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THE EXISTENCE OF SYMMETRIC
RIEMANN SURFACES

DETERMINED BY CYCLIC GROUPS

GOU NAKAMURA

Abstract. Let n > l , m > l , p > 3 and 7 be given integers. The purpose of
this paper is to determine the relations of n, ra, g and 7 for the existence of the
symmetric Riemann surfaces S of type (n, ra) with genus g and species 7. If n
is an odd prime, the relations are known in [3]. In the case that n is odd, we
shall show the analogous result when E(S) is isomorphic to a cyclic group Z2n
and when the quotient space S/E(S) is orient able.

§1. Introduction

Let 5 be a compact Riemann surface. We denote by E(S) the group
of analytic homeomorphisms and anti-analytic homeomorphisms of 5 onto
itself and by A(S) its subgroup of analytic homeomorphisms. If A(S) is
isomorphic to a cyclic group Zn of order n and the quotient space S/A(S)
is of genus ra, then S is called a Riemann surface of type(n, 777,). An element
T in E(S)\A(S) is called a symmetry on S if Γ 2 (= ΓoT) = Is (the identity
map). A compact Riemann surface with symmetries is said to be symmetric.
For a symmetry T on 5 the quotient space S/(T) is a Klein surface. Let
k be the number of boundary components of S/(T). Then we define the
species sp(T) of T by

Γfc (ifS/(T)isorientable),
P l j \ -k (if S/(T) is non-orient able).

In this paper we suppose that E(S) is isomorphic to a cyclic group Z2n of
order 2n. Then for such a symmetric Riemann surface 5, the symmetry T
on S is uniquely determined. Hence we define the species of 5 by that of
T.

Let n > l , ra>l, g > 3 and 7 be given integers. The purpose of this
paper is to determine the relations of n, m, g and 7 for the existence of the
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130 G. NAKAMURA

symmetric Riemann surfaces S of type (n, m) with genus g and species 7.

If n is an odd prime, the relations are known in [3]. In the case that n is

odd, we shall show the analogous result when E(S) is isomorphic to a cyclic

group Z2n and when the quotient space S/E(S) is orientable.

§2. Non-Euclidean crystallographic groups

Let H = {z G C I ζsz > 0} be the upper half plane. With each matrix

A ~ I ) w ^ h a, 6, c, c? G R and with detA = ± 1 , we associate the
\c d)

mapping

ί ^ ± | ifdet^l,

f

if detA = - 1 .cz + d
Then E{H) = {fA \ detA = ±1} and A(H) = {fA \ detA = 1}. We regard
E(H) as a topological space by means of the inclusion E(H) c-+ PGL(2, R).

A discrete subgroup Γ of E(H) is called a non-Euclidearί crystallographic

group (shortly an NEC group) if the quotient H/T is compact. An NEC

group Γ is called a Fuchsian group if Γ C A(H), and a proper NEC group

otherwise. For a proper NEC group Γ, Γ + •= ΓΠA(H) is called the canonical

Fuchsian group of Γ.

In general, each NEC group Γ is formed by the generators

xi e'Γ+ i = i, v r,

G

e
e
G

Γ+
Γ\Γ+
Γ+
Γ\Γ+

i ="1,
z 1 ,

ϊ ' = l ,

i = z,

• , k,

•••,k,

•••,9

•••,9

j = 0,

if H/T

if HIT

•••Si,

is orientable,

is non-orientable,

satisfying the relations

ch-ι = 4 =

xi x r ei efc[αi, 61] [α^, i^] = IJJ if Jϊ/Γ is orientable,

x\ - - xre\ βkd\ - d2

g — IH if H/T is non-orientable,

where [ai,6j] = dibia^b"1. We call x̂  an elliptic element, Cij a reflection of

Γ. Then the signature σ(T) of Γ is written by

(1) σ(Γ) = (g; ± ; [ m b , m r ]; { (n n , , n l 5 l ) , , (n fci, , nfcSfc)}),
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SYMMETRIC RIEMANN SURFACES 131

where " + " means that H/T is orientable, and "—" means that HjT is

non-orientable. This " + " or "—" is called the sign of σ(Γ) and denoted by

sign(σ(Γ)). We call g the genus, mi the proper periods, Uij the periods, and

(riii, ,τiiSi) the period-cycles of <τ(Γ). If there are no proper periods, we

write [—] in place of [mi, , mr]. If there are no periods in the period-cycle,

we write ( —) in place of (n^, n^, , niSi). If there are no period-cycles, we

write {-} in place of { (n n , , m β l ) , , (nkl, ,nksk)}.

