
FUNCTION SPACES 

ISRAEL HALPERIN 

1. Introduction. This paper is the first in a series dealing with Banach 
spaces L whose elements are functions on a measure space S. If W is a family 
of non-negative weight functions wai we sometimes write Lw

p when the norm 
is given as 

i/i = suPa(ji/(P)r^(p)^(P))1/p KP< •, 

= SUpa (Wa SUp | / ( P ) |) p = co, 

(here %-sup means: supremum, neglecting sets on which wa(P) = 0 for almost 
all P) . We sometimes write L^w)

p when W consists of all the functions equi-
measurable with a single w(P) (w(P) is required to satisfy a weak condition, 
see §2). When w(P) is identically 1, Liw)

p reduces to classical Lp space. 
In §§3 and 4, a Holder type inequality, of some interest in itself, is proved 

(in more general form than actually required elsewhere in this paper). In 
§§5 and 6, using this inequality, we determine explicitly the conjugate spaces 
L*, L** when L is of type L(W)

P. It turns out that the case: S has infinite measure 
but w has finite integral on 5, is pathological. Excluding this case we show: 
(i) if 1 < p < oo then L* is a new generalization of classical Lp space; (ii) if 
1 < p < °° then L(W)

P is reflexive. In the pathological case, L^f fails to be 
reflexive for every p. 

The main result of the present paper solves for a special case a very deep 
problem indicated in [1, p. 182]: if a linear vector space carries a family of 
norms and a new norm is defined as the supremum of the given norms, what is 
the nature of the conjugate space to the new space? An extension to vector 
valued functions will be given by H. W. Ellis and the author in [2]. 

Since references to the present paper occur in the literature, it is remarked 
that the results of this paper were found by the author and embodied in a 
manuscript in the summer of 1950 at the Research Institute of the Canadian 
Mathematical Congress. Function spaces which could be considered as special 
cases of the L(Wf had been defined previously by G. G. Lorentz [3] but discussed 
by him only for the case p = 1. 

2. Terminology. Throughout the papers in this series we suppose 
1 < £ < oo, 1 < g < oo, with p~l + q-1 = 1, interpreting co-i as 0. We let 
S denote a space of points P with a non-negative, countably additive set function 
v defined for a non-empty family of y-sets which includes relative complements 
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and countable unions of its members and is such that v(S\) = 0 implies that. 
every subset of Si is a *>-set. 

If ESi is a v-set for every *>-set Si with v(Si) finite, we define y(E) to be the 
supremum of such v(ESi); measure, measurability, integral and ess. sup will 
refer to 7. The change from v to 7 enables us to disregard sets Si which are 
purely infinite (i.e. v(Si) = °°, but 0 < (̂6*2) < °° is false for all S% C Si) 
without actually deleting them from 5. Both for abstract 5 and for Euclidean 
space, where m in place of 7 denotes Lebesgue measure, the letter E will be used 
for arbitrary measurable sets; e will always denote a set of finite measure. 
/ and ess. sup refer to the entire space when no subset is indicated. We sometimes 
write 7 for 7(5). 

{0(P)J = {P; 4>(P)} means the set of P for which <f>{P) holds. 
B will denote a real or complex Banach space, Z?* its conjugate (B may con­

sist of the real or complex numbers), li c 6 B, v Ç B* then cv = vc is the value 
of v at c; c(P) is the function with value c for all P . For point or set functions 
/ (P ) , F(e)j we define/E, FE to coincide with / , F respectively on E and to 
vanish outside E\ fN(P) shall equal / (P ) if \f(P)\ < N and N\f(P)\~lf(P) 
otherwise ;c€ti is an abbreviation for ce withe = cue = e t;f is finitely (countably) 
valued if / = £ * ce, t with finite (countable) disjoint eûf is Bochner measurable 
if for every e and every n there is a finitely valued /1 such that the subset of e 
for wThich !/ (P) — / i (P ) | > l / « has measure less than 1/w. 

Two functions will be identified without comment if they differ only on a 
set of measure zero ; all numerical valued functions considered in these papers will 
be measurable. 

Non-negative functions / i (P) , f*(P) will be called equimeasurable if 
7{/i(P) > k] = 7 IMP) > k} for all k > 0. This need not imply the stronger 
relation with > inside the braces. 

We allow 00 as a value for a non-negative function with the usual conventions 
0 00 = 0 , k/0 — a> if k > 0, k/ 00 = 0 if 0 < k < 00 ; we adopt the convention 
that k < 0/0 is valid for all k > 0. 

In §§3 and 4, u, v, and a fixed w, called the weight function, are non-negative 
functions on (a, 6), — 00 < a < b < 00 and we define v°(x), the level function of 
v with respect to the fixed w, in Definition 3.2. 

w(ai, bi) will denote the integral of « on (ai, 61); (ai, 61) is called w-null if 
«(ai, èi) = 0 and w-null maximal if, in addition, it is not contained in any 
other «-null interval. We shall suppose that 0 < w(a, x) < 00 for all a < x < b; 
a means a if w(a, x) > 0 for all a < x < b, otherwise a = sup^ {x; w(a> x) = 0). 
We shall suppose that 0 < w(a, b) < 00. For given v we let R(ah bi) denote 
v(ai,bi)/w(ai,bi) if w(ai,bi) < «> and lim sup v(au t)/w(ai, t) as t—* b* if 
w(ai, bi) = °° ; R° refers to ^° in place of v. 

