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Abstract

A boundary integral equation of the first kind is discretised using Galerkin's method with
piecewise-constant trial functions. We show how the condition number of the stiffness
matrix depends on the number of degrees of freedom and on the global mesh ratio. We
also show that diagonal scaling eliminates the latter dependence. Numerical experiments
confirm the theory, and demonstrate that in practical computations involving strong local
mesh refinement, diagonal scaling dramatically improves the conditioning of the Galerkin
equations.

1. Introduction

A standard practice in numerical linear algebra is to scale the unknowns and right-
hand sides of a linear system, with the aim of reducing the condition number of the
coefficient matrix. The scaled system will then be less sensitive to roundoff errors; see
Forsythe and Moler [4, Chapter 11]. Even if roundoff is not a serious consideration,
for instance because discretisation errors dominate, reducing the condition number
can speed up the convergence of iterative solvers. Here, we consider a particular class
of poorly scaled linear systems, arising in the boundary element method. We derive
an estimate for the condition number of the coefficient matrix of such a system, and
another, much smaller, estimate for the matrix of an equivalent, appropriately scaled
system. Numerical experiments indicate that these estimates are realistic. Our results
are related to those of Bank and Scott [2] for domain finite element methods.

Many elliptic boundary value problems can be formulated as integral equations over
the boundary of the problem domain. In the boundary element method, such integral
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equations are solved numerically via a partitioning of the boundary into boundary
elements (curvilinear triangles or quadrilaterals, for instance). A good partition should
reflect the behaviour of the exact solution of the boundary integral equation. Typically,
very small elements are needed in the vicinity of corners or cracks, where the solution
becomes singular, but elsewhere, much larger elements suffice. In this way, fewer
degrees of freedom are required to achieve a given accuracy than would be the case
using a quasi-uniform partition, in which the boundary elements are all of a similar
size. Good partitions can be generated automatically by adaptive refinement based on
suitable local error indicators, such as those of Carstensen and Stephan [3].

However, the large variation in the sizes of the boundary elements in such a good
partition causes the stiffness matrix to be badly scaled, assuming a standard nodal
basis is used, and we shall see that the condition number can be much larger than it
would be for a quasi-uniform partition with the same number of degrees of freedom.
Our goal is to prove that this increase in the condition number is easily eliminated by
rescaling the unknowns and right-hand sides in such a way that the diagonal entries
of the coefficient matrix are all of the same size. Note that the condition number will
still grow as the number of degrees of freedom is increased, unless some additional,
more sophisticated preconditioner is used, such as in our earlier work [5].

The paper is organised as follows. Section 2 describes a model problem, involving
a weakly singular integral equation of the first kind equivalent to the Dirichlet problem
for the Laplacian in three dimensions. Next, Section 3 describes a simple Galerkin
discretisation based on piecewise constant trial functions. For the special case of
the model problem, our estimates of the condition numbers are given in Theorem 1.
Section 4 outlines the proof for a more general case, stated as Theorem 2, and in
Section 5 we present the results of some numerical experiments.

Further details have been given in a second paper [1]. There, we also discuss
hypersingular boundary integral equations and higher-order boundary elements.

2. A model problem

Let ft be a bounded Lipschitz domain in R3 and denote the boundary of ft by F =
3ft. We consider the Dirichlet problem for the Laplace equation: given boundary
data g o n P , find U on ft satisfying

A£/ = 0 on ft, U = g onF.

Let us transform this problem into a boundary integral equation of the first kind. The
third Green identity gives, for x € ft,

~ hL uw-t, m
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where v is the outward unit normal to £2, and da is the surface element on F. Since
U(y) — g(y) is given for y e F, we can compute U(x) for x e Q once the normal
derivative dv U is known. To this end, take A: to be a point on the boundary F, and
modify the left-hand side of the third Green identity (1) accordingly, by replacing
U(x) with j U(x). After rearranging and applying the Dirichlet boundary condition,
we find that the unknown u = dvU satisfies

u(y)day=f(x) forxeF, (2)
\x-y\

where

To obtain a numerical solution to (2) using a Galerkin boundary element method, we
introduce the symmetric bilinear form

and the L2 inner product

(f,v)= ff(x)v(x)dax.

The weak form of (2) can then be written as

B(u, v) = (f, v) for all v. (3)

The symmetric bilinear form B is bounded on the Sobolev space H~l/2(V), and is
also positive and bounded below on this space, that is, there exist positive constants
C and c such that

\B(v, to)| < C||u||H-i/2(r)||u;||H-./2(n and B(v, v) > c||v||^-

for all v, w e tf-1/2(F). Recall that H~l/2(T) is the dual space of H1/2(T), and that
a norm for the latter is given by

[v(x) - v(y)]2
 j

• dax doy.