For an NEC group Γ with signature (1), the Gauss-Bonnet theorem

shows that the non-Euclidean area μ(F) of a fundamental region F of Γ is

given by

μ(F) =

where a = 2 if sign(σ(Γ)) = " + " , a = 1 if sign(σ(Γ)) = " - " . This does not

depend on the choice of fundamental regions. We define the area of σ(Γ)

by μ(F)/2π and denote it by μ(Γ).

Let Γ' be an NEC group and Γ a subgroup of Γ" with finite index. Then

Γ is an NEC group, and the following formula (called the Riemann-Hurwitz

relation) is fulfilled:

μ(Γ>) ι* •*'•

§3. The main result

Let ?77,i,777,2, , 777,fc be integers. We denote the least common multiple

of {mi, m 2 , * *, mk} by l.c.m.{mi, m 2 , , mk}.

THEOREM 1. Let n > 1 be an odd integer and m > 1, g > 3 and 7

integers. Then there exists a symmetric Riemann surface S of type (n, 777,)

with genus g(S) = g, sp(S) = 7, E(S) = Z2n and with the orientable

quotient S/E(S) if and only if:

There exist non-negative integers r,t and divisors d\, , c? r + ί (^ 1) of

n and an integer k > 1 such that:

(a) I f m = l, then r>2.Ifm = 2, then r>\.

(b) g = n(m-l + Y(l-±-))+l.
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132 G. NAKAMURA

(c) m + 1 — k is even and non-negative.

(d) 0 < t < k.

(f) If r + t > 0, then l.c.m.{di, ,dr+t} — l.c.m. {di, , dj_i,di+i,.

/or ever?/ i.

(g) If k = m + I, then l.c.m.{di, , dr+t) = n.

VFe note £Λα£ the divisors di, ,dr_|_t are no£ necessarily distinct.

If n is an odd prime p, our theorem is reduced to the following

COROLLARY 1. [3; Theorem 2.1] There exists a symmetric Riemann

surface S of type(p,m) with g(S) = g, sp(S) = η, E{S) == Z2P and with the

orientable quotient S/E(S) if and only if:

There exist non-negative integers r,t and an integer k > 1 such that:

(a) If m = 1, £Λen r > 2. If 7X1 = 2, then r > 1.

(b) # = p(r + ra — 1) — r + 1.

(c) m H- 1 — k is even and non-negative.

(d) 0 < t < k.

(e) 7 = p ( f c - * ) + ί.

(f) Ifr + t> 0; ίften r +1 > 2.

(g) If k = m+ 1, then r + t^O.

§4. The proof of our theorem

We shall use the following lemma (see [4; Lemma 3.1.1]).

LEMMA 1. Let mi, ra2, , m^ > 0 be odd integers and N a (positive)

multiple of M =l.c.m.{mi,rri2, jΉifc}. Then the following conditions are

equivalent to each other.

(1) There exist £i, , £fc in ϊjsr such that o(ξi) = ra^ and ξχ-\ hξfc = 0

in ZJV
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(2) For every i, l.c.m.{mi, ,mi_i,mi+i, , m^} = M.

Proof of our theorem. First we shall show the "only if" part. By our

assumption g > 3, H is the universal covering surface for S, so that there

exists a torsion-free Fuchsian group Γ5 satisfying 5 = H/Γs Then the

signature of Γs is σ(Ts) = {g\ +; [—]; { — }). We denote by Ns the normalizer

of Ts in E{H). We shall show that the signatures of Ns and N^{= Ns Π

A(H)) have the following forms with some non-negative integers r, k (1 <

k < m + 1) and divisors dχ? , dr of n:

σ(JV+) = (ra;+;[di,di,d2,d2, ,dr,dr];{-}J.