\u\ = |w|p shall mean: 

f ju(x)pw(x)dx) >V 
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if 1 < p < co and w-sup u{x) if p = oo. If v(a, a) > 0 then [v] ~ \v](J shall 
mean <» ; if v(a, a) = 0 then [v] = [v]Q shall mean 

(v°(x)/w(x))qw(x) dx) 

if 1 < q < oo and w-sup (v°(x)/w(x)) if q = oo. 
z; will be said to have the A-property if ?u(ai, 6i) > 0, 2i>(a2, b2) > 0, a% < a2, 

&i < 62 < b always imply 00 > R(ai, bi) > R(a2y b2); v will be called non-
increasing relative to w if v(x) = D(x)w(x) for a < x < b with D(x) finite, 
non-negative, non-increasing. «; will be called w-infinite if v(x) = 00 whenever 
w(x) > 0. v < Vi will mean: v(a, x) < Î;I(#, x) for all a < x < b\ v <C V\ will 
mean the stronger relation: v(x) = ^i(x) for a < x < a and v(a, x) < ?;i(a, x) 
for all 5 < x < b. 

In §§5, 6 we consider arbitrary/(P), g(P) and a fixed non-negative w(P) on 5 
(there should be no confusion between w(P) and the w(x) of §§3, 4). The left-
continuous non-increasing rearrangement of | /(P) | is defined to be a function 
f*(x) on 0 < JC < y as follows :/*(0) = ess. sup | /(P) | and for * > 0,/*(x) = sup 
k with Y { | / ( P ) | > ^} > x. In these sections, |/| = \f\p shall mean: 

mpa{j\f(P)\Pwa(P)dy(P) 

if 1 < p < 00, and suptt (wa-sup |/(P)|) if /? = °°, where wa varies over all 
functions equimeasurable with w. 

Omitting some trivial cases we shall suppose that for every k < oo, the 
supremum of the integral of w over sets of measure < k is finite and that the 
integral of w over S is greater than zero. We shall distinguish the three possibili­
ties: Case (Ci) with 7 < a> ; Case (C2) with 7 = 00 and integral of w over S 
infinite; Case (C3) with 7 = 00 and integral of w over 5 finite. We shall suppose 
that w is restricted by the condition: \f\P defined above agrees with \f*\p as 
defined for §§3, 4 with w*(x) as the weight function on (0, 7) in place of w(x) 
on (ay b). It is easy to verify that this condition is satisfied if w{P) is constant 
on 5, more generally if w* (x) is constant on (0, 7) ; for any other w this condition 
is equivalent to the requirement that either S has no atomic sets e (i.e. y(e) > 0 
and ei C e implies 7(^1) = 0 or y{e — ei) = 0) or every measurable subset of S 
of finite measure is a union of atomic sets of equal measure. 

With this w(P) we define [g] = [g]q to agree with [g*]q as defined for §3, 4 
where the weight function to be used shall be w* on (0,7). 

L = L(W)P and M = M(w)
q will denote the spaces whose elements are the 

numerical valued/, g with finite norm \f\p, [g]Q respectively. L(Vf(B), M(W)Q(B) 
shall denote the corresponding spaces when / , g are valued in B and are Bochner 
measurable. L(W)

P(B), as well as the more general LW
P{B)1 are obviously linear, 

normed spaces and for M(W)Q(B) this will be shown in §5; the remainder of the 
proof that all Lj^iB) and all M(w)

Q(B) are Banach spaces (i.e. the proof of 

\I/P 
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completeness) will be omitted in this paper since a more general result will be 
given in [2, Theorem 3.1]. 

S is said to have property (R) if there is a family, not necessarily countable, 
of disjoint ea such that an arbitrary Si is measurable and y (Si) = 0 whenever 
S\ea is measurable with measure 0 for every a. 

3. Level intervals and level functions. The constructions and results of 
this section are required to solve the Holder inequality problem of the next 
section. We refer to §2 for terminology. 

DEFINITION 3.1. (au 6i), with a < a\ < b\ < b, is called a level interval 
(of v with respect to w), abbreviation l.i., if for all a\ < x < bh w(ah x) > 0 
and R(ai, x) < R(ai, bi). If the l.i. is not contained in a larger l.i. it is called a 
maximal level interval, abbreviation m.l.i. 

We note that if w(ah x) > 0 for all a\ < x < b\ and R(ah bi) = oo then 
(au bi) is a l.i., R(a, b) = oo and (a, b) is a m.l.i. 

THEOREM 3.1. 

(i) Every l.i. is contained in a m.l.i. 
(ii) If (au bi), (a2, b2) are l.i.'s with a\ < a2 < b± < b2 then (a\, b2) is a l.i. 

(iii) The m.l.i.'s are non-overlapping and denumerable. 

Proof of (i). Suppose a\ > a2 > . . . , &i < b2 < . . . , a0 = hif ^n, ô = sup &ra. 
If each (an, >̂n) is a l.i. it is easily verified that (ao, 6o) is a l.i. Now for arbitrary 
l.i. (ah bi) the an, bn can clearly be chosen so that (ao, bo) will be a m.l.i. 

Proof of (ii). w(ai, x) > 0 for a\ < x < 62 since (a\, bi) is a l.i. We may 
suppose R(ah b2) < ™. Then R(ai, a2) < -R(ai, bi) < jR(a2, 6i) < R(a2, b2) < 
-R(&i, ô2), implying R(ai, bi) < i?(ai, b2) < ,R(a2, &2). It follows that (ah b2) is 
a l.i. for if ai < x < 6i then R(ah x) < i^(ai, &i) < R(au b2) ; and iî bi < x < b2 

then i?(ai, &2) < R(a2, b2) < i?(x, &2) which implies R(ah x) < R(ax, b2). 

