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Abstract

Let a" denote the spectral idempotent of a generalized Drazin invertible element a of a ring. We
characterize elements b such that 1 — (bn — a")2 is invertible. We also apply this result in rings with
involution to obtain a characterization of the perturbation of EP elements. In Banach algebras we obtain
a characterization in terms of matrix representations and derive error bounds for the perturbation of the
Drazin inverse. This work extends recent results for matrices given by the same authors to the setting of
rings and Banach algebras. Finally, we characterize generalized Drazin invertible operators /t, B e S8(X)
such that pr(B") = pr(A" + 5), where pr is the natural homomorphism of 38(X) onto the Calkin algebra
and 5 e SB(X) is given.
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Keywords and phrases: Generalized Drazin inverse, spectral idempotent, EP elements, perturbation,
Fredholm operators.

1. Introduction

The perturbations of the conventional and generalized Drazin inverse with equal

eigenprojections at zero have been studied by Castro, Koliha and Wei in [4,5] for

matrices and closed operators, respectively, by Rakocevic [7] for elements in Banach

algebras and by Koliha and Patrfcio [15] for elements of rings.

Recently, the authors [6] studied perturbations of the Drazin inverse of a square

complex matrix A for the case when the perturbed matrix B has the eigenprojection at

zero satisfying B" = A" + S, where S is a given matrix. The results obtained therein

can be applied to the case S = 0 in order to obtain a characterization of matrices for

which B" = A" and, so, recover results of [4].

© 2006 Australian Mathematical Society 1446-7887/06 $A2.00 + 0.00

383

https://doi.org/10.1017/S1446788700014099 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014099


384 N. Castro-Gonzalez and J. Y. Velez-Cerrada [2]

The main purpose of this paper is to investigate the perturbation of the generalized
Drazin inverse for elements of rings and Banach algebras. In Section 3 we give a
characterization of elements a, b with spectral idempotents related by the condition
that \ — {b" —a")2 is invertible. In particular, ifb" = a71 we recover [15, Theorem 6.1].
In Section 4 we apply this result in rings with involution to obtain a characterization
of the perturbation of EP elements, that is, elements which have Drazin and Moore-
Penrose inverse and both coincide.

In several recent articles perturbations of the Drazin inverse were studied with a
purpose to obtain explicit error bounds [3,8,14,16-18]. We work in Banach algebras
in Section 5 and derive an upper bound of \\bD —aD||/||aD|| in terms of \\aD(b—a)\\ and
\\b" — a" ||. This estimation is sharper than the error bound given in [14, Theorem 2.1],
and [3, Theorem 6.1] for matrices and closed operators, respectively.

Finally in Section 6, we give a characterization for bounded linear operators in
Banach spaces, based on the main result of Section 3, of generalized Drazin invertible
operators A, B e 38{X) such that their eigenprojections at zero satisfy pr(fl*) =
pr(A" + 5), where pr is the natural homomorphism of 38{X) onto the Calkin algebra.
In particular, when S = 0 we recover [7, Corollary 2.3].

2. Preliminaries

Let 3$ be a ring with unit 1. The commutant and the double commutant of an
element a e Sf. are defined by

comm(a) = [x e @ : ax = xa},

comm2(a) = {x e @. : xy = yx for all y e comm(a)).

We denote by 3?.~x the group of invertible elements of <$.. An element a e 3#
is quasinilpotent if 1 + xa e 3?.~^ for every JC € comm(a) [10]. The set of all
quasinilpotent elements of Sf. will be denoted by t^")n'1.

An element a e ffi is said to have a generalized Drazin inverse if there exists K I
such that

(2.1) x 6 comm2(fl), x = ax2, a - a2x e <^>qml.

If a has a generalized Drazin inverse, then the generalized Drazin inverse of a is
unique and is denoted by a°. If in the previous definition a — a2x is in fact nilpotent
(which is equivalent to ak+ix = ak where k is the index of nilpotency), then aD is the
conventional Drazin inverse of a and ind(a) = k where ind(a) is the Drazin index
of a [9]. Moreover, in this case the condition x 6 comm2(a) can be replaced with
x € comm(a). When ind(a) = 1 the Drazin inverse of a is called the group inverse,
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and is denoted by aD = a*. By <^gD, SP* we denote the set of all generalized Drazin
invertible and group invertible elements of 3&, respectively.