We note that di, ,d r are not necessarily distinct. Since S/E(S) =

(H/Ts)/(NS/Ts) = Jϊ/iVs is orientable, we get sign(σ(JV5)) = " + " • Let

r be the number of elliptic elements in canonical generators of TV̂ . The

orders of elliptic elements are divisors (φ 1) of n. We write them di, , d r.

Let A: be the number of period-cycles of Ns Since there exists a sym-

metry on 5, iVs contains reflections. Hence it follows that k > 1. Since

Ns/Ts — Έ(S') — Z2n5 there exists an epimorphism

η:Ns-+ Z2 n

with ker(77) = Γ5. For every element u of order 2 in iVs, we get η(u) = n.

Thus, for u, υ in Ns of order 2, ker(τ/) contains uv. Since Γ5 is a torsion-

free group, i/f is not an element of finite order > 1. Hence there are no

periods in any period-cycles of σ(Ns). Since S/A(S) = H/Ng and S/A(S)

has genus ra, the genus of σ(7V<t) is equal to m. By Corollary 2.2.5 in [4],

we get the required forms of σ(Ns) and σ(N§').

We shall show the assertion (a). First we assume m = 1. The signature

of N£ is of form

σ(N<f) - (1; +; [du du , d r, dr) {-}).

The area of σ(N^) is given by
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134 G. NAKAMURA

From μ(Ng') > 0 it follows that r > 1. All signatures with respect to

maximal Fuchsian groups are known in Theorems 1, 2 and 3 in [8]. From

these known results it follows that in the case of r = 1, N§ is not maximal,

because σ(N^) = (1; +; [d, d]\ { —}) for some divisor d{φ 1) of n. Hence, by

Theorem 1 in [8], there exists a Fuchsian group Γ' D Ng satisfying

[Γ':iV+] = 2 and σ(Γ') = (0; +; [2, 2, 2, 2,d]; {-}),

so that the generators of Γ' is represented by 2/1, ,2/5 with the relations

y\ = IH(1 < i < 4), 2/5 = / # and 2/1 - - 2/5 = ίtf

We see that Γ' includes Γ5 as a normal subgroup by the following way.

Let Dn be the dihedral group of order 2n, namely,

Dn = (α, 6 I αn = b2 — (α6)2 = e (unit element)).

Since iV^/Γs = A(S) = Zn = (α), there exists an epimorphism θ : $

Zn with ker(0) = Γ 5 . By [Γ; : N$] = 2, we can write Γ = Λ^+ U iV+71

for some 71 in Γ;. Therefore for each yι (1 < i < 4) there exists ŷ  in

N'g satisfying yι = ^ 7 1 . We note that 7/5 G -/V|t. Then We can define an

epimorphism ψ\ : Γ ; —> £)n satisfying

Vi (2/5) =

Since ker(c^i) = Γ5, Γ5 is a normal subgroup of Γ'. Hence r > 2 must hold

because iVcί" is the normalizer of Γ5 in A(H).

Next we assume m=2. The signature of Λ̂ "̂ is of form

By Theorems 1 and 2 in [8], N^ is not maximal in the case of r = 0,

because σ(N^) = (2; +; [-]; {-}). Then, by Theorem 1 in [8], there exists

a Fuchsian group Γ" D N^ satisfying

[Γ":iV+] = 2 and σ(Γ") = (0; +; [2, 2, 2, 2, 2,2]; {-}),

so that the generators of Γ;/ is represented by z\, , ZQ with the relations

z\ = zi- zβ = IH (1 < i < 6). Since [Γ" : 7V+] = 2, we can write

Γ;/ = 7Vj~ U N^j2 for some 72 in Γ7/. Therefore for each zι there exists z\
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in N£ satisfying Z{ — ^72- We can define an epimorphism ψ2 : Γ/A —» Dn

satisfying

φ2(zi) = θ{z'i)b for 1 < % < 6.

Since ker(y?2) = Γ5, Γ5 is a normal subgroup of Γ". Hence r > 1 must hold

because JV̂ " is the normalizer of Γ5 in A(ίf). Thus the assertion (a) holds.