Proof of (iii). This follows at once from (ii). 

Remark 1. A w-nu\\, z/-null interval, like a single point, may or may not be 
part of a l.i. But Definition 3.1 implies that it can not be at the beginning of a 
l.i., and either all or none of it is part of a m.l.i. 

Remark 2. If (ai, &i) is î^-null but not fl-null and bi > à then (ah bi) is part 
of a l.i. Indeed a < a\ and we may clearly suppose that R(a, b) is finite and 
(a\, b\) is w-null maximal so that w(x, b\) > 0 for all a < x < a,\. Then R(x, b\) 
is finite and continuous for a < Xi < a\ and diverges to <» a s x - > a,\\ hence it 
assumes its minimum value and we let a2 denote the maximum x for which 
this mimimum is attained. Then a < a2 < a\ and for a2 < x < a\, R(a2, &i) < 
R(x, bi). This implies: w(a2, x) > 0 for all a2 < x < b and (a2, bi) is a l.i. 
containing (a\, bi). (If a2 = a = — oo, the argument is still valid.) 
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Remark 3. If a < a then no part of (a, a) can be part of a Li. 

DEFINITION 3.2. v°(x), the level function of v with respect to w is defined by: 
(i) v°(x) = R(ai, bi)w(x) if x is interior to a m.l.i. (#i, 0i), 

(ii) v°(x) = z;(x) for all other x. 
H v° = v then v is called a level function. 

Remark 1. If (#i, Z>i) is w-null and 0i > a then Remarks 1 and 2 following 
Theorem 3.1 imply that v°(x) = 0 for ai < x < b±. 

Remark 2. lia 9^ à then v°{x) could be obtained by the equivalent definition : 
on (a, a) define v°(x) to be v(x) and on (a, b) use Definition 3.2 but with w, v 
considered as functions on (a, b) in place of (a, 0). 

Remark 3. If (01, 6) is y-null then y°(x) = 0 for b\ < x < b. If (bh b) is a 
Li. of v and R(bh b) = 0 then (01, 0) is zz-nulL 

Remark 4. If z>i(x) = »(#) except on a Li. (#i, bi) of y and ^i(x) = R(aj, bi) 
w{x) for a\ < x <bi then z>i° = z;°. 

Remark 5. If i?(a, 0) = oo then v° is ^-infinite. 

THEOREM 3.2. 

(i) v(ai, x) < v°(ai, x) if ai is not interior to a Li. 0/ v and equality holds if 
neither a\ nor x is interior to a Li. 

(ii) v <3C v° and v°(a, b) = v(a, b). 
(hi) R(a,b) = R°(a,b). 

Proof of (i) and (ii). If (#i, bi) is £ m.l.i. and a\ < x < bi then Definition 
3.2 implies that v(au x) < v°(ai, x) with equality if x = 01. Since z;°(x) = z>(#) 
outside the m.l.i.'s, this gives (i) and (ii). 

Proof of (iii). We may suppose w{a1b) — 00 and R(afb) < °°. If now there 
is a m.l.i. (ai, b) then (iii) holds; if there is no such m.l.i. then (iii) follows from 
the relations: R(a, x) = R°(a, x) when x < b and x is not interior to a m.l.i., 
and R(a, x) < R°(a, x) < max (R(à, ai), R(a, bi)) when x is interior to a m.l.i. 
(01, #i) with ax > à. 

THEOREM 3.3. 

(i) Every Li. of v is a Li. of v°. 
(ii) Every m.l.i. of v° is a Li. of v. 

(iii) y awJ v° have the same m.l.i.'s. 
(iv) On each of its l.i.'s v°(x) = kw(x) with k constant on the Li. 
(v) v°° = v°. 

Proof of (i). On each Li. (#i, 01) of v, v°(x) = kw(x) so that R°{allx) is 
constant for a\ < x < 01. This implies (i). 

Proof of (ii), (iii), (iv), and (v). If (ai, 01) is a m.l.i. of v° then by (i), neither 
ai nor 0i is interior to a Li. of v and hence for a\ < x < 01, 

R(au x) < R°(au x) < R°(au &i) = l?(ai, 01). 
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This proves (ii). Now (Hi), (iv), and (v) follow from (i) and (ii). 

THEOREM 3.4 If ax < b\ < b2 and 0 < w(bu b2) < °° then 

R°(bhb2) <R0(aub2). 

Proof. We may suppose R°(ai, 62) < °°. Then R°(x, b2) is finite and con­
tinuous for d\ < x < b\. Suppose, contrary to the statement of the theorem, 
that R°(au b2) < i?°(&i, b2) and let x0 be the maximum x at which R°(xt b2) 
assumes its minimum value. Then x0 < b, R°(xQ, b2) < R°(x, b2) for x0 < x < 6i 
and w(xof x) > 0 for xy < x < b. Now let x\ be an x at which R°(x0l x) on 
b\ < x < b2 assumes its maximum value. Necessarily b\ < X\. If Xo < x < bx 

then R°(XQ, X) < R°(xoi b2) < R°(xo, Xi); if b\ < x < xi, i?°(x0, x) < R°(xo, xi). 
This implies that (x0, Xi) is a Li. of v°, hence that R°(x0lx) is constant for 
xo < x < xi, contradicting the previous inequality i?°(xo, 6i) < i^°(x0, Xi). 

