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THE EXISTENCE OF SYMMETRIC

RIEMANN SURFACES
DETERMINED BY CYCLIC GROUPS

GOU NAKAMURA

Abstract. Let n > 1, m > 1, g > 3 and 7 be given integers. The purpose of
this paper is to determine the relations of n, m, g and 7 for the existence of the
symmetric Riemann surfaces S of type (n,m) with genus g and species v. If n
is an odd prime, the relations are known in [3]. In the case that n is odd, we
shall show the analogous result when E(S) is isomorphic to a cyclic group Zz,
and when the quotient space S/E(S) is orientable.

§1. Introduction

Let S be a compact Riemann surface. We denote by E(S) the group
of analytic homeomorphisms and anti-analytic homeomorphisms of S onto
itself and by A(S) its subgroup of analytic homeomorphisms. If A(S) is
isomorphic to a cyclic group Z,, of order n and the quotient space S/A(S)
is of genus m, then S is called a Riemann surface of type(n, m). An element
T in E(S)\ A(S) is called a symmetry on S if T?(= ToT) = I (the identity
map). A compact Riemann surface with symmetries is said to be symmetric.
For a symmetry T on S the quotient space S/(T) is a Klein surface. Let
k be the number of boundary components of S/(T). Then we define the
species sp(T') of T by

sp(T) = k  (if S/(T) is orientable),
PET= =k (if S/(T") is non-orientable).

In this paper we suppose that E(S) is isomorphic to a cyclic group Zs,, of
order 2n. Then for such a symmetric Riemann surface S, the symmetry T
on S is uniquely determined. Hence we define the species of S by that of
T.

Let n > 1, m > 1, g > 3 and « be given integers. The purpose of this
paper is to determine the relations of n,m, g and - for the existence of the
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symmetric Riemann surfaces S of type (n,m) with genus g and species 7.
If n is an odd prime, the relations are known in [3]. In the case that n is
odd, we shall show the analogous result when E(S) is isomorphic to a cyclic
group Zs, and when the quotient space S/E(S) is orientable.

§2. Non-Euclidean crystallographic groups
Let H = {z € C | Sz > 0} be the upper half plane. With each matrix

A= (Z cbi) with a,b,¢,d € R and with det A = +1, we associate the

mapping
b
“zid if det A =1,
fa:H—-H; z+— {
92D i et 4 = 1.
cz+d

Then E(H) = {fa| det A = £1} and A(H) = {fa | det A =1}. We regard
E(H) as a topological space by means of the inclusion E(H) — PGL(2,R).
A discrete subgroup I' of E(H) is called a non-Euclidean crystallographic
group (shortly an NEC group) if the quotient H/T' is compact. An NEC
group I is called a Fuchsian group if I' C A(H), and a proper NEC group
otherwise. For a proper NEC group I', I't = I'MA(H) is called the canonical
Fuchsian group of I'. ‘
In general, each NEC group I' is formed by the generators

Ly ert ;ot=1,--,m,

e; elt v; i‘—‘bl,'--,‘k,

Cij EF\F+ ;o t=1,---,k, j=0,~-si,

ai,b; €'t~ ; 4i=1,---,g if H/T is orientable,

d; el’\I'* ; ¢=4,---,g9 if H/T is non-orientable,

satisfying the relations

m; _ .=
z, ' =1y por=1,-11,

21 C g =
€, Ci0€iCis; =1y got=1,-k, .

2 — 2 i — . s R R
ci:j—l _cij - (ci;j—'lcij)nj "‘IH y = 1,"",’6,, J = 17"'7517
T xreg - -eglar, b] - [ag, bg] = In if H/T is orientable,

L1+ Tp€q--- ekd% e dz =1y if H/T is non-orientable,

where (@i, bi] .=‘aibiai"lb;1. We call z; an elliptic element, ch a reflection of
I'. Then the signature o(T) of I' is written by