The Drazin inverse in rings was originally defined by Drazin [9] for polar elements
and generalized by Harte [10] to quasipolar elements. The generalized Drazin inverse
was studied by Koliha [12] in Banach algebras and by Koliha and Patricio [15] in
rings.

THEOREM 2.1. An element a € 38 has a generalized Drazin inverse aD if and only
if there exists an idempotent p e 3& such that

(2.2) p e comm2(a), a p e F 1 , a + p e 3f>-\

There is at most one idempotent p such that conditions (2.2) hold. The unique
idempotent p is called a spectral idempotent of a and it is denoted by a". It is known
that

(2.3) aD = (a + aTl(l -a71) = (1 - a")(a + aKyi and a" = 1 aa

Now, we state two lemmas which will be needed in the next section. We recall
that two idempotents elements p\ and p2 are called complementary provided that

Pi + PI = 1-

LEMMA 2.2. Let pit p2 be nonzero complementary idempotents in a ring 3?.. If
z e f commutes with p2 and 1 + p2z € 3$~x, then

z + p2e3>-1 if and only if p,z + p2e3^~l.

PROOF. Sincez e ^commutes with p2, it follows that (piZ+p2)(l+P2z) = z+p2.
Hence, the equivalence is verified because 1 + p2z e Sf~x. •

Let & = (pu p2) be a system of nonzero complementary idempotents elements in
a ring &?.. We define the set

Ji(2{®, 3?) = { (*" XA : x:J e p&Pj, for all i, j e {1, 2} j .

The set Jt2(£tf,, 2?) is a ring with the usual matrix operations, with the unit (^' ^
and the mapping <f> : 3$ ->• Jt2{^, &>) defined by

is a ring isomorphism.

\p2ap\ p2ap2
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LEMMA 2.3. Let p\, p2 be nonzero complementary idempotents in a ring S&, and
let z e f . Ifpizpi = 0 and p,zpi e (p^p , )" 1 , i = 1, 2, then z e @~\

PROOF. Since p2zp\ — 0, using the isomorphism 4> '• &• ->• ^(ffl, &) we obtain

\ 0 P2ZP2

Since p,zp, € (p / ^p , ) " 1 , i = 1, 2, it follows that the matrix <j>(z) is invertible in
J(i(.!%, &) and, consequently, z is invertible in 3&. D

The following sets will appear in the main theorem of the next section. If a 6 ^ ,
we define

P. = {ax : x € ^ } ,

a0 = {y e$>:ay = 0}, °a = {y € ^ : ya - 0).

If A/ C Bt, we define M,^1 = {mx : m e M, x e ^ } andM0 = [x e 9f. : Mx = {0}}.
The sets £#M and °M can be defined similarly.

These sets have the following properties [11, Proposition 6]. We recall that an
element a € ffi is regular if there exists x e &P. such that axa = a, that is, if it has an
inner inverse x.

PROPOSITION 2.4. Let a, b e 3? be regular elements and A, B C &?.. Then

(i) a0 = (^a)°.
(ii) S?,a = W a ) ° ) = V°).

(iii) AC B implies °A D °B.

3. Characterization of elements of rings with related spectral idempotents

In this section we give a characterization of elements a, b € £#• with spectral
idempotents satisfying b* — a" + s, where ^ is a given element of S$. such that
1 - s2 6 S?~x. We remark that, for any s e ^>qnil we have 1 - s2 e S#~x. This research
extends a recent work of the authors for matrices [6] to the setting of rings.

First we note the following properties involving the spectral idempotent a71 and
idempotent elements of the form a" + s.

PROPOSITION 3.1. Let a e ^ g D and s e @ such that 1 - s2 e £#r\ if a" + s is
idempotent, then

(i) a" +s = (1 -s)-[a"(l + s) = (1 +s)a*(l -s)'1;
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(ii) 1 -a" -s = (1 -s)(\ -a*)(l + s)-1 = (1 +s ) - ' ( l -a*)(l - s);
(iii) if r = (1 + s)a" + (1 - s)(l - a71), f/ien r e ^ > - \ r" ' = a*(l - s)~[

' " +5 = ra"r'1.

