G. NakamuraNagoya Math. J.Vol. 151 (1998), 129–143

THE EXISTENCE OF SYMMETRIC RIEMANN SURFACES DETERMINED BY CYCLIC GROUPS

GOU NAKAMURA

Abstract. Let n > 1, $m \ge 1$, $g \ge 3$ and γ be given integers. The purpose of this paper is to determine the relations of n, m, g and γ for the existence of the symmetric Riemann surfaces S of type (n, m) with genus g and species γ . If n is an odd prime, the relations are known in [3]. In the case that n is odd, we shall show the analogous result when E(S) is isomorphic to a cyclic group \mathbf{Z}_{2n} and when the quotient space S/E(S) is orientable.

§1. Introduction

Let S be a compact Riemann surface. We denote by E(S) the group of analytic homeomorphisms and anti-analytic homeomorphisms of S onto itself and by A(S) its subgroup of analytic homeomorphisms. If A(S) is isomorphic to a cyclic group \mathbb{Z}_n of order n and the quotient space S/A(S) is of genus m, then S is called a Riemann surface of type(n, m). An element T in $E(S) \setminus A(S)$ is called a symmetry on S if $T^2(=T \circ T) = I_S$ (the identity map). A compact Riemann surface with symmetries is said to be symmetric. For a symmetry T on S the quotient space $S/\langle T \rangle$ is a Klein surface. Let k be the number of boundary components of $S/\langle T \rangle$. Then we define the species $\operatorname{sp}(T)$ of T by

$$\operatorname{sp}(T) = \begin{cases} k & \text{(if } S/\langle T \rangle \text{ is orientable),} \\ -k & \text{(if } S/\langle T \rangle \text{ is non-orientable).} \end{cases}$$

In this paper we suppose that E(S) is isomorphic to a cyclic group \mathbf{Z}_{2n} of order 2n. Then for such a symmetric Riemann surface S, the symmetry T on S is uniquely determined. Hence we define the species of S by that of T.

Let n > 1, $m \ge 1$, $g \ge 3$ and γ be given integers. The purpose of this paper is to determine the relations of n, m, g and γ for the existence of the

Received June 19, 1996. Revised May 22, 1997.

symmetric Riemann surfaces S of type (n, m) with genus g and species γ . If n is an odd prime, the relations are known in [3]. In the case that n is odd, we shall show the analogous result when E(S) is isomorphic to a cyclic group \mathbb{Z}_{2n} and when the quotient space S/E(S) is orientable.

§2. Non-Euclidean crystallographic groups

Let $H=\{z\in\mathbf{C}\mid\Im z>0\}$ be the upper half plane. With each matrix $A=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ with $a,b,c,d\in\mathbf{R}$ and with $\det A=\pm 1,$ we associate the mapping

$$f_A: H \to H \; ; \; z \mapsto egin{cases} rac{az+b}{cz+d} & ext{if det } A=1, \ rac{aar{z}+b}{car{z}+d} & ext{if det } A=-1. \end{cases}$$

Then $E(H) = \{f_A \mid \det A = \pm 1\}$ and $A(H) = \{f_A \mid \det A = 1\}$. We regard E(H) as a topological space by means of the inclusion $E(H) \hookrightarrow PGL(2, \mathbf{R})$. A discrete subgroup Γ of E(H) is called a non-Euclidean crystallographic group (shortly an NEC group) if the quotient H/Γ is compact. An NEC group Γ is called a Fuchsian group if $\Gamma \subset A(H)$, and a proper NEC group otherwise. For a proper NEC group Γ , $\Gamma^+ = \Gamma \cap A(H)$ is called the canonical Fuchsian group of Γ .

In general, each NEC group Γ is formed by the generators

$$\begin{array}{lll} x_i & \in \Gamma^+ & ; & i=1,\cdots,r, \\ e_i & \in \Gamma^+ & ; & i=1,\cdots,k, \\ c_{ij} & \in \Gamma \setminus \Gamma^+ & ; & i=1,\cdots,k, \quad j=0,\cdots s_i, \\ a_i,b_i & \in \Gamma^+ & ; & i=1,\cdots,g \text{ if } H/\Gamma \text{ is orientable,} \\ d_i & \in \Gamma \setminus \Gamma^+ & ; & i=i,\cdots,g \text{ if } H/\Gamma \text{ is non-orientable,} \end{array}$$

satisfying the relations

$$\begin{array}{lll} x_i^{m_i} = I_H & ; & i = 1, \cdots, r, \\ e_i^{-1} c_{i0} e_i c_{is_i} = I_H & ; & i = 1, \cdots, k, \\ c_{i,j-1}^2 = c_{ij}^2 = (c_{i,j-1} c_{ij})^{n_{ij}} = I_H & ; & i = 1, \cdots, k, \quad j = 1, \cdots, s_i, \\ x_1 \cdots x_r e_1 \cdots e_k [a_1, b_1] \cdots [a_g, b_g] = I_H & & \text{if } H/\Gamma \text{ is orientable,} \\ x_1 \cdots x_r e_1 \cdots e_k d_1^2 \cdots d_g^2 = I_H & & \text{if } H/\Gamma \text{ is non-orientable,} \end{array}$$

where $[a_i, b_i] = a_i b_i a_i^{-1} b_i^{-1}$. We call x_i an elliptic element, c_{ij} a reflection of Γ . Then the signature $\sigma(\Gamma)$ of Γ is written by