(1) O(F) = (ga ia [mla e am'l‘]; {(n11> e 7nlsl)7 Tty (nkla e 1nksk)})7
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where “4+” means that H/T' is orientable, and “—” means that H/T is
non-orientable. This “+” or “~” is called the sign of ¢(I') and denoted by
sign(o(I')). We call g the genus, m; the proper periods, n;; the periods, and
(ni1,- -+, n;s;) the period-cycles of o(I'). If there are no proper periods, we
write [—] in place of [my,- -+, m,|. If there are no periods in the period-cycle,
we write (—) in place of (n;1,ni2, - - -, nis;). If there are no period-cycles, we
write {—} in place of {(n11,--,n1s;), ", (Nk1, ", ks, ) }-

For an NEC group I' with signature (1), the Gauss-Bonnet theorem
shows that the non-Euclidean area p(F') of a fundamental region F of T is

given by
d 1) 1o ‘1
u(F) =2 ag+k—2.+z (1.— E) +§ZZ (1;— n—”) ,
i=1 i=1 j=1
where a = 2 if sign(o(T")) = “+7, a = 1 if sign(o(I")) ‘: “—7_ This does not

depend on the choice of fundamental regions. We define the area of o(I)
by u(F)/2m and denote it by u(T').

Let IV be an NEC group and I' a subgroup of I with finite index. Then
[ is an NEC group, and the following formula (called the Riemann-Hurwitz
relation) is fulfilled:

r
i,l =[':T]
()
§3. The main result
Let mq,mo, -, mi be integers. We denote the least common multiple
of {my,my,- -+, mi} by Le.m.{mq,mo, -+, mg}.

THEOREM 1. Let n > 1 be an odd integer and m > 1, g > 3 and v
integers. Then there exists a symmetric Riemann surface S of type (n,m)
with genus g(S) = g, sp(S) = v, E(S) = Zg, and with the orientable
quotient S/E(S) if and only if:

There exist non—negativé integers r,t and divisors dy,---,dr4t(# 1) of
n and an integer-k >-1 such that:

(a) If m=1, thenr >2. If m =2, thenr > 1.

(b) g:n(m—1+§<1—%>>+l.
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(c) m+ 1 —k is even and non-negative.

(d) 0<t< k.

(&) v=n (k —; (1 - d;)) (> 0).

(f) If 41> 0, then l.c.m.{dl, Tty dr+t} = lc.m. {dl, ey di——la di+1, ety
dy4t} for every i.

(8) If k=m+1, then L.em.{dy, -+, dr1s} = n.

We note that the divisors dy,---,dr4+ are not necessarily distinct.
If n is an odd prime p, our theorem is reduced to the following

COROLLARY 1. [3; Theorem 2.1) There exists a symmetric Riemann
surface S of type(p, m) with g(S) = g, sp(S) =y, E(S) = Zy, and with the
ortentable quotient S/E(S) if and only if:

There exist non-negative integers r,t and an integer k > 1 such that:

(a) If m=1, thenr >2. Ifm=2, thenr > 1.
(b) g=p(r+m—-1) -7 +1.

(¢) m+1—k is even and non-negative.

(d) 0<t<k.

(e) y=p(k—t)+1.

() If r+t>0, thenrt+1t>2.

(¢) If k=m+1, thenr+1t#0.

§4. The proof of our theorem
We shall use the following lemma (see [4; Lemma 3.1.1]).

LEMMA 1. Letmy, mgy, -+, mg > 0 be odd integers and N a (positive)
multiple of M =l.c.m.{my,mg,---,mi}. Then the following conditions are
equivalent to each other.

(1) There exist &1, -+, & 1n Zy such that o(§) =m; and &3+ -+ & =0
m Zy.
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(2) For every i, l.e.m.{mq,---,mi_1,miy1, -+ ,mg} = M.

Proof of our theorem. First we shall show the “only if” part. By our
assumption g > 3, H is the universal covering surface for S, so that there
exists a torsion-free Fuchsian group I's satisfying S = H/T's. Then the
signature of I's is 0(I's) = (g; +;[—]; {—}). We denote by Ng the normalizer
of I's in E(H). We shall show that the signatures of Ng and N;(: NsnN
A(H)) have the following forms with some non-negative integers r, k (1 <
k <m+1) and divisors dy,---,d, of n:

