1 and there exists an edge
connecting v with w.

DEerINITION 2.3. A simplicial map F : T — T is called children preserving if for every
v e V(T), the image of every child of v is also a child of F(v).

Note that a polynomial-like tree must be children preserving. It is easy to see that
if h(v) = k, then A(F(v)) = k + U(F) for a children preserving map F : T — T, where
U(F) is a constant depending only on F. Moreover, unlike the polynomial-like tree, a
children preserving map need not be surjective.

A branch of T is a sequence (v);_,, where h(vx) =k and vy is a child of v, for
1 <k < n, and the positive integer n is required to be largest in the sense that either
n = oo or v, has valence one.

DeriniTioN 2.4. A children preserving map F : T — T is called cubic of size N > 0 if:
(a) UWF)=-1;and
(b) there exists a degree function deg : V(T) U E(T) — {1, 2, 3} satisfying:

(bl) deg(sy) =2 for a branch (sk)szl, where h(sy) =kforl1 <k<N +1;

(b2) deg(s;) =3 for [ <0, where sy = vy is the base point and A(s;) =1 < 0;

(b3) deg(v) =1 for every vertex v e T \ Urn+1{8t}; and

(b4) when v; and v, are the two ends of an edge e € E(T), if h(v)) = h(v,) + 1,

then deg(e) = deg(vy).

Since {si}r<o is not important in the dynamics on 7', the unique sequence S :=
(St)r<n+1 18 called the critical branch of the cubic children preservingmap F : T — T.
The condition (a) in Definition 2.4 means that the images of whole trees go ahead
one step towards the isolated end co under the action of F. Note that we only consider
the realisation problem up to level N. So a cubic polynomial with two escaping critical
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points ¢y and c; such that G(cy)/3" < G(c;) < G(cp)/3¥~! may also realise a marked
grid with size N. In this case, the polynomial-like tree induced by the cubic polynomial
has two escaping critical points (which means U(F) = —2). But we can also obtain a
well-defined polynomial-like tree by removing the grand orbit of 7(c;) up to level N,
where 7 is the quotient map by identifying points in each component of the level set of
G into a single point. In fact, for any marked grid of size N < oo, there exists at least
one cubic polynomial one of whose critical points is not escaping, and this polynomial
realises the marked grid.

3. The extension of cubic children preserving maps

For a marked grid of size N, we need to construct a cubic children preserving map
of the same size such that the dynamics is well defined. Also, we must show that the
cubic children preserving map constructed from the marked grid can be extended to a
polynomial-like tree with deg = 3; then Theorem 1.1 follows from Theorem 2.2.

Let F/:T" > T and F : T — T be two cubic children preserving maps. The map
F’: T — T’ is called an extension of F : T — T if T is a subtree of 7’, the restriction
F’|T coincides with F' and they have the same degree function defined on 7. Let C(v)
denote the set of all the children of v.

Lemma 3.1 (Extension lemma). Let S = (sx)x<n+1 denote the critical branch of a cubic
children preserving map F : T — T of size N> 1. Then F : T — T can be extended to
a polynomial-like tree of degree three if and only if:

(1) forveV(T)\S, ifvi,v, € C(v) and v| # v, then F(vi) # F(vy);

2) fori#0, ifueC(s;) and u # siy1, then F(u) # F(si11)s

(3) if s; has three different children u, v, w and F(u) = F(v), then F(w) # F(u), and
4)  foranyve V(T), X pq=-y deg(u) < 3.

Proor. If a cubic children preserving map F : T — T can be extended to a polynomial-
like tree F”: T’ — T’ of degree three, then (2.1)—(2.3) hold for F’:T" > T'. It is
straightforward to verify that (2.2) implies (1)—(3) and (2.3) implies (4). This proves
the ‘only if * part.

We give the proof of the ‘if * part by induction. Consider the base point sy (namely,
vo) of T. We know that sy has at most two children by condition (4). If C(sy) = {s1},
we add a child to sy with degree one such that (2.3) holds. Denote the extended cubic
children preserving map by F; : T1 — T. Equation (2.2) also holds for those vertices
in T with combinatorial height less than 1.

