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ON THE TRIPLE CHARACTERIZATION
FOR STONE ALGEBRAS

RAYMOND BALBES

1. Introduction. In [1], C. C. Chen and G. Gritzer developed a method
for studying Stone algebras by associating with each Stone algebra L, a
uniquely determined triple (C(L), D(L), ¢(L)), consisting of a Boolean
algebra C(L), a distributive lattice D(L), and a connecting map ¢(L). This
approach has been successfully exploited by various investigators to determine
properties of Stone algebras (e.g. H. Lakser [9] characterized the injective
hulls of Stone algebras by means of this technique). The present paper is a
continuation of this program.

After summarizing the properties of the category of triples, the epimorphisms
in this category are determined confirming a conjecture of G. Gritzer. The
prime ideals, 2 (L), of a Stone algebra L are characterized in terms of its
triple. As a first application of this result it is shown that

|2 (L)| = |Z(CL)] + |2 (DWL)).

Another application yields a construction for the Stone algebra having a given
triple. In the last section necessary and sufficient conditions are given in order
that a Boolean algebra and a distributive lattice with 1 uniquely determine
a triple.

2. Preliminaries. Let B be the class of Boolean algebras, Dy, the class of
distributive lattices with 0, 1 and D, the class of distributive lattices with
L(Z, Do, and D, are the corresponding categories respectively). For L € Dy,
let C(L) be the Boolean algebra of complemented elements of L. If L € D,
D(L) is the lattice of filters of L. Recall that D(L) € Dy,; in fact, for Fy,
F, € D(L), Fi-F, = FiN Fzy Fi+ F, = {x + ylx € Fy, y € F?}y OT)(L) =
[1) and 15y = L. The poset of prime ideals of a distributive lattice L is
P (L) and we set Py(L) = P (L) U {@B}. Let n be the n-element chain
0<1<...<n—1ForJePL),f;:L—2is the Dy-homomorphism
defined by

xf; =1, ifxd J
0, ifxc J.

We introduce the category ¢, called the category of triples, as follows.
The objects of ¢ are triples (C, D, ¢) where C€ B, D € D, and ¢: C —
D(D) is a Dyi-homomorphism. The morphisms in [(C, D, ¢), (Ci, D1, ¢1)]x
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are the pairs (f, g) where f € [C, Cila, g € [D, Dilg, and (a¢)g € afé, for
each a € C. The composition of morphisms is defined by (fi, g1)(f2, g2) =
(f1f2v gng) for (fi) gi) € [(Civ -D‘E) d’i)y (CH-lr D‘H—ly ¢i4-1)]3(f for s = ly 2. We
see that (1, 1p) is the identity on (C, D, ¢) where 1, is the identity on a set 4.
Moreover (f, g) € [(C, D, ¢), (Cy, D1, ¢1)]x is an isomorphism (in.#¢") if and
only if f is an isomorphism in &, g is an isomorphism in D, and (a¢)g = af¢’
for each a € C.

Recall from [1] that for a Stone algebra L, we can associate the triple
(C(L), D(L), ¢(L)) where D(L) is the member of D, consisting of the dense
elements of L and ¢(L) : C(L) — D(D(L)) is the Dy;-homomorphism defined
bya¢(L) = {d € D(L)|d = a*}foreacha € C(L).

The assignment L — (C(L), D(L), ¢(L)) can be extended to a functor
(implicit in [1]) which establishes an equivalence from the category of Stone
algebras and Stone homomorphisms to the category . Indeed the functor
takes the Stone homomorphism f: L — L; into (f|C(L), g|D(L)) — the
codomain of f |C(L) and g|D (L) are taken to be C(L;) and D (L) respectively.
The following result from [1] will be needed.

Lemma 2.1, If (C, C, ¢) € Ob A then for each a € C and d € D, there is
an element d,, € D such that [d,,) = a¢ M [d). Moreover (d,,)(d,;) = d.

Proof. For a € Cand d € D, we have d € a¢ + a¢ so d = xy for some
X € a¢, vy € a¢. It is easy to see that d + x is the required element, d,,.

For (C, D, ¢) € ObA and J € P (D), define I(J) = {c € Clecp N J = B}.