THEOREM 3.5. If ax < b\ < 62, 0 < w(ax, 6i) and w(ai, b2) < °° then 
R°(aubt) KR'iaubi). 

Proof. If w(ii, Z?2) = 0, the Remark 1 following Definition 3.2 implies 
v°(x) = 0 for b\ < x < b2 and hence the theorem. If w(bh b2) > 0, the theorem 
is a corollary of Theorem 3.4. 

THEOREM 3.6, For a function v the following are equivalent: to be a level function 
but not %v-infinite; to be non-increasing relative to w; to have the A-property. 

Proof. In view of Theorems 3.4 and 3.5 we need only prove that the A-
property implies that v is non-increasing relative to w. Let E denote the set 
union of the denumerable family of closed ^-null maximal intervals and E' 
the set of x with a < x < b and x not in E. For x in E' and t > 0 set i l(x, t) = 
R(xf ti) with £i = min (x + t, | ( x + °))- F ° r fixed x, II(x, t) is non-increasing 
as t decreases to zero and for fixed t, H(x} t) is non-increasing in x. Hence 
D(x) = lim H(x, t) as t —» 0 exists for all x in Ef and is finite, non-negative and 
non-increasing for these x. Since 

v(x, h)/(h - x) = H(x, t) w(x, ti)/(h - x), 

the fundamental theorem of the (Lebesgue) calculus shows that v(x) — 
D(x)w(x) for almost all x in E'. But for almost all x in E writh x > a, we have 
v(x) = w(x) = 0 since the A-property implies v(ah bi) = 0 whenever (ai, bi) 
is w-null with b\ > à. It follows that D(x) can be so defined for the x which are 
> a and in the closed intervals which constitute E that v(x) — D(x)w(x) will 
hold for all x > a. 

THEOREM 3.7. 

(i) v < vi implies v° < vi° and v <K v\ implies v° « vi°. 
(ii) If V\ is a level function, v < V\ implies v° < v\ and v <K v\ implies v° <<C v\. 

(iii) v° can be characterized among the level functions (equivalently, the functions 
which are w-infinite or non-increasing relative to w) v\ with v « v\ as the one for 
which Vi(a, x) attains the minimum value for every a < x < b. 
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Proof. We shall show that v < v\ implies v°(a, x) < vi° (a, x) for a < x < b. 
We may clearly suppose v(a,x) < °° for all a < x < b and R(a, b) < <». 

[f x is not interior to a m.l.i. of v then 

v°(a, x) = v(a, x) < Vi(a, x) < vi°(a, x). 

If x is interior to a m.l.i. (ai, 61) of v with w(ai, &i) < 00 y then 

v (a, *) - v(a, ai) + -7—7-7 v(ah fa) 
w(ah fa) 

( J* w(ai, x) \ , f n a i ( c i , x ) 
= »(o, ai)l 1 ) r r l + »(a, 61) - 7 7̂ 7 

\ w(ai, fa)/ w(alt fa) 

\ w(ai,fa)/ w(ai,fa) 

= i>i(a, «1) + - 7 T T ^ I (#i, 61) < v\ (a, #) , 
w(a1} fa) 

since iri° is either ^-infinite or non-increasing relative to w. 
Finally, if x is interior to a m.l.i. (ax, bi) of v with w(ai, 61) = °°, then b\ ~ b 

and 

fl°(a, #) = »(o, #i) + i£(#i, b)w(ai, x) 

^ O/ \ I ^ f a l , # ) / N O/ \ 

< 1̂ (a, ai) + —7 r-w(ai, x) = Vi{a, x), 
w{aiy x) 

since Vi°(ai, f)/w(ai, t) is non-increasing and has limit > R(ay b) when / —» 6. 

4. D-type Holder inequalities. We refer to §2 for terminology, u, v, w are 
non-negative throughout this section. 

THEOREM 4.1. If u(x) is non-increasing on (a, b) then v < v\ implies that for 
all a < x < b, 

v(t)u(t)dt < vx(t)u(t)dt. 
*' a */ a 

Proof. It is sufficient to prove the theorem for u of the form: u(x) = kt on 
(au at+i) with a = a,\ < a2 < • • . < am+i = & and &i > £2 > . • . > &™ > 0; 
using Abel's rearrangement, it is sufficient to prove the theorem for u(x) = k 
on (a, at) and 0 elsewhere, for arbitrary k > 0; and this follows directly from 
v < Vi* 

THEOREM 4.2. If u varies over all non-increasing functions with \u\p < 1 
then 

(4.1) sup I u(x)v(x) dx = [v]Qf 
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and for arbitrary v and arbitrary non-increasing u, the D-type {i.e., decreasing type) 
Holder inequality holds: 

u{x)v{x) dx < |w|PMc. r Proof. Both sides of (4.1) are infinite if any of the following hold: (i) v(a, a) 
> 0, (ii) R(a,b) = oo, or (iii) w(a, b) = oo, p < oo, and R{a, b) > 0. To verify 
that the right-hand side of (4.1) is infinite: if (i) holds, choose u(x) = k on 
(a, a), = 0 elsewhere and let k —> oo ; if (ii) or (iii) holds, let t be fixed and choose 
u(x) = w{ayt)~

llv on (a,/), = 0 elsewhere and let / —» b. We may therefore 
suppose none of (i), (ii), or (iii) holds; then v°(x) = 0 whenever w(x) — 0 
and v°(x) = D(x)w(x) for all x for some D(x), non-negative, non-increasing, 
and finite for x > a. 