(1)
$$\sigma(\Gamma) = (g; \pm; [m_1, \dots, m_r]; \{(n_{11}, \dots, n_{1s_1}), \dots, (n_{k1}, \dots, n_{ks_k})\}),$$

where "+" means that H/Γ is orientable, and "-" means that H/Γ is non-orientable. This "+" or "-" is called the sign of $\sigma(\Gamma)$ and denoted by $\operatorname{sign}(\sigma(\Gamma))$. We call g the genus, m_i the proper periods, n_{ij} the periods, and $(n_{i1}, \dots, n_{is_i})$ the period-cycles of $\sigma(\Gamma)$. If there are no proper periods, we write [-] in place of $[m_1, \dots, m_r]$. If there are no periods in the period-cycle, we write [-] in place of $\{(n_{i1}, n_{i2}, \dots, n_{is_i})\}$. If there are no period-cycles, we write $\{-\}$ in place of $\{(n_{i1}, \dots, n_{is_i}), \dots, (n_{k1}, \dots, n_{ks_k})\}$.

For an NEC group Γ with signature (1), the Gauss-Bonnet theorem shows that the non-Euclidean area $\mu(F)$ of a fundamental region F of Γ is given by

$$\mu(F) = 2\pi \left(\alpha g + k - 2 + \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{s_i} \left(1 - \frac{1}{n_{ij}} \right) \right),$$

where $\alpha = 2$ if $\operatorname{sign}(\sigma(\Gamma)) = \text{``+''}$, $\alpha = 1$ if $\operatorname{sign}(\sigma(\Gamma)) = \text{``-''}$. This does not depend on the choice of fundamental regions. We define the area of $\sigma(\Gamma)$ by $\mu(F)/2\pi$ and denote it by $\mu(\Gamma)$.

Let Γ' be an NEC group and Γ a subgroup of Γ' with finite index. Then Γ is an NEC group, and the following formula (called the Riemann-Hurwitz relation) is fulfilled:

$$\frac{\mu(\Gamma)}{\mu(\Gamma')} = [\Gamma' : \Gamma].$$

§3. The main result

Let m_1, m_2, \dots, m_k be integers. We denote the least common multiple of $\{m_1, m_2, \dots, m_k\}$ by l.c.m. $\{m_1, m_2, \dots, m_k\}$.

THEOREM 1. Let n > 1 be an odd integer and $m \ge 1$, $g \ge 3$ and γ integers. Then there exists a symmetric Riemann surface S of type (n, m) with genus g(S) = g, $sp(S) = \gamma$, $E(S) \cong \mathbb{Z}_{2n}$ and with the orientable quotient S/E(S) if and only if:

There exist non-negative integers r, t and divisors $d_1, \dots, d_{r+t} (\neq 1)$ of n and an integer $k \geq 1$ such that:

(a) If
$$m = 1$$
, then $r \ge 2$. If $m = 2$, then $r \ge 1$.

(b)
$$g = n \left(m - 1 + \sum_{i=1}^{r} \left(1 - \frac{1}{d_i} \right) \right) + 1.$$

- (c) m+1-k is even and non-negative.
- (d) $0 \le t \le k$.

(e)
$$\gamma = n \left(k - \sum_{i=1}^{t} \left(1 - \frac{1}{d_{r+i}} \right) \right) (\geq 0).$$

- (f) If r + t > 0, then l.c.m. $\{d_1, \dots, d_{r+t}\} = \text{l.c.m.} \{d_1, \dots, d_{i-1}, d_{i+1}, \dots, d_{r+t}\}$ for every i.
- (g) If k = m + 1, then l.c.m. $\{d_1, \dots, d_{r+t}\} = n$.

We note that the divisors d_1, \dots, d_{r+t} are not necessarily distinct.

If n is an odd prime p, our theorem is reduced to the following

COROLLARY 1. [3; Theorem 2.1] There exists a symmetric Riemann surface S of type(p,m) with g(S)=g, $sp(S)=\gamma$, $E(S)\cong \mathbf{Z}_{2p}$ and with the orientable quotient S/E(S) if and only if:

There exist non-negative integers r, t and an integer $k \geq 1$ such that:

- (a) If m = 1, then $r \ge 2$. If m = 2, then $r \ge 1$.
- (b) g = p(r+m-1) r + 1.
- (c) m+1-k is even and non-negative.
- (d) $0 \le t \le k$.
- (e) $\gamma = p(k-t) + t$.
- (f) If r + t > 0, then $r + t \ge 2$.
- (g) If k = m + 1, then $r + t \neq 0$.