PROOF. Since (a" + s)2 = a1 + 5, we have a" +a"s+sa" +s2 = a" + s. Hence
aT(l + 5) = a" + s - sa" - s2 = (1 - s)(a* + s) and thus the first equality of (i)
holds. The second equality of (i) and both equalities of (ii) can be deduced in a similar
way.

Now, writer = (1 + s)a" + (1 -s)(l -a") and/ = a"(l-s)-l + (\-a")(l+s)-1.
Applying properties (i) and (ii) we check that

rt = (I + s)a"(I - s ) - ' + ( l - s ) ( l -a'W+s)-1

= (a" + s) + (I - a" - s) = I.

Analogously we can check that tr = 1. Consequently, t = r~\ On the other hand,
ranr~x = (1 + s)a"(1 — j )~ ' = a" + s, where we apply property (i) in the last
equality. •

REMARK. Condition (a" + s)2 = a" + s yields that s2(l - a") = (1 - an)s2 =
(1 - a * M l - a") and s2a" = ans2 = -a"sa".

We are now in a position to state the main result of this paper.

THEOREM 3.2. Let a e ^ g D a«rf lets e 3? be such that 1 - s2 e 0?r\ If a11 + s is
idempotent, then the following conditions on b 6 £&• are equivalent:

(i) be^D,andbx = a" + s.
(ii) a" + s € comm!(i), (a71 + s)b e ^>qnil, W Z? + a" + s <= , ^ ' .

(iii) a" + s € comm2(&), (aT + 5)A £ ̂ q n i l , anJ 1 + ^ + aD(fc - a) € ^ - ' .
(iv) b e^D, l+s + aD(b-a) e&-\andbD = (1 +s + aD(b-a)ylaD(l -s).
(v) ZJ € <^gD, anrf (1 + s)bD - aD(l - 5) = an{a - b)bD.

(vi) b € ̂ g D , a" + ^ e comm(ft), and I - (b* - a" - s)2 e @r\
(vii) bD(\+sWc (\-s)aD^',and(bD(l+s))0C((l-s)aDy\

PROOF, (i) if and only if (ii): This equivalence follows by Theorem 2.1.
(ii) if and only if (iii): Let r = (1 + s)a" + (1 - s ) ( l -a"). By Proposition 3.1 (iii),
we have that r e <&~l and a" + s = ra"r~i. Then the conditions (ii) and (iii) are
equivalent to

(ii)' a" € comm!(r"'(>r), cfr^br € .^qnil, and r" '6r + a" € ^ - ' .
(iii)' a" e comm2(r-*br),a!'r-ibr e £?.°>m\ and ra" + aDbr e 0Prx.
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We will show that under the assumptions a" e comm2(r~lbr) and a"r~xbr € fflmX,

(3.1) r-{br + a" € JT 1 if and only if re* + aDbr e &-1.

Assume first that r~xbr + an e S#~x. Let z = ra" + aDbr. Then we can write

Z =a*ra" + aDr(r~xbr + an){\ - a") + (1 - a"){r + aDbr)a\

We prove that z is invertible. For this, first we observe that pi = 1 — a* and
p2 = a" are commuting complementary idempotents; we may assume that they are
nonzero. Recall that pu p2 commute with a, r~xbr, and 1 — s2. We can verify by a
direct calculation that

P2ZP1 = 0, pxzp\ = pi(a + p2y
lp]r(r-ibr + p2)p\, and p2zp2 = p2rp2.

In the ring p\£#p\ with unit p\, we check that

(Pi(fl + p2Y'pxr{r-{br + p2)pi)~
l = pdr^br + p2y\\ - 52)"'(a + Ply

xpu

and in the ring p2&p2 with unit p2, we check that (p2rp2)~
l = p2(\ — s2)~lp2.