Now by Theorem 4.1 and the ordinary Holder inequality, 

J
»& /»& /»& 

u(x)v(x) dx < I u{x)v°(x)dx = I u(x)w(x)1/pv°(x)w(x)~1/pdx < [v]Q. 
a *J a *sa 

Thus < holds in (4.1). 
If p = co, then > holds in (4.1) as can be verified by choosing u(x) to be 

identically 1. 
If p < oo, consider any t not interior to a m.l.i. of v for which w(a,i) < GO 

and set Ui(x) = ( D ^ M ) 3 - 1 on (a,/), = 0 elsewhere. Letu(x) = l^ijp-1 Wi(x). 
Then |w|P = 1, u(x) is non-negative, non-increasing, and constant on each 
m.l.i. of v. With this uy 

I u(x)v(x) dx > I I (Ay(x))^(x) ^ x ) • 

Since N is arbitrary, this proves that the left-hand side of (4.1) is greater than 
or equal to 

( jV)M*)^)1/s=( x'(^)W)^) i /8 

for every such /. This obviously implies > in (4.1) except when w{a, b) = oo 
and z; has a m.l.i. (&i, b)\ but for this case, R{a, b) = 0 (since p < co)t hence 
y°(x) = 0 on (Ji, &), and > in (4.1) is obtained when / = bi. 

This completes the proof of the theorem. 

COROLLARY, V < Vi, in particular v(x) < Vi(x) for all x, implies [v]q < [v\]Q; 
Vni%) < v(%) for all x together with vn(x) —>v(x) as n —-> oo for each x, implies 
K]ff~> M«; [»jv]« < [v]q and [vN]q-> [v]q as iV-» oo ; [^ + v2]q < bi]ff + M*. 

Remark 1. Theorem 4.2 implies the more general theorem: with fixed non-
negative UQ(X) let u(x) be restricted to functions of the form UI(X)UQ(X) with 
Ui(x) non-negative, non-increasing on (a, b) and |wi|j, < 1; then 

«(x)u(x) dx = sup I Ui(x)uo(x)v(x) dx = [vuo]q. 
a •)a 
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It follows that if u is fixed, not necessarily non-increasing, and v varies over all 
level functions on (a, b) with [v]q < 1, then 

(4.2) sup I u(x)v(x) dx = [uw]p 

and clearly the right-hand side of (4.2) is equal to \u\p if u is non-increasing. 

Remark 2. Standard arguments now show that the supremum in (4.1) is 
actually attained except when p = 1, [v] < » , D(a + 0) > R(a, x) for all 
à < x < b all hold. Consequently, if u(x)v(x) has a finite integral whenever 
u(x) is non-increasing with \u\p < 1 then [v]q < » . 

Remark 3. The supremum in (4.1) will not be changed if on each of an 
arbitrary family of non-overlapping level intervals (a*, bt) of v, v(x) is replaced 
by R(au bi)w(x). The proof of Theorem 4.2 also shows that the supremum in 
(4.1) will not be changed if u(x) is further restricted to be constant on each of 
the level intervals (a*, bt) for which w{ahb^) < » . 

It follows that if on each of a family of finite non-overlapping intervals, 
v(x) is constant and w(x) is non-increasing, then the supremum in (4.1) will not 
be changed if u(x) is further restricted to be constant on each of these intervals. 

Remark 4. The preceding results of sections 3, 4 apply if all functions 
u, v as well as the weight function w, are required to be constant on each of a 
fixed but arbitrary family of non-overlapping sub-intervals of (a, b). If (a, b) is 
entirely subdivided into such intervals of equal length, there results the cor­
responding theory for finite, infinite, or doubly infinite sequences with integrals 
replaced by sums. In this case the supremum in (4.1) is attained for all cases. 

Remark 5. Theorem 4.2 and the Remarks above remain valid if u(x) is 
further restricted to have finite value for every x, with the following exception: 
if v{a} a) > 0 then the supremum in (4.1), namely » , may not be attained for 
such u in the general situation described in Remark 4. Thus, for sequences, if 
a < a, the finiteness of S unvn for all non-increasing un with \u\p < 1 and un < œ 
for every n, need not imply that [v]Q < » . 

5. The spaces L{wf and M(w)
q. We refer to §2 for terminology. 

The definition of/* implies: /*(*) < / i*(s ) for all x if | /(P) | < \fi(P)\ for 
almost all P;fe*(x) = 0 for all * > T M ; / * * ( * ) = ( f%(*) for all a; if |/B(P)| 
< | / (P ) | and \fn(P)\->\f(P)\ as » -> » , for almost all P , then/„*(*) </>(*) 
and fn*{x) —>f*(x) as « —> » for all x; if 1 < p < » , the left-continuous, 
non-increasing rearrangement of the function | /(P)|P is equal tof*(x)p for all x\ 

ih+hY < Cfi*+/2*). 
Theorem 3.7 (i), together with the Corollary to Theorem 4.2, now show that 

[gi + gi] < [gi] + [gï] and from this it follows easily that M{w)
Q{B) is a linear 

normed space. Furthermore if |gra(P)| < \g(P)\ and |gnCP)| —* \g(P)\ as n —> » 
for almost all P then [gn] < [g] and [gn] —> [g] as w —> » . 
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The hypotheses on w ensure: \f\p — j / i | p and [g]q = [g\]q if the non-negative 
functions | /(P) | , | / i(P)| and |g(P)|, |gi(P)| are equimeasurable, respectively. 

Throughout the remainder of §§ 5 and 6, / (P ) and g(P) will denote numerical 
valued functions not necessarily in L(10)

p, M(W)Q respectively. 