We put g' — (m + 1 — fc)/2. Then the set of canonical generators of Ns

is represented by

with the relations

xf. =IH(1<J< r), ej-^zeic,. = cf = IH (1 < I < k)

and

We put

F = {1 < / < k e ^ Γ 5 } and ΐ = # F .

For each / in F we denote by fι the order of rj(eι) in Z2n? which is a divisor

{Φ 1) of n. Then c?i, , c?r, // (/ G F) are required divisors. The equality

(b) is shown by the Riemann-Hurwitz relation μ(Γs) = [Ns ' Γs]μ(Ns),

namely,

2g - 2 = 2n ( m -
V i=i

The assertion (c) follows from the genus of σ(Ns). The assertion (d)

follows from t = # F .

We shall show the assertion (e). Let T be a symmetry on S. Since

{Is,T} is a subgroup of E(S) = Ns/Γs, there exists a subgroup Γi of

Ns satisfying Γ1/Γ5 = {Is,T}. Then Γx ='η- 1 ({0,n}). Since ff/Γi ^

(H/Ts)/(Tι/Γs) = S/(T), |sp(5)| is the number of period-cycles of σ(Γi).

Consequently we shall determine the signature of Γi. Since [Ns : Γi] is

odd, we get sign(σ(Γi)) =sign(a(iV5)) ="+"([4;Theorem 2.1.2]). The order

of TiXj in Ns/Tι is equal to that of Xj in Ns Hence there are no proper

periods of σ(Γχ) ([4;Theorem 2.2.3]). Since σ(Ns) does not have any period

in all period-cycles, neither does σ(Γχ). For each / in F, the order of
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136 G. NAKAMURA

in Ns/Tι is equal to //, so that by using Theorem 2.4.2 in [4] the number
k\ of period-cycles of σ(Γχ) is given by

(

i \ ieF

Hence the signature of Γi is given by

σ(Γχ) = (si;+;[-];{(-),.••, (-)}),

where gi = (g - h + l)/2. Since sign(σ(Γi)) = " + " , S/(T) is orientable,
so that 7 = fci. Hence the assertion (e) holds.

If r + t > 0, we put M = l.c.m.{di, , rfr, // (/ G F)}. Then

The canonical relation ΠJ=i xi Π?=i ei Π?=i[α*j **] = ^ implies Σj=i ^( xi)
+ ΣιeF v(el) = 0 in Z2n? so that we can take elements ξj (1 < j < r), ε/ (Z €
F) in ZM satisfying o(^ ) = dj, ofa) = // and Σj=i ^i + ΣieF ε i ^ °
Therefore the assertion (f) follows from Lemma 1.

We shall show the assertion (g). If k = m + 1 then the set of canonical
generators of Ns is represented by

with the relations

xJJ = /i/ (1 < j < r), eJ-^βiQ - cf = IH (1 < / < k)

and

Since 77 : TVs —•> Z2n is surjective, the image of 77,

(^(xj ) (1 < j < r), η(eι), i/(q) (1 < Z < k)),

contains elements of order 2n. Since T/(Q) (1 < / < k) are elements of order
2, it follows that l.c.m.{di, - — ,dr,fι (I € F)} — n. Thus the assertion (g)
holds. Hence the proof of "only if part is completely achieved.
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Conversely we shall show the "if" part. Let n, m, g, 7, r, t, dχ5 , dr_j_£

and k be given numbers satisfying conditions (a) to (g). We put

σ =

where #' = (ra + 1 — k)/2. By (c), #' is a non-negative integer. Since the

area μ(σ) = m — 1 + Σ ^ - i ( l — 1/47') i s positive by (b), there exist NEC

groups with signature σ. By Corollary 2.2.5 in [4] the canonical Fuchsian

groups of such NEC groups have the signature

cr+ = , dr, dr]; {-}).

From (a) it follows that

σ+ φ (1; +; [di, ̂ ] ; {-}) and σ+ φ (2; +; [-]; {-}).

Therefore, by Theorems 1 and 2 in [8], there exists a maximal Fuchsian

group with signature σ + , so that we have a maximal NEC group with

signature σ. We denote it by N.