According to Lemma 2.3, z is invertible.
Conversely, assume that rp2 + a°br e Sf.~x. First, we will prove that

u = (aD + P2)(l - s2)(p{r-'br + p2)

is invertible, which will imply that p^r'^br + p2 e ,^>"1. Since 1 + p2r'xbr e S#~x

because p2r~]br e 3?qm\ Lemma 2.2 ensures that r~]br + p2 e 0?rx.
We verify that p2up\ = 0 and by a direct calculation, which takes into account the

commutative relations mentioned above, we obtain that p\upx — p\(rp2 + aDbr)pi
and p2up2 — p2(\ — s2)p2. Further,

(p\{rpl+aDbr)pxy
i = p{(rp2 + aDbr)~l px,

s2)p2y
x = P2(\ - s2)'1 p2,

in the rings p\3?p\, p2&p2, respectively. By Lemma 2.3, u is invertible in 8%, and
consequently r~xbr -f p2 e 8#.~x.

(iii) implies (iv): Since condition (i) is true if and only if (ii) is true, and condition (ii)
is true if and only if (iii) is true, we have b" = a" + s and 1 + 5 + aD(b - a) e £#.~x.
By equation (2.3),

(l+s+ aD(b - a))bD = {an + s + aDb)(\ - (a" + s))(b + a" + s)~x

= aDb(\ - a" - s)(b + a" + 5)"1

= aD(l-s).
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Therefore (iv) holds.
(iv) implies (v): From bD = (I + s + aD(b - a)yxaD(l - s) it follows that

(1 + s)bD + aD(b - a)bD = aD(l - s) and thus (v) holds.
(v) implies (i): First multiply the equality given in (v) by a" from the left and then

multiply the same equality by b" from the right to get

a"(l+s)bD =0 and aD(l - s)b* = 0.

Then we can write a" (I + s)bDb = aaD(l - s)b". Hence,

a"(I +s) = (a"(I + s) + (1 - a"XI - s))b"

= (a"(l - 5)"1 + (1 - a"Xi + i)" ')(l - s2)b'.

According to Proposition 3.1 (iii) and (i),

V = (1 - 52)-'((l + s)a" + (1 - j)(l - a'))a"(l + s)

= (1 -s)-la"(l+s) =a" +s.

(i) if and only if (vi): The right implication is obvious. We will check the left
implication. From 1 - (b" - a" - s)2 e @rx it follows that I ̂  b" + a" + s e 0?rx

and 1 + b" - a" - s € @rx. Since a" + s e comm(fc) and bbn = bnb, we have
(a" + s)b" = bn{a" + s). Then (1 - a" - s + b7I)(a" + s)(l - b") = 0 and
consequently (a* + s)(l - b") = 0. Hence, a" + s = (a" + s)b". On the other hand,
we have (1 - b" + a* + s)b* {1 -a" - s) = Oand sob*(l -a" - s) = 0. Therefore,
V =b*(a* +s) =a" +s.

(i) implies (vii): AsbDb= l-b" = 1 -a"-s, we have bbD = (1 -s)aaD(l+s)-x

by Proposition 3.1 (ii). Then

bD(l + s)0P, = bbD(\ + s)3> = (1

Similarly, J?/>D(1 + s) = 0(1 - s)aD.
Since bD(l + s) and (1 — s)aD are regular elements, by Proposition 2.4,

(b»(l + s))° = {St.b\\ + s))° = {&\\ - s)aD)° = ((1 - s)aD)° .

(vii) implies (i): As (bD(l + s))° c ((1 - s)aD)°, by Proposition 2.4,

l +s)= °«bD(\ + s))°) D °(((1 - s)aD)°) = 0H\ - s)aD.

The above inclusion implies the consistency of the equation xbbD(l +s) = (1 — s)aDa.
Thenxbb0 = (1— s)aDa(l+s)~l = aaD—s by Proposition 3.1 (ii). This last equation
is equivalent to (aaD — s)(l - bbD) = 0. Thus

(3.2) aaD-s = (aaD-s)bbD.
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From bD(\ + s)@ C (1 - s)aD3? the consistency of the equation

bbD(\ + s) = (1 -s)aaDy

follows, which in turn is equivalent to (1 — aaD)(l — s)~lbbD = 0. Hence, by
Proposition 3.1 (i), (1 + s)~l(l - aaD - s)bDb = 0. Then, bbD = (aaD - s)bDb.
Thus bbD = aaD - s in view of (3.2), and (i) holds. •

Specializing the equivalence of conditions (i)-(vi) to matrices we get the equiva-
lence of conditions (a)-(b) and (d)-(f) given in [6, Theorem 2.3].