$\S 4.$ The proof of our theorem

We shall use the following lemma (see [4; Lemma 3.1.1]).

LEMMA 1. Let $m_1, m_2, \dots, m_k > 0$ be odd integers and N a (positive) multiple of $M = \text{l.c.m.}\{m_1, m_2, \dots, m_k\}$. Then the following conditions are equivalent to each other.

(1) There exist ξ_1, \dots, ξ_k in \mathbf{Z}_N such that $o(\xi_i) = m_i$ and $\xi_1 + \dots + \xi_k = 0$ in \mathbf{Z}_N .

(2) For every i, l.c.m.
$$\{m_1, \dots, m_{i-1}, m_{i+1}, \dots, m_k\} = M$$
.

Proof of our theorem. First we shall show the "only if" part. By our assumption $g \geq 3$, H is the universal covering surface for S, so that there exists a torsion-free Fuchsian group Γ_S satisfying $S \cong H/\Gamma_S$. Then the signature of Γ_S is $\sigma(\Gamma_S) = (g; +; [-]; \{-\})$. We denote by N_S the normalizer of Γ_S in E(H). We shall show that the signatures of N_S and $N_S^+(=N_S \cap A(H))$ have the following forms with some non-negative integers r, k $(1 \leq k \leq m+1)$ and divisors d_1, \dots, d_r of n:

$$\sigma(N_S) = \left(\frac{m+1-k}{2}; +; [d_1, d_2, \cdots, d_r]; \{(-), \cdots, (-)\}\right),$$

$$\sigma(N_S^+) = \left(m; +; [d_1, d_1, d_2, d_2, \cdots, d_r, d_r]; \{-\}\right).$$

We note that d_1, \dots, d_r are not necessarily distinct. Since $S/E(S) \cong (H/\Gamma_S)/(N_S/\Gamma_S) \cong H/N_S$ is orientable, we get $\mathrm{sign}(\sigma(N_S)) = +$. Let r be the number of elliptic elements in canonical generators of N_S . The orders of elliptic elements are divisors $(\neq 1)$ of n. We write them d_1, \dots, d_r . Let k be the number of period-cycles of N_S . Since there exists a symmetry on S, N_S contains reflections. Hence it follows that $k \geq 1$. Since $N_S/\Gamma_S \cong E(S) \cong \mathbf{Z}_{2n}$, there exists an epimorphism

$$\eta: N_S \to \mathbf{Z}_{2n}$$

with $\ker(\eta) = \Gamma_S$. For every element u of order 2 in N_S , we get $\eta(u) = n$. Thus, for u, v in N_S of order 2, $\ker(\eta)$ contains uv. Since Γ_S is a torsion-free group, uv is not an element of finite order > 1. Hence there are no periods in any period-cycles of $\sigma(N_S)$. Since $S/A(S) \cong H/N_S^+$ and S/A(S) has genus m, the genus of $\sigma(N_S^+)$ is equal to m. By Corollary 2.2.5 in [4], we get the required forms of $\sigma(N_S)$ and $\sigma(N_S^+)$.

We shall show the assertion (a). First we assume m=1. The signature of N_S^+ is of form

$$\sigma(N_S^+) = (1; +; [d_1, d_1, \cdots, d_r, d_r]; \{-\}).$$

The area of $\sigma(N_S^+)$ is given by

$$\mu(N_S^+) = 2\sum_{i=1}^r \left(1 - \frac{1}{d_i}\right).$$

From $\mu(N_S^+) > 0$ it follows that $r \geq 1$. All signatures with respect to maximal Fuchsian groups are known in Theorems 1, 2 and 3 in [8]. From these known results it follows that in the case of r = 1, N_S^+ is not maximal, because $\sigma(N_S^+) = (1; +; [d, d]; \{-\})$ for some divisor $d(\neq 1)$ of n. Hence, by Theorem 1 in [8], there exists a Fuchsian group $\Gamma' \supset N_S^+$ satisfying

$$[\Gamma': N_S^+] = 2$$
 and $\sigma(\Gamma') = (0; +; [2, 2, 2, 2, d]; \{-\}),$

so that the generators of Γ' is represented by y_1, \dots, y_5 with the relations

$$y_i^2 = I_H (1 \le i \le 4), \ y_5^d = I_H \text{ and } y_1 \cdots y_5 = I_H.$$

We see that Γ' includes Γ_S as a normal subgroup by the following way. Let D_n be the dihedral group of order 2n, namely,

$$D_n = \langle a, b \mid a^n = b^2 = (ab)^2 = e \text{ (unit element)} \rangle.$$