Let {αi,bi(l < i < g'),Xj(l <j< r), ez, Q = c i 0 (l < I < k)} be the set

of canonical generators of N satisfying

x? = IH (1 < 3 < r), e^cieici = cf = IH (1 < I < k)

and

Assume r +1 > 0. By the condition (f) and Lemma 1 there exist ξj in

of order dj (1 < j < r + t) such that

r+t

Σξj = 0 inZ2n.
3=1

We can define an epimorphism η : N —> Z2n satisfying

»?(oi) = i/(6i) = 2 (if p' > 1), τj(αί) = »?(6ί) = 0 (2 < i < p'),

ί/(xj ) = ξj (1 < j < r, if r φ 0),

= n (1 < Z < *) ,

Because 77 is compatible with the relations in N, that is,
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ejιcχeιcι = IH =4> η{ejιcιeιcι) = 0 (1 < I < k),

= Σ5±i <,• = o."
We shall show that η is surjective. Since k > 1, 1111(77) contains η(c{) of

order 2. Therefore it is sufficient to show that Im(τ7) contains an element

of order n. If g1 > 1, then 77(0,1) and 77(61) are of order n by the definition.

If g1 = 0, that is, k = ra + 1, then by (g) there exist elements of order n in

Im(τ7). Thus Im(τ/) = Z2n

We put

Γ - ker(τ7) and 5 = H/T.

Then Γ is an NEC group.

We shall show that 5 is a required Riemann surface. By the definition

of 77, there exist no elliptic elements and orientation-reversing ones in Γ,

so that the genus of σ(Γ) is equal to g by the Riemann-Hurwitz relation

μ(Γ) = 2nμ(N). Therefore Γ is a Fuchsian group of signature σ(Γ) —

(g\ +; [—]; { — }.). Hence 5 is a compact Riemann surface of genus g. Since

N is maximal and includes Γ as a normal subgroup, N is the normalizer

of Γ in E(H). Therefore E(S) - N/Γ ^ Z2n We put Γ2 - i j - ^ ^ r i } ) .

Since Γ2/Γ is a subgroup of order 2 in ΛΓ/Γ, there exists a symmetry T on

5 such that

T2/Γ ^ {IS,T} C E(S).

Thus 5 is symmetric. From [E(S) : A(S)] = 2 it follows that A(S) = Zn.

The genus of σ(7V+) is equal to 2gf + k — 1 = ra, so that the genus of

S/A(S) = ίί/TV4" is equal to m. Thus 5 is of type (n,ra). The orientability

of S/E(S) is derived from S/£?(5) ^ ίΓ/JV and sign(σ(ΛΓ)) = « + " .

We shall show sp(5) = 7. Note the form of σ.(Γχ) given in the "only

if" part. Similarly we obtain

and
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Since S/(T) Ξ (H/T)/(T2/T) =* #/Γ 2 , we have sp(5) = k2 = 7. Hence 5

is a symmetric Riemann surface of type (n,ra) with p(S) = g, sp(5) = 7,

£7(S) = Z 2 n and with the orientable quotient S/E(S). The proof of "if"

part is completely achieved.

COROLLARY 2. // Σr

i=1(l - 1/di) = .Σ* = i( l - 1/dr+i) ^ *Λe α6o^e

theorem, then

g(S) + k(S/(T)) - 1 = #A(5) (g(S/A(S)) + k(S/E(S)) - 1),

where k(X) denotes the number of boundary components of X.

Proof By (b) and (e), we get g + 7 — 1 =? n(rn + A: — 1).

§5. Examples

We shall show the simplest examples on our theorem.

EXAMPLE 1. In the case of n = 9 and m'•== 1, our theorem is reduced

to the following:

There exists a symmetric Riemann surface S of type (9,1) with g(S) =

<7, sp(5) = 7, £7(5) = Zi8 and with the orientable quotient S/E(S) if and
ri+h r2+t2

only if there exist non-negative integers ri, 7*2, £i, £2? 3, , 3 and 9, , 9

such that :

(1) r1+r2>2.

(2) g = 6rι + 8r2 + 1.

(3) 0 < £1 + 1 2 < 2.

( 4 ) 7 = 2 ( 9 - 3 t i - 4 t 2 ) .