Lemma 2.2. If (C, D, ¢) € A then for each J € P (D), I(J) € Z(C) and
(frem f1) € [(C, D, ¢), (2, 2, ¢3)]x, where ¢3 : 2 — D(2) is defined by Oz =
[1) and 1¢3 = [0).

Proof. It is routine to verify that I(J) is a proper ideal. If ¢; € I(J) and
co @ I(J) then ¢10 N\ J =0\ J =0 so ¢1¢ S D~ J and ¢2¢ & D ~ J.
But D~ J € D(D) so tits¢p = ¢1¢ + ¢20 © D ~ J and hence c¢ico ¢ I(J).
Thus I(J) € Z(C).

Itfollows thatf,;€[D, 2]p, and f ;) € [C, 2]4. To prove that (ad)f ;S af 1 o3,
first suppose a ¢ I(J) then af;; =1 so (ad)fs € [0) = (af 1(n))3-
Next suppose a € I(J). So there is an element x € @¢ M J. Now if d € a¢
thendf; = 1. Indeed if df;, = O thend € Jsod + x € ap N ap = 0¢ = {1}
and hence 1 = d + x € J, a contradiction. Thus, (a¢)f, = {df;|d € ag} =
{1} S af 10 de

We close the section with an application of Lemma 2.2.

THEOREM 2.3. A morphism (f, g) € [(C, D, ¢), (Ci, D1, ¢1)]x is an epi-
morphism if and only if f is an epimorphism in & and g is epimorphism in D,.

Proof. The sufficiency of the condition is trivial. Conversely, suppose that
(f, g)isepicind/, fi, fi' € [Cy, Cala and ffi = ffi'. Let g1 € [D1, 1] and ¢, €
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[C,, D(1)]5 be constant maps. Then (Cy, 1, ¢2) € Ob A and (fi, 21), (fi', 1) €
[(Cy, Dy, ¢1), (Co, 1, ¢2)]x. But then (f, g) (f1, g1) = (F1, g80) = (fi, ga1) =
(f, ) (fi, g1) so (fi, &) = (fY, g1) and hence fi = f'.

Again suppose that ( f, g) is epic in.#" but that g is not epic in &,. Since 2
is the only subdirectly irreducible in &,, there exist distinct prime ideals
J1, Ji' in Dy such that J; M\ Dg = J/ M Dg. We first show:

(1) For each x € D, there exists d € D such that dg < «x.

In order to verify (1), suppose that for some x € D, dg & x forany d € D.
Then (x] N [(D)g) = B and hence there exists J € & (D,) with x € J and
JN (D)g =0. Let g1 : D; — 2 be the constant map with value 1, then
(fI(J)’ gl), (fI(J)» fJ) € [(CI’ Dlv d’l)v (27 2: ¢§)]JV and (fv g)(fI(J)’ fJ) =
(f, &) (f1¢»» £1), contradicting the fact that (f, g) is an epimorphism.

Next we prove:

(2) If x € a¢, then there exist d € D and ¢ € C such that
(d,.)g £ xand¢f = a.

Indeed, since f is epic in & (and hence onto) there exists ¢ € C such that
¢f = a. By (1) we obtain an element d € D such that dg < x. Now (d,;)g €
(eo)g S (of )1 = (¢f )¢1 = a¢y, so x + (d,;)g € a1 M d¢y = {1} and hence
x + (d,;)g = 1. Thus,

(doe)g = x((dpe)g) + ((dop)g) ((dpo)g) = x +dg = x.

We can now show that ( f;csy, fr) € [(C1, Dy, ¢1), (2, 2, ¢3)]x. Lt suffices
to prove that (a¢1)f s, € (af ;(spy)¢3 for a € I(J1). Buta € I(J,) implies the
existence of an element y € d¢; M Ji. We will prove that x € a¢; implies
x & Ja

Indeed suppose x € a¢y M Js. But by (2) there exists d € D and ¢ € Csuch
that (d,,)g < x so (d,.)g € Js. Hence (d,.)g € JoM\ Dg C J; and therefore
(do)g + 3y € Ji. Now (d,.)g € (cp)g © (¢f )1 = a¢r so y + (d,.)g €
aér1 M a¢y = {1} which implies the contradiction 1 = y + (d,,)g € Ji. Thus
x € a¢; implies x ¢ Js so

((l¢l)f12 = {xf,2|x € a¢1} = {1} - (afJ2)¢2-

Finally, /1 M Dg = J: M Dg implies gf,, = gf . 80 (f, &) (1o, fr) =
(Frcoos &) = (Fron, ¢fn) = (f, @ (fron, fo). But (g f) is epic so
fr. = fs, a contradiction.