Since B defines an equivalent inner product for H~i/2(T), the Riesz Representation
Theorem for Hilbert spaces guarantees the existence of a unique weak solution u 6
H~U2(T) to the boundary integral equation (2).
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3. The Galerkin boundary element method

For the simplest possible Galerkin discretisation, we partition the closed surface T
into N boundary elements and define the piecewise constant nodal basis functions

I I on the fcth element,

0 elsewhere on f,

for it = 1,2,. . . , JV. Denoting the trial space by

X = span{0,,02,... ,<pN],

we seek ux e X satisfying

B(ux, v) = (f, v) for all v e X. (4)

Since X c H~1/2(T), the existence and uniqueness of ux follow from the properties
of B discussed earlier. Furthermore, ux is the best approximation to u from the
subspace X if the error is measured in the energy norm, that is,

-«I IB =min| |u-« | |B ,
, vex

where ||V||B = \/B(v, v). Writing

k=\

and taking v = </>, in (4), we obtain the N x N linear system

N

jkock=fj for; = 1 , 2 , . . . , N, (5)
k=\

where Bjk = B(<f>j, <pk) and/; = (/, 4>j)- The matrix B = [Bjk] is called the stiffness
matrix (with respect to the basis [<pj}?=1). We aim to show that it is better to work
with an equivalent, diagonally-scaled system. Thus, let

>k

and observe that (5) is equivalent to

jkak=fj for; = 1 , 2 , . . . ,N,
k=l
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where ak = y/Bkkak and / , = fj I y/Bjj. Both the coefficient matrices B and B are
symmetric and positive-definite, but whereas Sy7 = 1 for all j , the diagonal entries
of B can vary greatly in size if some boundary elements are much smaller than others.
Notice that if we put

7 _ <fa <f>k

so that 110* || 0 = 1, then

N

ux = ^2ak<t>k.
k=\

Thus, diagonal scaling of the linear system is equivalent to normalising the nodal basis
functions with respect to the energy norm. Letting hk denote the diameter of the kth
boundary element, and putting ftmax = maxi<*</v hk and hmin = mini<*<jv hk, we state
a special case of our main result as Theorem 1 below. The proof requires the partition
to be non-degenerate, that is, the ratio of the diameter of an element to the diameter
of the largest inscribed ball must be uniformly bounded. It follows that the partition
is locally quasi-uniform, but the global mesh ratio /imaxMmin can still be arbitrarily
large.

THEOREM 1. Consider the piecewise-constant Galerkin boundary element method
applied to the three-dimensional, harmonic single-layer potential equation (2). If
the partition is non-degenerate, then the £2 condition number of the stiffness matrix
satisfies

cond(fl) <

whereas for the diagonally scaled matrix,

cond(B) < CNl/2.

4. Outline of the proof

Recall that if B is any real, symmetric N x. N matrix, and if there are positive
constants A. and A such that

X\p\2 < pTBfi < A|0 |2 for all 0 e R",

then every eigenvalue of B lies in the closed interval [A., A]. Since the l2 condition
number equals the ratio of the largest to the smallest eigenvalue, one obtains the upper
bound

cond(fi) < A/A..
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In proving Theorem 1, we may as well generalise the setting by assuming simply that
B is a symmetric bilinear form, bounded and positive bounded below on H~m(V), for
a real number m satisfying

0 < 2m < d = dimension of F;

in our model problem, m = 1/2 and d = 2. Denote the fcth boundary element by Vk,
so that

Fk = support of (j)k,

and consider an arbitrary piecewise-constant function

N

v = ^ u * with U* = fik<pk. (6)

The desired estimates of cond(fl) and cond(B) will follow with the help of three
technical lemmas stated below. We omit the proofs of the first two, but point out that
the norm in H ~m (Tk) must be defined carefully in order for Lemmas 1 and 2 to be valid,
because some of the imbedding constants for the various standard equivalent norms
depend on the diameter of Fk. Also, when d = 1 the non-degeneracy assumption on
the partition must be strengthened by explicitly requiring local quasi-uniformity. For
further details, see [1].

LEMMA 1. ||0t||J,-»(n ^ hd
k
+2m ~ \\4>k\\2

H-»(rky

N

LEMMA 2. J]Hv*H«-"(r,) < C|M|2w_m(r).
k=\

LEMMA 3. IMI2
w-.(r) < CN2m/dJ2\\vk\\

2
H^ry

PROOF. The Sobolev imbedding theorem gives Hm(F) c Lp.(r)forp* = 2d/(d-
2m), so by duality,

Id
IMI//-(r> < C||u||Mr) for p = — —

and here 1 < p < 2 because of our assumption that 0 < 2m < d. Let q = 2/p and
note that

\ <q <2 and — = 1 = 1 - - ,
q* q 2
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so by Holder's inequality,

N / N \ l/q' / N \ l/1

n<<n = E MMO * E 0 E IÎ HMD

/N V"

Since \\<t>k\\lp(r) < Ch2
k
lp = Chd+2m < C| |0 t | | J , - ( r ) , we have

v V P
^

k=\

Theorem 1 now follows by taking m = 1/2 and d = 2 in the next result. We point
out that the restriction to piecewise-constants is not essential. The method of proof is
readily extended to treat higher-order boundary element methods; see [1].