k

—k e N
o(Ns) = (B ==+ lduyday -+, s {5, (5},

o(N$) = (ms +5ld,dy, dy,d, -+ dry iy (=3

We note that dj,---,d, are not necessarily distinct. Since S/E(S) =
(H/Ts)/(Ns/T's) & H/Ng is orientable, we get sign(c(Ns)) =“+”. Let
r be the number of elliptic elements in canonical generators of Ng. The
orders of elliptic elements are divisors (# 1) of n. We write them dy, -, d,.
Let k be the number of period-cycles of Ng. Since there exists a sym-
metry on S, Ng contains reflections. Hence it follows that £ > 1. Since
Ng/T's =2 E(S) & Zy,, there exists an epimorphism

n:Ng — Zoy

with ker(n) = I's. For every element u of order 2 in Ng, we get n(u) = n.
Thus, for u, v in Ng of order 2, ker(n) contains uv. Since I'g is a torsion-
free group, uv is not an element of finite order > 1. Hence there are no
periods in any period-cycles of o(Ng). Since S/A(S) = H/NJ and S/A(S)
has genus m, the genus of o(N) is equal to m. By Corollary 2.2.5 in [4],
we get the required forms of o(Ns) and o(NZ).

We shall show the assertion (a). First we assume m = 1. The signature
of N ;’ is of form

o(N$) = (1;+;[d1, dv, -+, dp, do); {=)).

The area of o(NJ) is given by

p(Nd) :2§ (1— dl>
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From ,u(N;|~ ) > 0 it follows that » > 1. All signatures with respect to
maximal Fuchsian groups are known in Theorems 1, 2 and 3 in [8]. From

these known results it follows that in the case of r =1, N ; is not maximal,
because o(NJ) = (1; +; [d, d]; {—}) for some divisor d(# 1) of n. Hence, by
Theorem 1 in [8], there exists a Fuchsian group I D N¢ satisfying

[r: Ng’] =2 and o(I') =(0;+;(2,2,2,2,d];{-}),
so that the generators of I' is represented by 1, ---,ys with the relations
v =Ig(1<i<4), 9§ =Ig and y1---ys = In.

We see that I includes I's as a normal subgroup by the following way.
Let D,, be the dihedral group of order 2n, namely,

D, = (a,b | a" = b* = (ab)? = e (unit element)).

Since N /T's & A(S) = Z,, = (a), there exists an epimorphism 6 : N§ —
Z, with ker(§) = T's. By [I" : N&| = 2, we can write I' = NI UNJvy
for some v, in I, Therefore for each y; (1 < ¢ < 4) there exists y} in
Ng‘ satisfying y; = yiv1. We note that ys € 'N;. Then We can define an
epimorphism ¢; : IV — D,, satisfying

e1(y;) = 0(y))b for 1 <i<4,
¢1(ys) = 0(ys).

Since ker(¢;) =T's, 's is a normal subgroup of IV. Hence r > 2 must hold
because N; is the normalizer of I's in A(H).
Next we assume m=2. The signature of N; is of form

O'(N;) = (2;+;[dl,d],"',dr,dr];{_})-

By Theorems 1 and 2 in [8], NJ is not maximal in the case of r = 0,
because o(Nd) = (2;+;[~]; {—}). Then, by Theorem 1 in [8], there exists
a Fuchsian group I' D NJ satisfying

[[":Nfl=2 and o(I") = (0;+;[2,2,2,2,2,2];{-}),

so that the generators of I'” is represented by zi,---,2z¢ with the relations
2} = 2z1--26 = Ig (1 < i < 6). Since [[” : NJ] = 2, we can write
I = N;’ U N;'yz for some v, in I''. Therefore for each z; there exists z,
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in N¢ satisfying z; = z/v,. We can define an epimorphism ¢, : I'" — D,
satisfying
©2(2;) = 0(z)b for 1 <i<86.

Since ker(p2) = I'g, I's is a normal subgroup of I'”. Hence r > 1 must hold
because N is the normalizer of I's in A(H). Thus the assertion (a) holds.

We put ¢’ = (m+1—k)/2. Then the set of canonical generators of Ng
is represented by

{ai,ti(1 < i< g),2;(1 <5 <r),e,c=ap(l <1< k)Y,
with the relations
:c;lj =Ig (1<j5<r), el_lclelcl =cl=Iy (1<1<k)

and

™
‘Q\

Ha:j HelH[ai,bi] = Iy.
j=1  I1=1 i=1
We put

F={1<1<k; e ¢gls}and t=#F.