Assume that (2.1)—(2.3) hold for those vertices in T; with combinatorial height less
than k for some k > 1. For each vertex v € T such that h(v) = k, check the children
of v. If (2.2) is not true, add sufficiently many children with degree one to v such
that (2.2) holds. Now we obtain a cubic children preserving map Fyiy : Trr1 — Ths1s
which is the extension of Fy : Ty — Ty, such that (2.2) holds for the vertices in Tj4q
with combinatorial height less than k + 1.
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In this way, we can extend F : T — T to a cubic children preserving map F, : Too —
T with size co. Moreover, the formulas (2.1)—-(2.3) hold for every vertex and edge
in T. Considering the four conditions of polynomial-like trees which are required in
Section 2, it follows that F, : To, = T is a polynomial-like tree of degree three since
the global degree satisfies deg(Fe) = X F_(1)=5, deg(v) = 3. The proof is complete. O

RemARrKk 3.2. The four conditions in Lemma 3.1 are the key to computing the tree codes
of cubic polynomials in [3]. The conditions (2)—(4) are no longer necessary for the
realisation of tableaux with multi-critical points.

DeriNiTION 3.3. A cubic children preserving map F : T — T is called nice if it satisfies
the conditions in Lemma 3.1.

4. From marked grids to nice cubic children preserving maps

In this section, we want to extract a nice cubic children preserving map from a given
marked grid with fixed size. We say a marked grid of size N is realised by a nice cubic
children preserving map of the same size, if it satisfies the condition

M(j. k) =1 if and only if deg(F**(s},4)) = 2.

Lemma 4.1. Every marked grid of size N can be realised by a nice cubic children
preserving map of the same size.

(o)

Proor. We use induction to prove this lemma. For N =1, let T} = (s¢), 5] be such
that sy is the unique child of s;_;. Define F; : T} — T by F(sy) = s§-1, where k < 1.
The degree function is defined by deg(s;) =2 and deg(s;) =3 for i <0. Obviously,
Fy: Ty — Ty is anice cubic children preserving map which realises the unique marked
grid of size 1.

If N=2, there are two different marked grids of size 2, which correspond to
whether the position M(1, 1) is marked or not, respectively. If M(1, 1) is marked,
by adding a child s, of degree two to s;, we obtain a simplicial tree T,. After
extending F) : Ty — T to F, : T, — T, such that F,(sy) = 53— for all k <2, the nice
cubic children preserving map F, : T, — T, is a realisation of the marked grid of size
N =2 with M(1,1) = 1. Similarly, if M(1, 1) is not marked, by adding a child s, of
degree two to s; and a child v; of degree one to so, we obtain a simplicial tree 7. Now
extend F : Ty — Ty to F} : T} — T such that F}(s2) =v; and F}(vi) = s9. The nice
cubic children preserving map F) : T;, — T} is a realisation of the marked grid of size
N =2 with M(1,1)=0.

Suppose that any marked grid of size k <N — 1 for N < +oo can be realised by a
nice cubic children preserving map Fy : Ty — Ty of the same size. According to the
process of induction, the whole simplicial tree T is in the forward orbit of the critical
branch (s;);<x. Let M be a given marked grid of size N. The following arguments are
based on walking along the path towards the northeast orientation with starting point
M(N, 0) and finishing point M(0, N) .
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The first thing is to add a child sy of degree two to sy_;. Then let us walk to
the position M(N — 1, 1). If M(N — 1, 1) is marked, then the whole grid of size N is
marked by rule (R2). Define Fy(sy) = sy-1, so that we obtain a nice cubic children
preserving map Fy : Ty — Ty which is a realisation of M with M(N — 1, 1) marked.

Assume that M(N — 1, 1) is not marked. Add a child vy_; of degree one to
Fy_1(sy-1), and define Fy(sy)=vy-1. Now walk to the position M(N —2,2). If
M(N —2,2) is marked, define Fy(vy-1) = sy—2. It is straightforward to verify that
Fy : Ty — Ty is a nice cubic children preserving map which realises the marked grid
where M(N — 1, 1) is not marked and M(N — 2, 2) is marked.

Assume that M(N — 2, 2) is not marked. For any position M(m, n) in M, denote the
triangle above M(m, n) by Q(m,n) ={(M(j, k)| j+k<m+n,0<j<mand n<k<
m+n}. If QN -2,2)# Q(N -2, 1), add a child vy_, of degree one to F,‘i,{l(sN_l),
and define Fy(vy-1) = vy—2. Then move to the position M(N — 3,3). If Q(N —2,2) =
O(N -2, 1), it follows that M(N — 2, 1) is not marked. Define Fy(vy-1) = Fn-1(sy-1)-
The four conditions in Lemma 3.1 are very easy to verify.