THEOREM 5.1. 

(i) If f varies subject to the condition \f\p < .1 then 

(5-D sup f | / ( P ) | \g(P)\dy(P) = \g], 

and if [g]q < <» then 

sup f f(P)g(P)dy(P)\ = [g]r 

(ii) / / g varies subject to the condition [g]q < 1 then 

(5-2) sup f | / ( P ) | \g(P)\dy(P) = \f\, 

rt«i ^f | / |p < oo ///gW 

sup f f(P)g(P) dy(P) 1/ 
Proof of (i). It is now clear that we need establish (5.1) only for finitely 

valued g(P) and with / further restricted to be finitely valued. With such g 
and / it is easy to verify that 

(5.3) sup f \f(P)\ | g(P)\dy(P) = sup f /*(*)**(*) <&• 

Since w*(x) is non-increasing, and g* is a step function, the Remark 3 following 
Theorem 4.2 implies that the right-hand side of (5.3) is equal to [g]q. 

Proof of (ii). We need establish (5.2) only for finitely valued f(P) and with g 
further restricted to be finitely valued. The argument of (i) together with 
(4.2) proves (ii). 

Remark. The proof given for Theorem 5.1 shows that if g(P) is constant on 
each of a countable set of disjoint eni then the supremum in (5.1) is not changed 
if/ is further restricted to be constant on each en. Similarly, if f(P) is constant 
on each of a countable set of disjoint en, then the supremum in (5.2) is not 
changed if g is further restricted to be constant on each en. 

THEOREM 5.2. 

(i) Iffi(P) andfi(P) are different from zero on disjoint sets, i.e./i(P)/2(P) = 0 
for almost all P then: if p = <», |/j + / 2 | = max (|/il, !/2 | ) ; and if ] . < / > < oof 

! / i + / 2 ! p < | / i k + |/2|p. 
(ii) / / gi(P)g2(P) = Ofor all P then: 
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ki + &] = ki] + b ] , 0 = 1, 

\ii + g2Y>\gi)9+[gi]\ Kq< » , 

k i + £2] > max (ki], k2]), g = oo. 

Proof of (i). When/? = Q°, |/| coincides with ess. sup | /(P)| . When 1 < / ? < » , 

t/O 

> f(l / i | '+ |/,|')*(*)w*(*)d« 
Jo 

= fiA+/»r*(*)t»*(*) ^ = i/i+/*i'-
Jo 

? w / 0/ (ii). When q = 1, [g] coincides with the integral of \g(P)\ on 5. 
Theorem 5.1 shows that [gi + g2] > max ([giL k2]) for all q, so that we need 
consider only the case 1 < q < oo and we may clearly suppose ki], [g2] both 
finite and positive. Then for any e > 0, Theorem 5.1 implies that there are 
f i f /2with[/ f | = [ g j ^ a n d 

J I fi{P)\ \ gi(P)\dy{P) > [giY - e, i = 1,2. 

It may clearly be supposed further that fi(P) = 0 wherever gt{P) = 0 so that 
fi(P)fi(P) = 0 for all P. It follows that 

Jj(fi+ft)(P)\ l(«i + g*){P)\dy(P) > [giY + \g,Y ~ 2« 

and 

|/i + /,l < (|/i| ' + I/.I')1" = (fell* + bl8)17". 
The validity of (ii) follows at once. 

Remark. It is easy to show that the inequalities can be replaced by equalities 
only if w*(x) is a constant (then L{W)

V, M^W)q coincide essentially with classical 
Lp, Lq) or if p = oo for L(w)

p (which is actually identical with classical L°° for 
all w)f or if q = 1 for !/(«,)<* (which is actually identical with classical L1 for 
all w). 

THEOREM 5.3. 

(i) Iffl(P)f2(P) = 0 /or a// P a«d 1 < p < oo rte» |/i + /2 | = |/i | < « 
implies fi{P) — 0 for almost all P , m Case (CO if Z£;*(̂ ) > 0/<?r all 0 < x < 7, 
awrf in Case (C2). 

(ii) / / gi(P)a(P) = 0 for a// P and 1 < ? < a> ;&** ki + £2] - ki] < °° 
implies gt{P) — 0 for almost all P . 

Proof, (ii) is an immediate corollary to Theorem 5.2 (ii). 
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If (i) were false there would be an e > 0 such that T{|jf2(-P)| > e} > e. 
Suppose 7{|/iCP)| > e} = A. Then fS(x) > e for all 0 < x < A so that A 
must be finite in Case (Ci) or Case (C2). Then (fi + f2)*(x) > / i*(*) for all x 
and (fi + /2)*(*) > e >fi*(x) for all A < x < A + e. Since w*(x) > 0 for 
A < x < A + e and |/i | < oo we would deduce |/i + /2 | > | /i | , contrary to the 
hypothesis. 

THEOREM 5.4. 

(0 \M <\f\;\fN\-+\f\asN-+œ;if\f\ < *>,then\f-fN\-^OasN->«>. 
(ii) \fe\ < |/ |; sup |/e| (for all e) = |/| ; y(e) -» 0 implies \fe\ —> 0 whenever 

|/ | < oo if and only if either 1 < £ < co or p = » and for some A > 0, 7(e) — 0 
whenever y(e) < A. 