For each [ in F we denote by f; the order of n(e;) in Zs,, which is a divisor
(#1) of n. Then dy,---,d,, fi (I € F) are required divisors. The equality
(b) is shown by the Riemann-Hurwitz relation u(I's) = [Ng : I's]u(Ns),

namely,
- 1
29—2=2n<m—1+2<1—z)>
i=1 *

The assertion (c) follows from the genus of o(Ng). The assertion (d)
follows from t = #F.

We shall show the assertion (e). Let T be a symmetry on S. Since
{Is, T} is a subgroup of E(S) = Ng/T's, there exists a subgroup I'; of
Ng satisfying I'1/T's = {Is,T}. Then I'; = 57 1({0,n}). Since H/T; =
(H/Tg)/(T1/Ts) = S/{(T), |sp(S)| is the number of period-cycles of o(I'y).
Consequently we shall determine the signature of I';. Since [Ng : I'q] is
odd, we get sign(o(I';)) =sign(o(Ns)) =“+"([4;Theorem 2.1.2]). The order
of I'1z; in Ng/T'; is equal to that of z; in Ng. Hence there are no proper
periods of o(I';) ([4;Theorem 2.2.3]). Since o(Ng) does not have any period
in all period-cycles, neither does o(I'1). For each [ in F', the order of I'; ¢
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in Ng/T'; is equal to fj, so that by using Theorem 2.4.2 in [4] the number
k1 of period-cycles of o(T'y) is given by

k1=n(k-—t)+2%=n(k——z<1—}1;>>.

leF leF
Hence the signature of I'y is given by
k1
e e,
o(T1) = (915 +5 [=: {(=), -, ()],
where g1 = (g9 — k1 + 1)/2. Since sign(o(I'1)) = “+7, S/(T) is orientable,

so that v = k;. Hence the assertion (e) holds.
Ifr+t>0,weput M =lcm{dy, --,d, fi (I € F)}. Then

(n(z;)(1 <j <r)ynle)(l € F)) = Zy.

The canonical relation [];_; ; Hle el Hflzl[ai, b;] = Iy implies ", n(z;)
+ > 1er n(er) = 01in Zy,, so that we can take elements §; (1< j <), e (1 €
F) in Zy satisfying o(§;) = dj, o(er) = frand 337, & + 3 cper = 0.
Therefore the assertion (f) follows from Lemma 1.

We shall show the assertion (g). If k = m + 1 then the set of canonical
generators of Ng is represented by

{z; 1<j<r), e, a=co (1<1ILk)}
with the relations
d]

x€T.

7 =Ig (1<j<r), e laaa=c =1Iy (1<I1<k)

and
T k
H z; H e =1Ig.
=1 =1
Since 1 : Ng — Zo, is surjective, the image of 7,

Im(”l) = (77(3:_7) (1 SJ < T)) 77(61)) 77(01) (1 < l < k))a

contains elements of order 2n. Since 7(¢;) (1 <1 < k) are elements of order
2, it follows that l.c.m.{dy,---,d,, fi (I € F)} = n. Thus the assertion (g)
holds. Hence the proof of “only if” part is completely achieved.
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Conversely we shall show the “if” part. Let n,m,g,v,7,t,dy, -, drys
and k be given numbers satisfying conditions (a) to (g). We put

—_—
g = (gl; +; [dl," e ,dr]; {(_)9 T (—)})7
where ¢’ = (m +1—k)/2. By (c), ¢’ is a non-negative integer. Since the
area pu(0) = m —1+ 3% (1 —1/d;) is positive by (b), there exist NEC
groups with signature o. By Corollary 2.2.5 in [4] the canonical Fuchsian
groups of such NEC groups have the signature

U+ = (ma +; [dla dla e adra dr}a {_})
From (a) it follows that
ot # (L4 [di, dil; {-}) and o7 # (2, +; [}, {-}).