Suppose that we have defined the map Fy on the orbit sy — Fy(sy)— -+
F;,k(sN) for some k > 1 (notice that Fy has no definition on F;,k(sN)), where vy_; =
F }’\f(sN) is the new added child of F;,"_ 1 (sn—1) with degree one for 1 <i < k. Moreover,
we know that M(N —i,i) =0 for 1 <i < k since the construction will be completed if
we meet a marked position.

Now move to the position M(N — k — 1, k + 1). We use similar arguments as before.
If M(N —k — 1,k + 1) is marked, define Fy(vy_i) = Sny—x—1. In this case, we only need
to verify condition (4) in Lemma 3.1. In fact, until now, except for vy_g, Sy—r—1 cannot
have any other preimages of degree one according to the construction. It follows that
D Fy=sy 9eg(u) <3.

We should remember that either we are adding new children of degree one or the
construction is completed. If M(N —k — 1, k + 1) is not marked, check Q(N — k — 1,
k+1) and QIN-k—-1,j) for O<j<k. If OIN-k—-1Lk+1)#QN-k—-1,))
for any 0 < j <k, add a child vy__ to Fy1 (sy-1) and define Fy(vy—g) = Vy_p-1.
Then we move to the position M(N —k — 2,k +2). If there exists some j such
that Q(N-k—-1,k+1)=Q(N —k -1, j), we also need to check something. If
M(N—-k—-1,k), M(N—-k—-1,j—1)and M(N —k, j— 1) are all marked, add a child
VN_k_1 tO F;/(/_‘Jlrl)(sN_l) and define Fy(vy_i) = vy—i—1- Then we move to the position
M(N —k -2, k+2). Otherwise, we define Fy(vy—_x) = F;i_k_j_l(sN,k,j,l). Similarly,
the four conditions in Lemma 3.1 are all guaranteed by the rules of tableaux and the

construction.
In this way, we can always obtain a nice cubic children preserving map which
realises the marked grid of size N. By the induction, the proof is complete. O

ReMark 4.2. Regarding the proof of Lemma 4.1, we would like to say some words
about the case where M(N — 2,2)=0and QN —2,2) = Q(N — 2, 1). In fact, in order
to satisfy condition (2) in Lemma 3.1, we need to check M(N —2,1), M(N -2, 0)
and M(N —1,1). Since M(N —2,1) =0, we define Fy(vy_1) = Fn-1(sy—1) directly.
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FiGure 1. A marked grid of size N = 5, which can be realised by exactly two nice cubic children preserving
maps of the same size. The tree in the middle is constructed by the method stated in Lemma 4.1. The
dark spots denote the critical positions and the spots with empty interior denote the noncritical positions.

TaBLE 1. The number of marked grids and nice cubic children preserving maps up to size N =21. The
notations MGy and NCy denote the number of marked grids and nice cubic children preserving maps
respectively.

N 1 2 3 4 5 6 7
MGy 1 2 4 8 16 33 69
NCy 1 2 4 8 18 42 103
N 8 9 10 11 12 13 14
MGy 144 303 641 1361 2895 6174 13188
NCy 260 670 1753 4644 12433 33581 91399
N 15 16 17 18 19 20 21

MGy 28229 60515 129940 279415 601742 1297671 2802318
NCy 250452 690429 1913501 5328648 14902959 41841737 117887513

But if we are in the case where M(N —k—1,k+1)=0and QN -k—-1,k+1)=
QO(N — k-1, j) for some 0 < j <k, then we have to make an argument as in the proof
of Lemma 4.1.

A marked grid may be realised by two or more nice cubic children preserving maps
(see Figure 1 and Section 5). It is straightforward to verify that for N < 4, the marked
grid of size N can only be realised by a unique nice cubic children preserving map of
the same size.

Proor orF THeorEM 1.1. Combine Theorem 2.2 and the results of Lemmas 3.1
and 4.1. O

5. The number of marked grids and nice cubic children preserving maps

By the rules (RO)—(R4) stated in the Introduction, we can calculate the number
of different marked grids with fixed size. Similarly, by the four conditions stated in
Lemma 3.1, we can calculate the number of different nice cubic children preserving
maps with fixed size (see Table 1).
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Note that in [3], the number of different nice cubic children preserving maps (which

is called the tree number) has been calculated up to size 17. Here we extend the result
to size 21.
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