This establishes a conjecture of G. Gritzer that a Stone homomorphism
f: L — L,isanepimorphism if and only if (C(L))f = C(Ly) and f |D(L), with
codomain restricted to D(L,), is an epimorphism in Z;.

3. Prime ideals. We begin by characterizing &(L) in terms of the triple
(C(L), D(L), ¢(L)).
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THEOREM 3.1. Let L be a Stone algebra. Then

1) PL) =T D€ P(CL)),J € PuDL)),a*$(L) N J =0
ora € Iforalla € C(L)}.

Proof. Let P be the poset on the right side of (1). For K € Z (L) itis easily
verified that K N\ C(L) € #(C(L)) and K N D(L) € P (D(L)). If
d€a*¢(L)y YKND(L) thend = a* =asoa € K.

Thus, the map h: # (L) — P given by Kh = (KN C(L), KN D(L)) is
well defined and obviously preserves order. Suppose K, K; ¢ Z(L),
KNCL)STKiNCWUL) and KND(L) C KyN\D(L). For x€ K,x =
**(x + x*)sox** € Korx + x* € K. In the first case, x** ¢ KN C(L) C K,
so x € K;. Otherwise, x +x* ¢ KN D(L) C K, so x € K;.

Suppose that (I, J) € P. Let K = (I\U J].. Since I # @, K is an ideal.
If K=Lthenl =a+ dforsomea € I,d € JU {0}. Butd # 0 since I is
proper so d € J. Thus d = a* implies d € a¢p(L) N J. Since (I, J) € P,
a* € I which leads to the contradiction 1 = a + a* € I. To prove that
K € P (L), suppose uv € K. Then there exists a € I, d € J\U {0} such that
uv £ a + d. If d = 0 then u**v** < a** = asou™* € I orv** € I, in which
case # € K or v € K. On the other hand suppose d € J. Then uva* < d so
(u+d)v+d)@@* +d) =d Butd € Jand {u +d,v +d,a* +d} C D(L)
so one of the three elementsisin J. If a* +d € J thena* +d € a¢p(L) N J
and hence the contradiction a* € I. Thusu +d € Jorv + d € J. It follows
thatu € Korv € K.

Since I € KN C(L), J € KN D(L) it remains to verify that K M C(L)
CTand KND(L) CJ. Firstleta € KN C(L)soa b+ dwhereb € I,
d € J\U {0}. We can assume d 5 0. Then ad* < d so d € (ab*)*¢(L) N J
and hence ab* € I. But I is prime so a € I. Finally let d € KN D(L),
d £ a+ dy,wherea € I,dy € J\J {0}.1fdy = 0,1 = a € Isoassumed; € J.
Then (a¢* 4+ d1)(d + d1) S dysoa* +di € Jord +d, € J.Nowa* +di € J
implies a* + d, € a¢(L) M J which means a* € I. So we can assume d + d; €
J and hence d € J.

It is well known (and can easily be seen from (1)) that the poset of minimal
prime ideals of L is isomorphic with & (C(L)). Moreover, recalling the defini-
tion of I(J) preceding Lemma 2.2, we have:

COROLLARY 3.2. For a Stone algebra L,
P (L) {0 € P(CLN VTV, NI € Z(D(L))}.
In particular |2 (L)| = |P(C(L))| + |2 (D(L))|.

Proof. Again let P represent the right side of (1). For I € Z(C(L)) it is
obvious that (I, #) € P. Next let J € #(D(L)). By Lemma 2.2, I(J) €
P(C(L)) and if a ¢ I(J) then a*¢(L) N J = B. Conversely, let (I, J) € P.
We can assume J # @ so J € Z(D(L)). But then I(J) C I for if a € I(J)
then a*¢(L) M J £ @ soa € I. By Nachbin's theorem, I(J) = I.
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In showing that the functor in Section 2 is an equivalence, it is necessary to
prove that for (C, D, ¢) € A, there exists a Stone algebra L such that (C, D, ¢)
=~ (C(L), D(L), ¢(L)). This was accomplished in Section 4 of [1]. Recently,
in [7], T. Katrindk has given a new shorter construction of L (see [3, Problem
55]). Theorem 3.1 also leads to a more direct construction of L by replacing
each abstract symbol {(a, d), used in [1], by a set. Specifically we obtain, for
the objects of &, the analogue of the Stone representation theorem.