Therefore, by Theorems 1 and 2 in [8], there exists a maximal Fuchsian
group with signature o, so that we have a maximal NEC group with
signature 0. We denote it by N.

Let {a,-,bi(l <1< g'),:cj(l <3< r),el,cl = Clo(l << k)} be the set
of canonical generators of N satisfying

CL‘;-ij':IH (1<j<r), glaaa=c=Ig (1<1<k)

and
,

k g
x; H e H[a,-, b)) = Iy.
1 =1 =1

Assume r + ¢ > 0. By the condition (f) and Lemma 1 there exist {; in Zay,
of order d; (1 < j < r+1t) such that

r+t

D & =0 in Zs,.
Jj=1

We can define an epimorphism 7 : N — Z,, satisfying
n(a1) = n(b1) = 2 (if ¢’ > 1), n(a;) =n(b;) =0 (2 < i < ¢),
n(z;) =& 1 <5<, ifr#0),
71(01) =n (1 << k)a

& (LILt, ift#0),
"@”‘{o (t+1<1<Ek).

Because 7 is compatible with the relations in N, that is,
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d; d; .
r; =1Iy n(z;’)=d;j&;=0(1<j<r),
¢t =1Ig n(c)=2n(1<1<k),

el_lclelcl =1Iyg n(el_lclelcl) =0(1<I1<k),
k ! k !
H;:1 ;i [Ti=s e [Ty ais 0] = In W(H;':1 ;i [Tz e [T, [ai, b))
' =yrHg =0,

We shall show that 7 is surjective. Since k > 1, Im(n) contains 7(c;) of
order 2. Therefore it is sufficient to show that Im(7) contains an element
of order n. If g’ > 1, then n(a;) and 7(b;) are of order n by the definition.
If ¢ =0, that is, k = m + 1, then by (g) there exist elements of order n in
Im(n). Thus Im(n) = Zsp.

We put

L

[ = ker(n) and S = H/T.

Then I' is an NEC group.

We shall show that S is a required Riemann surface. By the definition
of 7, there exist no elliptic elements and orientation-reversing ones in T,
so that the genus of o(T) is equal to g by the Riemann-Hurwitz relation
u(l') = 2nu(N). Therefore I' is a Fuchsian group of signature o(I') =
(g;+;[=];{—=1}). Hence S is a compact Riemann surface of genus g. Since
N is maximal and includes I' as a normal subgroup, N is the normalizer
of I in E(H). Therefore E(S) = N/T & Z,,. We put 'y = n71({0,n}).
Since I'y /T is a subgroup of order 2 in N /T, there exists a symmetry T on
S such that ,

Iy/T = {Is, T} C E(S).

Thus S is symmetric. From [E(S) : A(S)] = 2 it follows that A(S) = Z,.
The genus of o(N™T) is equal to 2¢g’ + k — 1 = m, so that the genus of
S/A(S) =2 H/NT is equal to m. Thus S is of type (n,m). The orientability
of S/E(S) is derived from S/E(S) & H/N and sign(c(N)) =“+".

We shall show sp(S) = v. Note the form of o(I';) given in the “only
if” part. Similarly we obtain

ko

——
a(T2) = (g2; + [=[ {(=), -5 (5)})

and
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Since S/(T) = (H/T')/(Ty/T") = H/T5, we have sp(S) = k3 = . Hence S
is a symmetric Riemann surface of type (n,m) with g(S) = g, sp(S) = v,
E(S) = Z,, and with the orientable quotient S/E(S). The proof of “if”
part is completely achieved.

COROLLARY 2. If 37 (1 —1/d;) = S°t_;(1 — 1/dr4;) in the above
theorem, then

9(8) + k(S/(T)) — 1 = #A(S) (9(S/A(S)) + k(S/E(S)) — 1),

where k(X) denotes the number of boundary components of X.

Proof. By (b) and (e), we get g+v—1=n(m+k —1).

§5. Examples

We shall show the simplest examples on our theorem.

EXAMPLE 1. In the case of n = 9 and m = 1, our theorem is reduced
to the following:
There exists a symmetric Riemann surface S of type (9,1) with g(S) =

g, sp(S) =7, E(S) = Z;5 and with the orientable quotient S/E(S) if and
r1tt - T2+ts

only if there exist non-negative integers r1,79,t1,%9, 3,--+,3 and 9,---,9
such that :

(1) 71 +79 > 2.