Since $N_S^+/\Gamma_S \cong A(S) \cong \mathbf{Z}_n \cong \langle a \rangle$, there exists an epimorphism $\theta: N_S^+ \to \mathbf{Z}_n$ with $\ker(\theta) = \Gamma_S$. By $[\Gamma': N_S^+] = 2$, we can write $\Gamma' = N_S^+ \cup N_S^+ \gamma_1$ for some γ_1 in Γ' . Therefore for each y_i $(1 \leq i \leq 4)$ there exists y_i' in N_S^+ satisfying $y_i = y_i' \gamma_1$. We note that $y_5 \in N_S^+$. Then We can define an epimorphism $\varphi_1: \Gamma' \to D_n$ satisfying

$$\varphi_1(y_i) = \theta(y_i')b$$
 for $1 \le i \le 4$,
 $\varphi_1(y_5) = \theta(y_5)$.

Since $\ker(\varphi_1) = \Gamma_S$, Γ_S is a normal subgroup of Γ' . Hence $r \geq 2$ must hold because N_S^+ is the normalizer of Γ_S in A(H).

Next we assume m=2. The signature of N_S^+ is of form

$$\sigma(N_S^+) = (2; +; [d_1, d_1, \cdots, d_r, d_r]; \{-\}).$$

By Theorems 1 and 2 in [8], N_S^+ is not maximal in the case of r=0, because $\sigma(N_S^+)=(2;+;[-];\{-\})$. Then, by Theorem 1 in [8], there exists a Fuchsian group $\Gamma''\supset N_S^+$ satisfying

$$[\Gamma'': N_S^+] = 2$$
 and $\sigma(\Gamma'') = (0; +; [2, 2, 2, 2, 2, 2]; \{-\}),$

so that the generators of Γ'' is represented by z_1, \dots, z_6 with the relations $z_i^2 = z_1 \dots z_6 = I_H$ $(1 \leq i \leq 6)$. Since $[\Gamma'' : N_S^+] = 2$, we can write $\Gamma'' = N_S^+ \cup N_S^+ \gamma_2$ for some γ_2 in Γ'' . Therefore for each z_i there exists z_i'

in N_S^+ satisfying $z_i = z_i' \gamma_2$. We can define an epimorphism $\varphi_2 : \Gamma'' \to D_n$ satisfying

$$\varphi_2(z_i) = \theta(z_i')b$$
 for $1 \le i \le 6$.

Since $\ker(\varphi_2) = \Gamma_S$, Γ_S is a normal subgroup of Γ'' . Hence $r \geq 1$ must hold because N_S^+ is the normalizer of Γ_S in A(H). Thus the assertion (a) holds.

We put g' = (m+1-k)/2. Then the set of canonical generators of N_S is represented by

$${a_i, b_i (1 \le i \le g'), x_j (1 \le j \le r), e_l, c_l = c_{l0} (1 \le l \le k)},$$

with the relations

$$x_{j}^{d_{j}} = I_{H} \ (1 \le j \le r), \ e_{l}^{-1} c_{l} e_{l} c_{l} = c_{l}^{2} = I_{H} \ (1 \le l \le k)$$

and

$$\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g'} [a_{i}, b_{i}] = I_{H}.$$

We put

$$F = \{1 \le l \le k ; e_l \notin \Gamma_S\}$$
 and $t = \#F$.

For each l in F we denote by f_l the order of $\eta(e_l)$ in \mathbf{Z}_{2n} , which is a divisor $(\neq 1)$ of n. Then d_1, \dots, d_r, f_l $(l \in F)$ are required divisors. The equality (b) is shown by the Riemann-Hurwitz relation $\mu(\Gamma_S) = [N_S : \Gamma_S]\mu(N_S)$, namely,

$$2g - 2 = 2n\left(m - 1 + \sum_{i=1}^{r} \left(1 - \frac{1}{d_i}\right)\right)$$

The assertion (c) follows from the genus of $\sigma(N_S)$. The assertion (d) follows from t = #F.

We shall show the assertion (e). Let T be a symmetry on S. Since $\{I_S, T\}$ is a subgroup of $E(S) \cong N_S/\Gamma_S$, there exists a subgroup Γ_1 of N_S satisfying $\Gamma_1/\Gamma_S \cong \{I_S, T\}$. Then $\Gamma_1 = \eta^{-1}(\{0, n\})$. Since $H/\Gamma_1 \cong (H/\Gamma_S)/(\Gamma_1/\Gamma_S) \cong S/\langle T \rangle$, $|\operatorname{sp}(S)|$ is the number of period-cycles of $\sigma(\Gamma_1)$. Consequently we shall determine the signature of Γ_1 . Since $[N_S : \Gamma_1]$ is odd, we get $\operatorname{sign}(\sigma(\Gamma_1)) = \operatorname{sign}(\sigma(N_S)) = "+"([4; \operatorname{Theorem 2.1.2}])$. The order of $\Gamma_1 x_j$ in N_S/Γ_1 is equal to that of x_j in N_S . Hence there are no proper periods of $\sigma(\Gamma_1)$ ([4; Theorem 2.2.3]). Since $\sigma(N_S)$ does not have any period in all period-cycles, neither does $\sigma(\Gamma_1)$. For each l in F, the order of $\Gamma_1 e_l$