When we consider the case s = 0 in the preceding theorem we get a characterization
of elements of &. with equal spectral idempotents. So, we recover [15, Theorem 6.1].

REMARK. If we do not assume condition 1 — s2 e 3#~\ then we can find elements
a,b 6 3P. such that b" = a" + s, but 1 + s + aD(b - a) is not an invertible element.
We consider the real matrices 4 x 4 ,

' - 1 /2 1/2 0
1/2 -1 /2 0 0
0 0 0 0
0 0 0 0)

a =

/ I 1 0 0\
1 1 0 0
0 0 0 0

\0 0 0 0/

(7 0 0
0 2 0 0
0 0 0 1

Vo o o oy
Then

a —

1/2 -1 /2 0 0\
-1 /2 1/2 0 0

0 0 1 0
0 0 0 1/

b" =

{0 0 0
0 0 0 0
0 0 1 0

V0 0 0 L

and

+s+aD(b-a) =

/1/2 1/2 0 0̂
1/2 1/2 0 0
0 0 1 0

\ 0 0 0 1,

So, b" = a" + s and 1 + .? + aD(b - a) is not invertible.

4. Perturbation of EP elements in rings with involution

Let $ be a ring with involution. Recall that an element x e 8$ is the Moore-Penrose
inverse of a € & provided that

(4.1) xax = x, axa = a, (ax)* = ax, (xa)* = xa.

https://doi.org/10.1017/S1446788700014099 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014099


[9] Elements of rings and Banach algebras 391

There is at most one x such that conditions (4.1) hold. The unique x is denoted by af.
The set of all Moore-Penrose invertible elements of & will be denoted by ffi.

An element a is said to be EP if a e ^ g D n St and aD = a\ It is well-known
that a e & is EP if and only if aaf = a^a. Necessary and sufficient conditions for
an element of a tf* -algebras to commute with its Moore-Penrose inverse are given in
[13].

In [15, Theorem 7.2 (i)-(ii)] it was established that a e 3? is EP if and only if
a e S#* and a" = (a*"\ We will use this characterization and our main theorem to
give equivalent conditions ensuring that if a is EP then an element b = a + e is again
EP with spectral idempotent V — a" + s where 5 is given.

THEOREM 4.1. Let Sfr be a ring with involution and let s € 3& be such that
1 — s2 € 2#,~x. If a is EP and a" + s is idempotent, then the following conditions
onb = a + ee& are equivalent:

(i) b is EP and bn = a" + s.
(ii) s* = s, e(a*a—s)—as = e = (a*a—s)e — sa, and l+s+a+e — a*a e 8#~x.

(Hi) s* = s, e(a*a — s) — as = e = (a*a — s)e — sa, and 1 + s + a*e e £#.~x.
(iv) b e ^ g D n &\ and tf = bD = (1 + s + a*e)~la\l - s).
(v) b e 0?& n @\ bf = bD, and (1 + s)tf - a\\ - s) = -a*eb\

PROOF. Since a is EP, we have a e 0?* and (a*)" = (a")* = a71. Now, if
b" = a" + s then (b*Y = (bn)* = (a")* + s* = a" + s*. Hence, condition (i) is
equivalent to

(i)' b€@*,s is selfadjoint, and b" = a" + s.

Using a" — I — aa* and aa* = 0, conditions (ii) and (iii) can be written in the
following equivalent form

(ii)' s* =s,(a + e){an + s) = 0 = (a* + s)(a + e), and a" + s + a + e e @rx.
(iii)' s* = s,(a + e)(a" + s) = 0 = (a" + s)(a + e), and 1 + s + a*e e ^r\

Applying Theorem 3.2 we conclude the equivalence of conditions (i)-(v) of the
theorem. •

Given 5 e 0?., we obtain the following characterization of elements a e & such
that the spectral idempotents of a and a* satisfy (a*)" — a" + s.