(5) We put r = ( r i , ^ ) a n d t = (ti,^2)? then

(5.1) r = (5,0), 5 > 2=»t = (0,2),

(5.2) r - (s, 1), s > 1 => t - (0,1), (1,1), (0, 2).

Then the possible genera g and species 7 are listed as follows:
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9

7

13
2

15
2
4

10

17
2
4
6
10
12
18

19
2

21
2
4

10

23
2
4
6
10
12
18

25
2
4
6
10
12
18

27
2
4

10

29
2
4
6
10
12
18

31
2
4
6
10
12
18

...

The following figure illustrates the relation of g, 7 and r.

7 = 2, 4, 6, 10, 12, 18

© 7 = 2, 4, 10

The following figure illustrates the relation of #, 7 and t.

0 = 13, 15, 17, 19, 21,...

0 = 15, 17, 21, 23, 25,...

9 = 17, 23, 25, 29, 31,...

The possible # and 7 satisfying the equality in Corollary 2 are the following

= 17 = 2 (r = t = (0,2)).

EXAMPLE 2. In the case of n — 15 and m = 1, our theorem is reduced
to the following:
There exists a symmetric Riemann surface 5 of type (15,1) with g(S) =
#, sp(5) = 7, E(S) = Z30 and with the orientable quotient S/E(S) if and
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only if there exist non-negative integers r\, b^2j*3j 3, ,3, 5, ,5

and 15, , 15 such that:

(1) rλ+r2 + rz> 2.

(2) g = 10ri + 12r2 + 14r3 + 1.

(3) 0 < tx + t2 + t 3 < 2.

(4) 7 = 2(15 - 5*i - 6ί2 - 7t 3).

(5) We put r = (rι,r2,rz) and t = (ίi,<2>*3), then

(5.1) r = (a, 0,0), a > 2 => t = (0, 2,0), (0,1,1), (0, 0,2),

(5.2) r = (0, 5,0), s > 2 =• t = (2,0,0), (1,0,1), (0, 0,2),

(5.3) r = (1,1,0) => t = (1,1, 0), (1,0,1), (0,1,1),

(0,0,1), (0,0, 2),

(5.4) r = (l,s,0), s > 2 =}• t φ (0,u,0), u > 0,

(5.5) r = (s,l,0), s>2=>tφ (u, 0,0), u > 0,

(5.6) r = (5,0,1), s > 1 =*• t φ (u, 0,0), u > 0,

(5.7) r = (0, s, 1), « > 1 =Φ-1 # (0, u, 0), u > 0.

Then the possible genera g and species 7 are listed as follows:

9

7

21
2
4
6

23

2

4

6

8

16

25

2

4

6

8

10
16
18

27

2
4
6

8

10
16

20

29

2

4
6

8

10

16
18

20

30

31

2

4
6

33

2

4
6

8

16

18

35

2

4
6

8

10

16
18

20

37

2

4

6

8

10

16

18

20

30

39

2

4

6

8

10

16

18

20
30

The following figure illustrates the relation of g, 7, and r.
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Q 7 = 2, 4, 6, 8, 10, 16, 18, 20, 30 φ 7 = 2, 4, 6, 8, 16, 18

0 . 7 = 2 , 4, 6, 8, 10, 16, 20 (g) 7 = 2, 4, 6, 8, 16

0 7=2,6,10 | | | 7 = 2, 4, 6

The following figure illustrates the relation of g, 7 and t.

©

0 0=21,23,25,27,29,31,..

0 g = 23, 25, 27, 29, 33, 35,..

0 g = 25, 27, 29, 35, 37, 39,..

0 g = 25, 29, 33, 35, 37, 39,..

0 g = 27, 29, 35, 37, 39,...

| p 0 = 29,37,39,...

ϋ 0 - 2 1 , 25, 29, 31,...

The possible g and 7 satisfying the equality in Corollary 2 are the following

5 = 23
g = 25

7 = 8 (r = t = (1,1,0)),
7 = 6

g = 27 7 =
9=29 7 =

(r = t = (1,0,1)),
(r = (1,0,1), t = (0,2,0)),
(r = (0,2,0), t = (1,0,1)),
(r = t = (0,1,1)),
(r = t =•(0,0,2))...
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