in N_S/Γ_1 is equal to f_l , so that by using Theorem 2.4.2 in [4] the number k_1 of period-cycles of $\sigma(\Gamma_1)$ is given by

$$k_1 = n(k-t) + \sum_{l \in F} \frac{n}{f_l} = n\left(k - \sum_{l \in F} \left(1 - \frac{1}{f_l}\right)\right).$$

Hence the signature of Γ_1 is given by

$$\sigma(\Gamma_1) = (g_1; +; [-]; \{\overbrace{(-), \cdots, (-)}^{k_1}\}),$$

where $g_1 = (g - k_1 + 1)/2$. Since $\operatorname{sign}(\sigma(\Gamma_1)) = "+"$, $S/\langle T \rangle$ is orientable, so that $\gamma = k_1$. Hence the assertion (e) holds.

If r+t>0, we put $M=\text{l.c.m.}\{d_1,\cdots,d_r,f_l\ (l\in F)\}$. Then

$$\langle \eta(x_j)(1 \leq j \leq r), \eta(e_l)(l \in F) \rangle \cong \mathbf{Z}_M.$$

The canonical relation $\prod_{j=1}^r x_j \prod_{l=1}^k e_l \prod_{i=1}^{g'} [a_i, b_i] = I_H$ implies $\sum_{j=1}^r \eta(x_j) + \sum_{l \in F} \eta(e_l) = 0$ in \mathbf{Z}_{2n} , so that we can take elements ξ_j $(1 \le j \le r)$, ε_l $(l \in F)$ in \mathbf{Z}_M satisfying $o(\xi_j) = d_j$, $o(\varepsilon_l) = f_l$ and $\sum_{j=1}^r \xi_j + \sum_{l \in F} \varepsilon_l = 0$. Therefore the assertion (f) follows from Lemma 1.

We shall show the assertion (g). If k = m + 1 then the set of canonical generators of N_S is represented by

$$\{x_j \ (1 \le j \le r), \ e_l, \ c_l = c_{l0} \ (1 \le l \le k)\}$$

with the relations

$$x_i^{d_j} = I_H \ (1 \le j \le r), \ e_l^{-1} c_l e_l c_l = c_l^2 = I_H \ (1 \le l \le k)$$

and

$$\prod_{j=1}^r x_j \prod_{l=1}^k e_l = I_H.$$

Since $\eta: N_S \to \mathbf{Z}_{2n}$ is surjective, the image of η ,

$$\operatorname{Im}(\eta) = \left\langle \eta(x_j) \right. \left(1 \leq j \leq r), \,\, \eta(e_l), \,\, \eta(c_l) \,\, (1 \leq l \leq k) \right\rangle,$$

contains elements of order 2n. Since $\eta(c_l)$ $(1 \le l \le k)$ are elements of order 2, it follows that l.c.m. $\{d_1, \dots, d_r, f_l \ (l \in F)\} = n$. Thus the assertion (g) holds. Hence the proof of "only if" part is completely achieved.

Conversely we shall show the "if" part. Let $n, m, g, \gamma, r, t, d_1, \dots, d_{r+t}$ and k be given numbers satisfying conditions (a) to (g). We put

$$\sigma = (g'; +; [d_1, \cdots, d_r]; \{\overbrace{(-), \cdots, (-)}^k\}),$$

where g' = (m+1-k)/2. By (c), g' is a non-negative integer. Since the area $\mu(\sigma) = m-1 + \sum_{j=1}^{r} (1-1/d_j)$ is positive by (b), there exist NEC groups with signature σ . By Corollary 2.2.5 in [4] the canonical Fuchsian groups of such NEC groups have the signature

$$\sigma^+ = (m; +; [d_1, d_1, \cdots, d_r, d_r]; \{-\}).$$

From (a) it follows that

$$\sigma^+ \neq (1; +; [d_i, d_i]; \{-\}) \text{ and } \sigma^+ \neq (2; +; [-]; \{-\}).$$

Therefore, by Theorems 1 and 2 in [8], there exists a maximal Fuchsian group with signature σ^+ , so that we have a maximal NEC group with signature σ . We denote it by N.