THEOREM 2. Let 0 < 2m < d and assume that F is the d-dimensional boundary
of a domain in Rd+1. Consider the piecewise-constant Galerkin method applied to a
variational problem (3) with a symmetric bilinear form B satisfying

B{v, v) ~ ||u||2w-m(r) for all v e H-"{T).

If the partition is non-degenerate, then the £2 condition number of the stiffness matrix
satisfies

cond(fl) < CN2m/d(hmm/hmin)
d+2m,

whereas for the diagonally scaled matrix,

cond(S) < CN2m/d.

PROOF. If the column vector fi e R" is as in (6), then

and by Lemma 1,

-"(r) = P*H0*llw-».(r) - Pkhk •
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Thus, Lemmas 2 and 3 give

k=\ k=l

SO

and the bound for cond(Z?) follows. However, if we put

N

" = Yl5*' 5* = hfa and ^
then

and hence

c|£|2 < PTB0 < CN2m/d\p\2,

giving the bound for cond(fl).

In [1], we consider also the limiting case when d = 2m, and show that the estimates
of Theorem 2 remain valid if certain logarithmic factors are inserted. This case occurs
with m = 1/2 and d = 1, when the Dirichlet problem for the Laplace equation in two
dimensions is solved via the usual first-kind boundary integral formulation.

5. Numerical experiments

To test whether our theoretical upper bounds for the condition numbers were
realistic, we performed some simple experiments with two test problems.

For the first test problem, we considered the integral equation (2) with r a square
plate in R3, and used quadrilateral elements. The theory as given above does not
cover this case, because F is an open surface, but our arguments can be modified
to show that the conclusions of Theorem 1 still hold. The numerical results are
shown in Table 1. As well as giving the values of the t2 condition numbers, we
show in parentheses the inferred values of the exponent r such that the condition
number is asymptotically proportional to Nr. As expected, cond(fi) = O(Nl/2)
for a uniform partition of the type shown in Figure 1 (a). Table 1 also gives the
condition numbers of B and of the diagonally scaled matrix B for a graded partition
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(a) Uniform partition (b) Graded partition

FIGURE 1. Uniform and graded partitions for a square plate in R3.

TABLE 1. Condition numbers for the first test problem (square plate in R3).

N
4

16
64

256
1024

Uniform Partition
cond(fl)

0.3324E+01
0.7750E+01
0.1635E+02
O.3323E+O2
O.6678E+O2

(0.61)
(0.54)
(0.51)
(0.50)

(
cond(5)

0.3324E+01
0.7148E+03
0.1268E+06
0.1764E+08
0.2304E+10

jraded Partition

(3.87)
(3.74)
(3.56)
(3.51)

cond(B)
0.3324E+01
0.7079E+01
0.1613E+02
0.4427E+02
O.1158E+O3

(0.55)
(0.59)
(0.73)
(0.69)

of the type shown in Figure 1 (b). As N ->• oo, the maximum and minimum element
diameters behave like hmax ~ N"1 and h^n — N~2. Although the partition includes
degenerate elements, we nevertheless find that cond(B) = O(N7/2), and that cond(fl)
is something like O(Nl/2), in accordance with the estimates of Theorem 1.

The second test problem was the analogue of (2) for the Dirichlet problem in R2,

For f, we chose the boundary of the L-shaped polygon with vertices (0,0), (0, 1),
(-1,1), ( - 1 , -1 ) , (1, -1 ) and (1,0). Table 2 sets out our numerical results. For
a uniform partition of the type shown in Figure 2 (a), we observe that the condition
number is O(N), in agreement with Theorem 2 and the remark following its proof. For
a graded mesh of the type shown in Figure 2 (b), with /!„„ ~ N'1 and h^n ~ N~3, we
expect cond(B) = O(N5) and cond(S) = O(N), ignoring some logarithmic factors,
and the numerical results are again consistent with our theoretical bounds.
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(a) Uniform partition (b) Graded partition

FIGURE 2. Uniform and graded partitions for an L-shaped polygon in R2.

TABLE 2. Condition numbers for the second test problem (polygon in R2).

N
g

16
32
64

128
256
512

Uniform Partition
cond(fl)

0.1773E+02
0.3290E+02
0.6297E+02
O.1233E+O3
0.2450E+03
0.4897E+03
0.9793E+03

(0.89)
(0.94)
(0.97)
(0.99)
(1.00)
(1.00)

Graded I
cond(B)

0.4040E+02
0.3290E+02
0.8009E+03
0.2633E+05
0.8485E+06
0.2720E+08
0.8708E+09

(-0.30)
(4.61)
(5.04)
(5.01)
(5.00)
(5.00)

3artition
cond(ff)

0.1539E+02
0.3290E+02
0.6398E+02
0.1467E+03
0.3306E+03
0.7227E+03
0.1549E+04

(1.10)
(0.96)
(1.20)
(1.17)
(1.13)
(1.10)
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