(2) g =671 +8ry + 1.

(3) 0<t; +1 < 2.

(4) v = 2(9 — 3t; — 4t»).

(5) We put r = (r1,72) and t = (1,t2), then
(5.1) r=(s,0), s>2=1t=(0,2),

(52) r=(s,1), s >1=t=(0,1),(1,1),(0,2).

Then the possible genera g and species v are listed as follows:
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g | 1315|1719 21 [23 [ 2527 [29] 31
2 22222 2]2]2]¢2
414 414 ]4]4]4/|4

~y 6 6| 6 6 | 6
10 | 10 101010101010

12 12 | 12 12 | 12

18 18 | 18 18 | 18

The following figure illustrates the relation of g, v and r.

T2

@
®
®
@)

5 T

, 10, 12, 18

g =13, 15, 17, 19, 21,...
g= 15,17, 21, 23, 25,...
g =17, 23, 25, 29, 31,...

The possible g and + satisfying the equality in Corollary 2 are the following

g=15 y=4 (r=t=(1,1)),
g=17 yv=2 (r=t=/(0,2)).
EXAMPLE 2. In the case of n = 15 and m = 1, our theorem is reduced

to the following:
There exists a symmetric Riemann surface S of type (15,1) with g(S) =

g, sp(S) = v, E(S) = Z3p and with the orientable quotient S/E(S) if and
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ri+ty r2+t2

only if there exist non-negative integers ry,ry,r3,t1,t2,%3, 3,---,3, 5,---,5
r3+i3

and m such that:

(1) ri+re+r3>2.

(2) g = 1071 + 127 + 1473 + 1.

(3) 0<t;+tr+13 <2.

(4) v = 2(15 — 5, — 6ty — Tt3).

(5) We put r = (r1,72,73) and t = (1, t2,t3), then
(5.1) r = (5,0,0), s > 2 =t = (0,2,0),(0,1,1),(0,0,2),
(5.2) r =(0,s5,0), s >2=1t=(2,0,0),(1,0,1),(0,0,2),

(5.3) r=(1,1,0) =t=(1,1,0),(1,0,1),(0,1,1),
(0,0,1),(0,0,2),

(5.4) r=(1,s,0),s >2=1t+#(0,u,0), u >0,
(5.5) r=(s,1,0), s >2 =1t # (u,0,0), u >0,
(5.6) r = (5,0,1), s> 1=t # (u,0,0), u > 0,
(5.7 r=1(0,s,1), s > 1=t # (0,u,0), u > 0.

Then the possible genera g and species y are listed as follows:

g 21123252729 |31|33|35]|37]39
212122212 ]2]|2]|2]2
414444444414
6|16 | 6|6 |6 |6 6] 6)]6]|6

8 1 81| 8] 8 818|818

Y 10 {10 | 10 10 |10 | 10

16 | 16 | 16 | 16 16 | 16 | 16 | 16
18 18 18 118118} 18

20 | 20 20 | 20 | 20

30 30 | 30

The following figure illustrates the relation of g, v, and r.
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© »=21456,81016,18,20,30 y=2,4,6 8,16, 18

e7=2,4,6,8,10,16,20 ~y=2,4,6,8,16

~y=2,6,10 79 v=2.4,6

The following figure illustrates the relation of g, v and t.

@ s=121,232527,29,31,.
Q g = 23, 25, 27, 29, 33, 35,...
@ g = 25, 27, 29, 35, 37, 39,...
g = 25,29, 33, 35, 37, 39,...
g =27, 29, 35, 37, 39,...
@ g =29, 37, 39,...

@ g =21, 25,29, 31,...

The possible g and +y satisfying the equality in Corollary 2 are the following

g=23 yv=8 (r=t=(1,1,0)),

g=25 yv=6 (r=t=(1,0,1)),
' (r=(1,0,1), t =(0,2,0)),
(r=1(0,2,0), t=(1,0,1)),

9=27 y=4 (r=t=(0,1,1)),

g=29 yv=2 (r=t=(0,0,2)).
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