Proof. Parts of (i) and (ii) follow easily from the definition of |/|. To complete 
the proof of (i) we note: (f - fN)*(x) <j*(x) for all x and = 0 if f*(x) < N; 
if |/| < oo and p = 00 then / = fN for some iV; and if |/| < oo and 1 < p < °° 
then A = y{\f(P)\ > N} = w{|/*(x)| > N] - » 0 as iV-> co and 

i/—/«-r = f ( / -/i,)*(^rw*(x)^ < f /*(*)'w*(*)d*. 
*/o «/o 

To complete the proof of (ii) we note: fe*(x) < /*(#) for all x and = 0 for 
x > 7 (e) ; if 1 < p < oo then 

f*(xYw*(x)dx; 
0 

and if p = oo, |/e| = ess. sup | / (P) | on 6. 

THEOREM 5.5. 

(i) IgiA < [g]\ [g*] -* [g] as N -> oo ; N -» oo im^/ies [g - g^] -» 0 whenever 
[g] < co if aw^ ow/;y (f ef/feer l < g < o o o r g = o o and ess. sup w(P) on S is 
finite. 

(ii) tee] < [g]; sup [ge] (for all e) = [g]; # [g] < oo then y(e) -* 0 ironies 
[&e] ~> 0 if and 0^/3' if either 1 < # < co or q = oo but for some A > 0, 7(e) = 0 
whenever y(e) < A. 

Proof. Parts of (i) and (ii) are easy consequences of Theorem 5.1(i). To 
prove the rest of (i) we note: if [g] < °°, and # = °° and ess. sup w(P) is finite, 
then g ~ gN for some N; if q = 00 and ess. sup w(P) is infinite then [w] = 
[w — wN] = 1 for all N] and if [g] < 00 and 1 < q < 00 then 

A(N) =y{\g(P)\> N}->0 

as TV —> 00 (as is easily verified) and, using Theorem 5.1, we obtain 

u(x)g*(x)dx 
0 

where u(x) is restricted to be non-negative, non-increasing, to have \u\p < 1, 
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and to vanish for x > A (N). Since v < x° for all v (Theorem 3.7 (ii)), Theorem 
4.1 shows that, for all such u, 

J17 sty 

u(x)g*°(x) dx = sup I u(x)v(x) dx, 
0 */0 

where v(x) = g*°(x) for 0 < x < A(N), = 0 for all other x. Theorem 4.2 now 
gives 

Thus [g — gN] —• 0 since A [N] —» 0 when N —> <». 
To prove the rest of (ii) we note : if 1 < q < °°, 

[ge] < sup I u(x)g*(x) dx = sup I u(x)g*°(x) dx 
Jo Jo 

for all non-negative, non-increasing u(x) with \u\ < 1 and u(x) = 0 for x > y(e). 
Hence 

which —> 0 when y (e) —> 0 ; if q = <», 

J ] | g(P) | dy(i») 

for all eid e with 7(^1) > 0, and hence if 7(e) —» 0 implies [w«] —> 0 there must 
be A > 0 such that 7(e) < A implies y(e) = 0. 

THEOREM 5.6. |/( < 00 implies that for any e > 0, there is an e for which 
\f — fe\ < € if and only if either Case (Ci) holds (1 < £ < 00) or Case (C2) 
holds with 1 < p < 00. 

Proof. In Case (Ci), 5 may be used for e. In Case (C2), with 1 < p < 00 
there is a finite A with 

JC°f*(x)pw*(x)dx < Je. 

Let e = {\f(P)\p > €/2w*(0,-A)}. Then 

1/ - fe\P = ( §* + £*) a " /.)*(*)V(*) <** 

In Case (C2) with p = 00, and in Case (C3) with arbitrary p, 1 < £ < 00, the 
function / (P ) identically 1 has (/ —/e)*(tf) = /*(#) = 1 for 0 < # < 00 and 
hence | / - fe\ = \f\ > 0 for all e. 
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COROLLARY. |/| < oo implies that f = fE with E a countable union of sets of 
finite measure, for all p in Case (Ci) and for 1 < p < oo in Case (C2). 

THEOREM 5.7. [g] < <» implies that for e > 0 there is an e for which [g — ge] 
< € except for q = 00 in Case (C2). 

Proof. In Case (Ci), [g — ge] = 0 when e = S for 1 < q < 00. 
In Cases (C2) and (C3), if 1 < g < 00, Theorem 5.1 (i) implies that for some 

ei lge]Q > [g]q — £* and Theorem 5.2(ii) implies [g — ge] < c. 
In Case (C3) with q = 00, 

[g] = sup I w(x)g*(x)^x for I u(x)w*dx < 1 
*/o Jo 

with w(x) also restricted to be non-negative and non-increasing. The particular 
choice u(x) = (w*(0> °°))_1 for all x (we are in Case (C3)) shows that g*(x) 
has a finite integral on (0, 00); and if, for k > 0, we set e = {|g(P)| > ft) then 
A(k) = 7(e) is finite. 

Clearly we need consider only the case with A (k) —» <» as k —* 0. Then choose 
£ so large and then k so small that 

5^_JV(»)<fa<i.; *<^M, .*(*)>*. 
Now, when w varies so that \u\i < 1, with u(x) non-negative and non-increasing, 

k - ge] < sup y j a (a)* rf.r + I w(#)g*(*0 *c ) 

*[l (o.B)]+ (supw(J3)) rg*(x)dx 

< h + h = « 
since [1<0.B>] = Bw*(0, i*)"1 and u(B)w*(0,B) < 1 (use the fact that «(x) is 
non-increasing), 

In Case (C2) with q = 00, [w — ?#,] = [w] = 1 for all e. 