Let $\{a_i, b_i (1 \le i \le g'), x_j (1 \le j \le r), e_l, c_l = c_{l0} (1 \le l \le k)\}$ be the set of canonical generators of N satisfying

$$x_j^{d_j} = I_H \ (1 \le j \le r), \ e_l^{-1} c_l e_l c_l = c_l^2 = I_H \ (1 \le l \le k)$$

and

$$\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g'} [a_{i}, b_{i}] = I_{H}.$$

Assume r+t>0. By the condition (f) and Lemma 1 there exist ξ_j in \mathbf{Z}_{2n} of order d_j $(1 \le j \le r+t)$ such that

$$\sum_{j=1}^{r+t} \xi_j = 0 \quad \text{in } \mathbf{Z}_{2n}.$$

We can define an epimorphism $\eta: N \to \mathbf{Z}_{2n}$ satisfying

$$\eta(a_1) = \eta(b_1) = 2 \text{ (if } g' \ge 1), \ \eta(a_i) = \eta(b_i) = 0 \ (2 \le i \le g'), \\
\eta(x_j) = \xi_j \ (1 \le j \le r, \text{ if } r \ne 0), \\
\eta(c_l) = n \ (1 \le l \le k), \\
\eta(e_l) = \begin{cases} \xi_{r+l} & (1 \le l \le t, \text{ if } t \ne 0), \\ 0 & (t+1 \le l \le k). \end{cases}$$

Because η is compatible with the relations in N, that is,

$$\begin{aligned} x_{j}^{d_{j}} &= I_{H} & \Rightarrow & \eta(x_{j}^{d_{j}}) = d_{j}\xi_{j} = 0 \ (1 \leq j \leq r), \\ c_{l}^{2} &= I_{H} & \Rightarrow & \eta(c_{l}^{2}) = 2n \ (1 \leq l \leq k), \\ e_{l}^{-1}c_{l}e_{l}c_{l} &= I_{H} & \Rightarrow & \eta(e_{l}^{-1}c_{l}e_{l}c_{l}) = 0 \ (1 \leq l \leq k), \\ \prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g'} [a_{i}, b_{i}] &= I_{H} & \Rightarrow & \eta(\prod_{j=1}^{r} x_{j} \prod_{l=1}^{k} e_{l} \prod_{i=1}^{g'} [a_{i}, b_{i}]) \\ &= \sum_{j=1}^{r+t} \xi_{j} = 0. \end{aligned}$$

We shall show that η is surjective. Since $k \geq 1$, $\operatorname{Im}(\eta)$ contains $\eta(c_1)$ of order 2. Therefore it is sufficient to show that $\operatorname{Im}(\eta)$ contains an element of order n. If $g' \geq 1$, then $\eta(a_1)$ and $\eta(b_1)$ are of order n by the definition. If g' = 0, that is, k = m + 1, then by (g) there exist elements of order n in $\operatorname{Im}(\eta)$. Thus $\operatorname{Im}(\eta) = \mathbf{Z}_{2n}$.

We put

$$\Gamma = \ker(\eta)$$
 and $S = H/\Gamma$.

Then Γ is an NEC group.

We shall show that S is a required Riemann surface. By the definition of η , there exist no elliptic elements and orientation-reversing ones in Γ , so that the genus of $\sigma(\Gamma)$ is equal to g by the Riemann-Hurwitz relation $\mu(\Gamma) = 2n\mu(N)$. Therefore Γ is a Fuchsian group of signature $\sigma(\Gamma) = (g; +; [-]; \{-\})$. Hence S is a compact Riemann surface of genus g. Since N is maximal and includes Γ as a normal subgroup, N is the normalizer of Γ in E(H). Therefore $E(S) \cong N/\Gamma \cong \mathbf{Z}_{2n}$. We put $\Gamma_2 = \eta^{-1}(\{0, n\})$. Since Γ_2/Γ is a subgroup of order 2 in N/Γ , there exists a symmetry T on S such that

$$\Gamma_2/\Gamma \cong \{I_S, T\} \subset E(S).$$

Thus S is symmetric. From [E(S):A(S)]=2 it follows that $A(S)\cong \mathbf{Z}_n$. The genus of $\sigma(N^+)$ is equal to 2g'+k-1=m, so that the genus of $S/A(S)\cong H/N^+$ is equal to m. Thus S is of type (n,m). The orientability of S/E(S) is derived from $S/E(S)\cong H/N$ and $\operatorname{sign}(\sigma(N))="+"$.

We shall show $\operatorname{sp}(S) = \gamma$. Note the form of $\sigma(\Gamma_1)$ given in the "only if" part. Similarly we obtain

$$\sigma(\Gamma_2) = (g_2; +; [-]; \{(-), \cdots, (-)\})$$

and

$$k_2 = n(k-t) + \sum_{l=1}^{t} \frac{n}{d_{r+l}} = n \left(k - \sum_{l=1}^{t} \left(1 - \frac{1}{d_{r+l}} \right) \right).$$

Since $S/\langle T \rangle \cong (H/\Gamma)/(\Gamma_2/\Gamma) \cong H/\Gamma_2$, we have $\operatorname{sp}(S) = k_2 = \gamma$. Hence S is a symmetric Riemann surface of type (n,m) with g(S) = g, $\operatorname{sp}(S) = \gamma$, $E(S) \cong \mathbb{Z}_{2n}$ and with the orientable quotient S/E(S). The proof of "if" part is completely achieved.