Let (C, D, ¢) € Ob2# and set
P={,NHIecPCC),JecPyD),apNJ=0orac Iforalla € C}.

For eacha € Cand d € a¢, let (a,d) = {(I,J) € Pla ¢ I,d ¢ J}and R =
{{a, d)|a € C, d € ap}. It follows immediately from Lemma 2.1 that
d € a¢, e € bg implies e(d,;) + d(e,;) € (¢ + b)¢ and (d,,)(e,,) € (ab)p. We
will show that R is a ring of sets by establishing:

(2) {a,d)\J (be) = (a+Db eldy +dley) ) and

(3) (a’ d> N <bv e) = <(Lb, (dpb)(eﬁa) )

For (2), suppose (I, J) € (a, d). Then a ¢ I, d ¢ J. Now e, ¢ J since
e,; € JM a¢implies a € I, sod(e,;) ¢ Jand hence (I, J) € {(a + b, e(dy;) +
d(e,;) ). Similarly (b, e) © (a + b, e(d,;) + d(e,;) ). Conversely, suppose
a+b ¢ Iand e(d,;) + d(e,;) ¢ J. Without loss of generality, assume a ¢ I.
First suppose b € I. Then d,, ¢ J. Indeed, d,, € b¢ M J implies b € I, a
contradiction. But d,; 2 e(d,;) + d(ey;) so dy; ¢ J. Since d = (d,,) (d,;) we
conclude that d ¢ J and hence (I, J) € (a, d). On the other hand suppose
b¢ I.Thene +d = e(d,;) + d(e,;) impliesd ¢ Jore ¢ Jso (I,J) € (a,d)
of (I, J) € (b,e). (3) is verified in a similar manner.

It is obvious that (e, 1) and (1, d) are members of R for all « € C and
d €D and that # = (0, 1) =0z and P = (1, 1) = 15 Moreover R is
pseudocomplemented with

(4) (@, d)* = (a,1).

Indeed it is clear that {a, d) M (a, 1) = P. Conversely suppose
(@, d) N\ (b,e) =@ but b £ a. Then there exists (I,@) € P such that
(I,8) € {a,d)M (b, e), a contradiction, so (b, e) C {(a, 1).

Since {(a,d )*\J {(a,d )** = 1, RisaStonealgebrawith C(R) = {(d,1 )|a € C}
and D(R) = {(1,d)|d € Dj}.

To show (C, D, ¢) = (C(R), D(R), ¢(R)), we note that it is easy to verify
that the map f: C — C(R), defined by af = (a, 1) is an isomorphism in Z.
It is clear that the map g : D — D(R) defined by dg = (1, d) preserves order
and is onto. Suppose d £ di, {d, d;} € D. Then there exists J € £ (D) such
thatd, € J,d ¢ J.But (I(J),J) € Pand (I(J),J) € {1,d)~ (1,d:)sogis
an isomorphism in . It remains to verify that for a € C, (a¢)g = (af )p(R).
First suppose (1, d) € (af )¢(R). Then (a, 1) C (1, d) but supposed ¢ a¢.
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Then there exists J € P(D) such thata¢ N J = @andd € J.Then (I(J),J) €
Pand (I(J),J) € (a,1)forifa € I(J) thena ¢ I(J) implies ap N J = 0.
But e¢¢ N J =0 and hence the contradiction J = @. We conclude that
(I(J),J) € (1, d), contradicting d € J. For the converse, assume d € a¢ and
(I, J)e {al)thend ¢ Isoap N\ J = @. Butd € ap sod ¢ J and hence
I,J) e (1,d).

We close by noting that the above construction is a concrete representation
of the Chen-Gritzer construction. This follows from the fact that for {(a, d)
and (b,e) € R, {(a,d) C (b,e)ifandonlyifa < bandd < ¢,, (cf. [1, p. 887]).