COROLLARY, [g] < 00 implies g — gB with E a countable union of sets of finite 
measure except for q = 00 in Case (C2). 

THEOREM 5.8. 

(i) \\E\P = w*(Qfy(E)y<». 

(ii) ilB]Q = vf(0,y(E))u<. 

Proof. The calculations are easy. 

THEOREM 5.9. Let eai E$ be families of subsets of S such that for t > 0 and 
given e, E there are sets e', E\ countable unions of the ea, Ep respectively, with 
y(e - ee') + y(e' - ee') < e and y(E - EEf) + y{E' - EEf) < t. Let Tu 

< 
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7̂ 2, Tz, TA be the sets of functions which are constant and rational on each of a finite 
number of the ea, Ep, arbitrary e, arbitrary E, respectively. Then: 

(i) For 1 < p < oo, Ti is dense in L(Wf in Cases (Ci) and (C2) and Ti is 
dense in L{w)

p in all Cases (Ci), (C2), (C3); for p = 00, TA is dense in L(W)V. 
(ii) For 1 < q < » , Ti is dense in M(W)Q in all Cases (Ci) (C2), (C3); for 

q == co t if ess. sup w(P) is finite, then Tz is dense in M(W)q in Cases (Ci), (C-0 
and TA is dense in M^W)q in Case (C2). 

Proof. The proof of this theorem follows from standard arguments using the 
preceding theorems. 

Remark. If S has a countable family of Ep as in Theorem 5.9 with y(Ep) 
finite for every /?, for example if S is a subset of Euclidean space with positive 
Lebesgue measure, then L^wf is separable in Cases (Ci), (C2) for 1 < p < œ 
and has dimensionality equal to the power of the continuum in Case (C3) for all 
1 < P < °°, and in Cases (Ci) and (C2) if p — °°. To prove this, note that in 
Case (C3) if eu e^ . . . are disjoint, each of measure > A > 0, then for every 
infinite sequence w of increasing positive integers the function 

/ T ( P ) = 1 for£ 6 em n € *, 

= 0 for all other P, 

is in L, and for different sequences TI, ir*, 

\frx-frt\>v?(0,A)l,p. 

On the other hand, with such 5, M(W)q is separable for 1 < q < 00 for all w, 
and has dimensionality the power of the continuum if q = 00 and w is bounded 
on S. 

6. The conjugate spaces. Let U, M' denote the closed linear subspaces 
spanned by t h e / in L and g in M respectively with y{f(P) 9^ 0}, 7{g(P) 5e 0} 
finite. Then Z/ = L in Case (Ci) with 1 < p < 00 and in Case (C2) with 
I < p < 00 ; otherwise U is not all of L. Also, M7 = M except for q = œ 
in Case (C2) ; for this case, Af' is not all of M. 

THEOREM 6.1. 

(i) If 1 < p < 00, the conjugate space to V is M, assuming, if p — 1, that S 
1ms property (R). 

(ii) If 1 < q < co t the conjugate space to M' is L, assuming, if q — 1, that S 
has property (R). 

Proof of (i). In view of Theorem 5.1 (i) we need only show that every bounded 
linear functional 4>(J), f 6 L' has the form, for some g in M, 

(6.1) Jf(P)g(P)dy(P). 

Now <t>(le) is defined for all e and 0(1 e) —-> 0 when y(e) —* 0. The Radon-Nikodym 
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theorem then implies: for every E which is a countable union of sets of finite 
measure there is a g{E) = g{E, P) vanishing outside E, with finite integral on 
every e C E and such that 

<t>{le) = jg{E,P)dy{P) 

for every e C E. This implies [g{E)]q < \<t>\. We can suppose E chosen to give 
[g{E)]q its maximum possible value. 

If p > 1 Theorem 5.3 (ii) then shows that g (Pi) is the zero function whenever 
Ei, E are disjoint, and we set g{P) — g (Pi, P) for all P ; then 

*(1.) = jg(P) dy(P) 

for all e. Hence <j> coincides for all / in L! with the bounded linear functional 
defined by this g through (6.1). 

If p = 1 we use the decomposition of property (R) to define a single g{P) to 
coincide on each ea with g{ea, P) . For this g we have [g]q < \<t>\ and the argument 
proceeds as before. 

Proof of (ii). In view of Theorem 5.1 (ii) we need only show that every 
bounded linear functional <£(&)> £ € M* is of the form, for some/ in Z, 

(6.2) J7(P)g(P) *y(P). 

As in the proof of (i), using Theorem 5.3 (i), or property (P), we obtain an 
f(P) with |/|„ < |4>| and such that 

0(1.) = Jf(P)g(P)dy(P) 

for all g in M7. This implies (ii). 

COROLLARY. ( L ( W / ) * = M(W)Qifl <, p < ^ in Cases (Ci) aw^ (C2) {assuming, 
if p = 1, £̂ a£ S has property (P)). ^4w^ M(W)q is part but not all of (L(W)

P)* in 
Case (C3) for every p. On the other hand, {M(W)q)* = L^w)

v if 1 < g < oo in all 
Case5 (Ci), (C2), (C2) {assuming, if a = 1, / t o 5 has property (P)). 

It follows that L(W)
P and M ^ 5 are reflexive if 1 < p < <» (i.e., 1 < q < co) 

in Cases (Ci) and (C2), and for p = 1 or oo (i.e., q = oo or 1) in Case (Ci) if 
5 is the union of a finite number of atoms, and that L(WJ)

P and M(w)
q are not 

reflexive in all other cases. 
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