Corollary 2. If $\sum_{i=1}^{r} (1-1/d_i) = \sum_{i=1}^{t} (1-1/d_{r+i})$ in the above theorem, then

$$g(S) + k(S/\langle T \rangle) - 1 = \#A(S) (g(S/A(S)) + k(S/E(S)) - 1),$$

where k(X) denotes the number of boundary components of X.

Proof. By (b) and (e), we get
$$g + \gamma - 1 = n(m + k - 1)$$
.

§5. Examples

We shall show the simplest examples on our theorem.

EXAMPLE 1. In the case of n = 9 and m = 1, our theorem is reduced to the following:

There exists a symmetric Riemann surface S of type (9,1) with g(S) = g, $\operatorname{sp}(S) = \gamma$, $E(S) \cong \mathbb{Z}_{18}$ and with the orientable quotient S/E(S) if and only if there exist non-negative integers $r_1, r_2, t_1, t_2, \underbrace{3, \cdots, 3}_{r_1+t_1}$ and $\underbrace{9, \cdots, 9}_{r_2+t_2}$ such that:

- (1) $r_1 + r_2 > 2$.
- (2) $g = 6r_1 + 8r_2 + 1$.
- (3) $0 < t_1 + t_2 < 2$.
- (4) $\gamma = 2(9 3t_1 4t_2)$.
- (5) We put ${\bf r}=(r_1,r_2)$ and ${\bf t}=(t_1,t_2)$, then

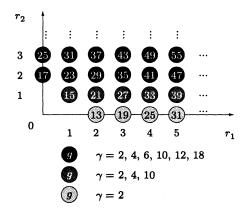
(5.1)
$$\mathbf{r} = (s, 0), \ s \ge 2 \Rightarrow \mathbf{t} = (0, 2),$$

(5.2)
$$\mathbf{r} = (s, 1), \ s \ge 1 \Rightarrow \mathbf{t} = (0, 1), (1, 1), (0, 2).$$

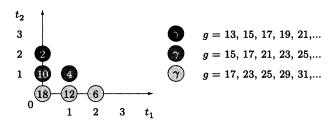
Then the possible genera q and species γ are listed as follows:

$\int g$	13	15	17	19	21	23	25	27	29	31	
	2	2	2	2	2	2	2	2	2	2	
		4	4		4	4	4	4	4	4	
γ			6			6	6		6	6	
		10	10		10	10	10	10	10	10	
			12			12	12		12	12	-
			18			18	18		18	18	

The following figure illustrates the relation of g, γ and \mathbf{r} .



The following figure illustrates the relation of g, γ and t.



The possible g and γ satisfying the equality in Corollary 2 are the following

$$g = 15$$
 $\gamma = 4$ $(\mathbf{r} = \mathbf{t} = (1, 1)),$
 $g = 17$ $\gamma = 2$ $(\mathbf{r} = \mathbf{t} = (0, 2)).$

EXAMPLE 2. In the case of n = 15 and m = 1, our theorem is reduced to the following:

There exists a symmetric Riemann surface S of type (15,1) with g(S) = g, $\operatorname{sp}(S) = \gamma$, $E(S) \cong \mathbf{Z}_{30}$ and with the orientable quotient S/E(S) if and

only if there exist non-negative integers $r_1, r_2, r_3, t_1, t_2, t_3, \underbrace{3, \cdots, 3}_{r_1+t_1}, \underbrace{5, \cdots, 5}_{r_2+t_2}$ and $\underbrace{15, \cdots, 15}_{such that:}$

(1)
$$r_1 + r_2 + r_3 \ge 2$$
.

(2)
$$g = 10r_1 + 12r_2 + 14r_3 + 1$$
.

(3)
$$0 < t_1 + t_2 + t_3 < 2$$
.

(4)
$$\gamma = 2(15 - 5t_1 - 6t_2 - 7t_3)$$
.