4. Uniqueness of ¢. In [1], it is shown that for any C € B, C # 1 and
any D € D; there exists ¢ : C — D (D) such that (C, D, ¢) € Ob X ;if C =1
then there exists ¢ such that (C, D, ¢) € Ob¥ if and only if D = 1. Thus,
for a given C and D the existence of a ¢ for which (C, D, ¢) € £ is completely
settled. In this section we will answer the corresponding uniqueness question.
There are three trivial cases to handle first: if (C, D, ¢) € # and C = 1 or
C = 2 or D = 1 then ¢ is uniquely determined (as well as D in the first case)
since ¢ preserve 0, 1. We now proceed to the general case.

THEOREM 4.1. Let C € B, D € Dyand C # 2, C # 1, D # 1. There exists
exactly one member (up to isomorphism) of Ob ¥ of the form (C, D, ¢) if and
only if

(1) C(D(D)) = {OT)(D)r lﬁ(D)}v and

(ii) If I, I, are prime ideals 1n C then there exists a B-automorphism f of L

such that I]f = 12.

Proof. (=) Suppose D (D) contains a complemented element d, other than
05(py and 1p(p. Since C = 1, 2, there exist distinct prime ideals I, I, in C.
Then the maps ¢,: C — D(D), ¢ = 1, 2, defined by

flf,(m, ifc¢ LUI
d, ifcel,~1, d B {15<D>, ifcd I,
ld, ifce I ~1I and ¢é2 =30, 0, ifcc I
Oy, ifc€ NI,

Cd)l =

are Dy;-homomorphisms. But then (C, D, ¢,), 1 = 1, 2 are objects in ¢ and
by hypothesis there is an isomorphism (f, g) € [(C, D, ¢1), (C, D, ¢2)]x.
Now choose b € I, ~ I,. Then b¢, = d so (d)g = (bp1)g = (bf )2 €
{05(p), 15(py}. Since g is an automorphism of D, the map F — (F)g is an
automorphism of D(D) and hence (d)g € {Onw), lb(m}, implies d €
{050y, 1)} - )

In order to prove (ii), let I1, I, be prime ideals in C. Define ¢, : C — D (D) by

’ lﬁ(D)y if c e Iiy
e = {ol—,w), ifeel,
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fori = 1, 2. Then (C, D, ¢/), 4 = 1, 2 are objects in 4 so there is an isomor-
phism (f', g') € [(C, D, ¢), (C, D, ¢')]». But then f’ : C — C is the required
automorphism.

(&) Suppose (C, D, ¢1), (C, D, ¢2) € Ob A Set I, = {¢ € Clcp; = Op(p)}-
Since ¢; is a Dgi-homomorphism, it preserves complemented elements. It
follows from (i) that Cé¢; C {On(p), 15»} and, in particular that I, is a prime
ideal for z = 1, 2. But then by (ii) there is a B-automorphism f: C — C such
that (I,)f = I.. It can be verified that (f, 1,) is an isomorphism in 2¢" from
(C: -D; ¢l) to (C7 Dr ¢2)’

For any finite Boolean algebra C, condition (ii) holds: we can extend to a
B-automorphism, any map which permutes the coatoms of C. However, in
the infinite case, condition (ii) does not hold in general. For example there
exist Boolean algebras with no non-trivial automorphisms (e.g., see [6]). On
the other hand, if C is any free Boolean algebra, the condition is satisfied.
Indeed if S freely B-generates C and {I;, I,} € £ (C) define f: S — C by

f(s) = s, ifse (LNL)YU I, NI
5, otherwise.

Then f extends to a homomorphism g such that g2 = 1, I,g = I..
It is easy to verify that for a distributive lattice D, with 0, 1, condition (i)
is equivalent to: C(D) = {0, 1}. We have:

CoroLLaRY. Let CE€B, DeD;, 2<|C] <o, 1<|D| <. Then
(C, D, ¢) is uniquely determined by C and D if and only if C(D) = {0, 1}. Thus,
the finite Stone algebras which are uniquely determined by their center 2", 2 <
n < o0 and set of dense elements D, are the algebras of the form 2"~' X (1 @ D),

where the symbol @ denotes ordinal sum and D 1s a finite distributive lattice
with C(D) = {0, 1}.

The “‘smallest” non-isomorphic Stone algebras with isomorphic centers and
dense elements are 3 X 3 and (1 @ 2?2) X 2.
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