THEOREM 4.2. Let SP. be a ring with involution and let s e M be such that
1 — s2 6 0?.~x. Then the following conditions on a e & are equivalent:

(i) a* € @\ and (a*)K = a" + s.
(ii) a* e J?gD, ( a * ) V = aaD - s, and (1 + s)a* = aDaa*.

(iii) a*(aDa - s) = a* = (aDa - s)a*. 1 + s + a* - a°a € BH~\ and s2 + s =
saaD +aaDs.
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(iv) s2 +s =saaD+aaDs, 1 +s+aD(a* -a) e @~\ and a*{aDa - s) = a* =
(aDa - s)a*.

PROOF. From a" = 1 — a°a we easily see that the conditions (ii)-(iv) can be
formulated in the following equivalent form

(ii)' {a*Y =a"+s, and a*(a" + s) = 0.
(iii)' (a" + s)2 = a" + s, a*(a" + s) = (a* + s)a* = 0, and a* + a" + s e @r\
(iv)' (a"+s)2 = an+s,a*{an+s) = {an+s)a* = 0,and l+s+aD(a*-a) e^~l.

Now, we apply Theorem 3.2 (i)-(iii) to a* in place of b. •

If we choose s = 0 in the preceding theorem, then condition (i) is equivalent to the
fact that a is EP. So, in this case, we obtain a characterization of EP elements in rings
with involution. In particular, for matrices we recover [4, Theorem 5.2].

5. Perturbation of Drazin invertible elements in Banach algebras

Let $ be a complex Banach algebra with unit 1. The generalized Drazin inverse
for elements of Banach algebras is defined as in (2.1) where the condition of double
commutativity x e comm2(a) can be replaced by x e comm(a). Let SS%V> denote the
set of all elements in 38 which have a generalized Drazin inverse.

The equivalence of conditions (i)-(vii) in Theorem 3.2 is also valid in Banach
algebras. Moreover, in (ii) and (iii), the condition a" + s e comm2(fr) can be relaxed
too" + 5 € comm(6).

In this section, first we will give a new characterization of elements a,b € ^ s D

such that 1 — (b" — a")2 is invertible in terms of its matrix representation. Second,
we will apply Theorem 3.2 to get a norm estimation of the perturbation of the Drazin
inverse.

Let a € £s8iD. We consider a system of complementary idempotents & = (p,, p2),
where px = 1 - a" and p2 = a". The set of matrices J%2(38, &), denned as in
Section 2, is a Banach algebra with the usual matrix operations, with the unit ( PQ °;).
The mapping <p : 08 -> Jt2(08, &) defined by

is an isometric Banach algebra isomorphism [2]. This fact will allow us to work
with matrix representations of elements in 08 by identifying a e 08 with its image
<$>(a) e Jt2(S8, £?). For brevity, we denote 081 — pi08pl which is an algebra with
unit phi = 1, 2.
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If a € £$sD, then it has a matrix representation

a = h ° V a, € SB~X and a2 e SBf\

and the generalized Drazin inverse of a is given by

where the inverse a,"1 is taken in SB\.
It is straightforward to prove the following characterization which involves matrix

representation of elements with equal spectral idempotent.

LEMMA 5.1. Let a e SSgD. Then the following conditions on b e SB are equiva-
lent:

(i) beSB*Dandb* =an.
(ii) b = ( o1 I), bi € SB^ and b2 € S8fl\ where SB{ = p,S8pi for i = 1, 2.

THEOREM 5.2. Let a e SBgD and s e SB such that 1 - s2 e SB~K If a" + 5 is
idempotent, then the following conditions on b 6 SB are equivalent:

(i) b e SB& and V = a" + s.
(ii) The matrix representation for b is

, _ /Pi ( l s)pi p\sp2 \ / * i 0
V ii\ +s)p2) \0 b2) \P2s(l - s)~xpx pi

bx^SB\x andb2 e SBfx\ where SB, = piSBpJori = 1,2.