(5) We put
$$\mathbf{r} = (r_1, r_2, r_3)$$
 and $\mathbf{t} = (t_1, t_2, t_3)$, then

(5.1)
$$\mathbf{r} = (s, 0, 0), s \ge 2 \Rightarrow \mathbf{t} = (0, 2, 0), (0, 1, 1), (0, 0, 2),$$

(5.2)
$$\mathbf{r} = (0, s, 0), s \ge 2 \Rightarrow \mathbf{t} = (2, 0, 0), (1, 0, 1), (0, 0, 2),$$

(5.3)
$$\mathbf{r} = (1, 1, 0)$$
 $\Rightarrow \mathbf{t} = (1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1), (0, 0, 2),$

(5.4)
$$\mathbf{r} = (1, s, 0), s \ge 2 \Rightarrow \mathbf{t} \ne (0, u, 0), u \ge 0,$$

(5.5)
$$\mathbf{r} = (s, 1, 0), s \ge 2 \Rightarrow \mathbf{t} \ne (u, 0, 0), u \ge 0,$$

$$(5.6) \ \mathbf{r} = (s,0,1), \, s \geq 1 \Rightarrow \mathbf{t} \neq (u,0,0), \, u \geq 0,$$

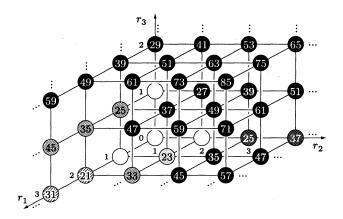
(5.7)
$$\mathbf{r} = (0, s, 1), s \ge 1 \Rightarrow \mathbf{t} \ne (0, u, 0), u \ge 0.$$

Then the possible genera g and species γ are listed as follows:

g	21	23	25	27	29	31	33	35	37	39	• • •
	2	2	2	2	2	2	2	2	2	2	
	4	4	4	4	4	4	4	4	4	4	
	6	6	6	6	6	6	6	6	6	6	
		8	8	8	8		8	8	8	8	
γ			10	10	10			10	10	10	
		16	16	16	16		16	16	16	16	
			18		18		18	18	18	18	
				20	20			20	20	20	
					30				30	30	

The following figure illustrates the relation of g, γ , and \mathbf{r} .

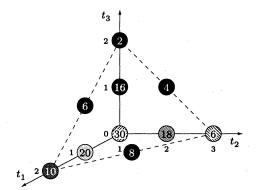
142



- q = 2, 4, 6, 8, 10, 16, 18, 20, 30
- $\gamma = 2, 4, 6, 8, 10, 16, 20$
- $\gamma = 2, 6, 10$

- $\gamma = 2, 4, 6, 8, 16, 18$
- g $\gamma = 2, 4, 6, 8, 16$ g $\gamma = 2, 4, 6$

The following figure illustrates the relation of g, γ and \mathbf{t} .



- g = 21, 23, 25, 27, 29, 31,...
- q = 23, 25, 27, 29, 33, 35,...
- g = 25, 27, 29, 35, 37, 39,...
- g = 25, 29, 33, 35, 37, 39,...
- γ) g = 27, 29, 35, 37, 39,...
- g = 29, 37, 39,...
- $g=21,\,25,\,29,\,31,...$

The possible g and γ satisfying the equality in Corollary 2 are the following

$$\begin{array}{lll} g=23 & \gamma=8 & (\mathbf{r}=\mathbf{t}=(1,1,0)), \\ g=25 & \gamma=6 & (\mathbf{r}=\mathbf{t}=(1,0,1)), \\ & & (\mathbf{r}=(1,0,1),\ \mathbf{t}=(0,2,0)), \\ & & (\mathbf{r}=(0,2,0),\ \mathbf{t}=(1,0,1)), \\ g=27 & \gamma=4 & (\mathbf{r}=\mathbf{t}=(0,1,1)), \\ g=29 & \gamma=2 & (\mathbf{r}=\mathbf{t}=(0,0,2)). \end{array}$$

REFERENCES

- N. l. Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Lecture Notes in Math., Vol. 219, Springer-Verlag, Berlin-New York, 1971.
- [2] E. Bujalance, Normal subgroups of NEC groups, Math. Z., 178 (1981), 331-341.
- [3] E. Bujalance, A. F. Costa and J. M. Gamboa, Real parts of complex algebraic curves, Lecture Notes in Math., Vol. 1420, Springer, Berlin, 1990, pp. 81-110.
- [4] E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, Automorphism groups of compact bordered Klein surfaces, Lecture Notes in Math., Vol. 1439, Springer-Verlag, Berlin, 1990.
- [5] E. Bujalance and D. Singerman, The symmetry type of a Riemann surface, Proc. London Math. Soc., **51**, No. 3 (1985), 501–519.
- [6] A. M. Macbeath, The classification of non-Euclidean plane crystallographic groups, Canad. J. Math., 19 (1967), 1192-1205.
- [7] C. Maclachlan, Maximal normal Fuchsian groups, Illinois J. Math., 15 (1971), 104-113.
- [8] D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc., 6, No. 2 (1972), 29-38.
- [9] D. Singerman, On the structure of non-Euclidean crystallographic groups, Proc. Cambridge Philos. Soc., 76 (1974), 233-240.
- [10] H. C. Wilkie, On non-Euclidean crystallographic groups, Math. Z., 91 (1966), 87-102.

Graduate School of Human Informatics Nagoya University Chikusa-ku, Nagoya 464-8601 Japan nakamura@math.human.nagoya-u.ac.jp