PROOF. Consider r - (1 + s)a* + (1 - s)(l - a") = 1 - 5 + 2ia;r. Under
the hypothesis of this theorem we apply Proposition 3.1 (iii) to conclude that r is
nonsingular, r~l =a"(l - s)'1 +(1 - a")(\+s)~[ = (1 -s + 2ans)(l - s 2 ) - ' , and
r(aT + s)r~l = a". Moreover, r and r"1 have the following matrix representations:

Pisp2 \

Pi -PlS(l +S)~'P2
p2s(\ -S)~'pi P2

Now, define b = r'lbr. Then i " = aT + s if and only if £* = r-'Ca7"+^)r =a 7 t .
Applying Lemma 5.1, we get that ft71 = a* + s is equivalent to having for b the
matrix representation b — (*0' £ ) , where bx e SS^X and fe2 e ^ j " ' 1 . Consequently, the
equivalence between (i) and (ii) holds because b = rbr~l. D
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Theorem 3.2, when it is considered in the setting of Banach algebras, enables us to
obtain the following upper bound of \\bD — aD||/||aD||.

THEOREM 5.3. Let a, be 38&. If\\b" -a*\\ + \\aD(b-a)\\ < 1, then

\\bD-aD\\ ^ \\aD(b-a)\\+2W-a"\\

-\\b*-a*\\ -\\aD(b-a)\\

PROOF. Write s = b* — a". Since \\s\\ < l ,we have l - s , l | s e 38~x. Now,

by Theorem 3.2 (v), (1 + s)bD - aD(l - s) = aD(a - b)bD. Applying the norm to

bD - aD = -(s + aD(b - a))(aD + (bD - aD)) - aDs we get

\\bD - aD\\ < (\\s\\ + \\aD(b - a)||)(||aD|| + \\bD - aD||) + ||aD||||5||

and from here the result follows. •

We can combine this estimation with an upper bound of \\b" — a"\\ in order to
get explicit error bounds of the perturbation of the Drazin inverse. An estimation of
||*" - a" || in terms of the gap between subspaces has been obtained in [14, Section 4]
for matrices and in [3, Section 6] for bounded operators.

6. Operators with eigenprojections essentially differing in a given term

This section is motivated by recent results of Rakocevic [7] which characterize
the perturbation of the generalized Drazin invertible operators with essentially equal
eigenprojections at zero.

We denote by 38(X) and Jf(X) the set of all bounded and compact linear operators
on an infinite dimensional complex Banach space X, respectively. The Calkin algebra
over X is defined as the quotient algebra ^(X) = 38(X)/Jf(X), with the norm

\\T + JfT(X)\\= inf \\T + K\\.

We will use pr to denote the natural homomorphism of 38{X) onto ^(X). Then, if
T e 38{X) we have pr(7") = T + JC(X). Let re(T) denote the essential spectral
radius of T, that is, re(T) = lim || pr(T")||1/n. An operator T e 38(X) is a Riesz
operator if and only if re{T) — 0, which is equivalent to pr(7) being quasinilpotent
in ^(X). By 3?(X) we denote the set of all Riesz operator in 38(X).

Recall that an operator T e £g(X) is Fredholm if the range space of T, R(T), is
closed and the kernel of T and the quotient X/ R(7) are both finite dimensional. The
collection of Fredholm operators on X is denoted by <t>(X).

By the Atkinson theorem [1, Theorem 3.2.8], T is Fredholm if and only if pr(7) is
an invertible element of
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Based on Theorem 3.2, we characterize the perturbation of the generalized Drazin
invertible operators with eigenprojections essentially differing in a given bounded
operator.

COROLLARY 6.1. Let A e <%{XyD and S e 3§{X) such that I - S2 is invert-
ible. If A" + S is idempotent, then the following conditions on B e &(X) are
equivalent:

(i) B e 3S{X)&, andpriB71) = pr(A" + S).
(ii) pr((A*+S)B) = pr(B(A*+S)),(A*+S)B e &(X),andB+A*+S € *(X).

(iii) I+S+AD(B-A) e *(X),pr((A*+S)fl) = pr(B(A"+S)),and(A''+S)B 6

(iv) B € &(X)*D, I + S + AD(B - A) € *(X), and BD = CAD(I - S) + K,
where C € SS(X) is a Fredholm inverse of I + S + AD(B - A), and K e X(X).

(v) B e &{X)sD, and (I + S)BD- AD(I - S) = AD(A- B)BD + L, L e Jf{X).

If 5 = 0 in the above corollary, then we get [7, Corollary 2.3].
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