THE DIFFRACTION RAINBOW

By Major D. R. ENgLisSH

1. This is a very beautiful natural phenomenon, seen on occasions
when the primary bow is a strong one. As will appear later, the
occurrence necessitates raindrops of a homogeneous size, and of
course bright sunshine at a low angle. The diffraction rainbow is
therefore most commonly seen in tropical countries, in a thunderstorm
that has already passed over and is moving away from the setting
(or rising) sun.

Fic. 1

The writer has not seen the explanation of this effect in any
text-book. It is mentioned in R. C. Brown’s Light (Longmans). The
following investigation may therefore be of interest.

2. First it is necessary to remind the reader of the theory of the
primary bow. In Fig. 1, the circle represents a raindrop, and
BAFGH the direction and position of a portion of an incoming plane
wave-front of light from the distant sun, refracted at 4,G and inter-
nally reflected at F; C is the centre of the drop, and CD, CJ | AB,
GH respectively. Let 0 = £ BAE = angle of incidence at 4; then
by simple geometry and optics it is clear that

LCGF = LCFG = LCFA = LCAF = ¢, say
= angle of refraction.
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Then if the index of refraction air/water is u, we have
sin 0 = p sin ¢.

The deviation, D, is given by D = =# — £ DCJ and, since Z ACD =
£ GCJ = 0, we have

D=a— LACG + 20
= —4¢ + 20

1
D=7+20—14 sin”l(; sin 0)

aD
do
giving a maximum (clearly not a minimum) value for .D when:
2 cos O = (u® — sin? 0)*4
0 = cos™! [}(u? — 1)]¥% = 0, say.

[If p == 1%, this gives 6’ == 60°and D’ == 140°, as observed in practice,
where D' = Dpjax.]

3. Now D is a continuous function of 6, so that there is quite a
wide range of values of 0, near §’, which give values of .D vanishingly
close to D’. This is why an observer, with his back to the sun,
looking in the direction HG = JC, sees a bright band. The direction
JC can be rotated, for all possible positions, about the line from the
observer directly away from the sun, i.e. about the direction DC,
giving what appears as a circle in the sky. If the sun gave mono-
chromatic light the rainbow would appear as an arc of light, with a
sharp outer edge and diffused inner edge. The effect can be observed
by seeing a “sodium rainbow’’ caused by a solitary sodium street
lamp on a drizzling night. However, since the sun’s light is pan-
chromatic, the diameter of the bow (2.D") depends on 6’ and therefore
on u, which varies for light of different wave length.

4. As 0 passes through the value of 0’ it will pass through two
values each of which gives the same value for .D. This means that
light just inside the edge of the rainbow reaches the observer from
two points on each drop. As the light is synchronous this means that
the observer is receiving synchronous light from a double source, and
may expect to see interference effects. These are, in fact, sometimes
seen and are known as ‘“‘spurious bows.” They are comparatively
faint, and on the outside of the main bow. On the other hand the
diffraction rainbow can be nearly as bright as the main bow and is
immediately inside it.

5. In order to consider the cause of the diffraction bow, we may
look upon all light between limiting values of § as being received by
the drop and reflected back within a cone of semi-apex angle

=2 — 4 cos O[u? — sin? 0] %4
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(m — D’). (The limiting values of 0 are 0 and some value where
D = 0 + =. However this is of no interest. At this value 0 is a large
fraction of 7/2, and during the small remaining range for § up to its
maximum possible 7/2, D continues to increase rapidly with resulting
lack of intensity of the reflected light).

Within this cone, the reflected light is not homogeneous, but
increases in intensity until the surface of the cone is reached, where
it attains a maximum value and is then abruptly “switched off.”” The
same effect would be given by a point source of light at the apex of
the cone, shining through a circular aperture whose edge is the

B

Pw

Fia. 2

locus of @, rotated about CD (Fig. 1) where G is at its position when
6 = 0’. Further, near the edge of the aperture the point source can
be regarded as of high intensity. This is an ideal condition for
diffraction.

6. In Fig. 2, A is the effective point-source, BB’ a diameter of the
aperture, centre C, W B is a wave front just passing B, and PV is its
predecessor. PBis | to BA and to BV. The wave fronts have been
produced to W’ and P’ for clarity Then, according to the theory of
diffraction, a subsidiary wavefront from P will reinforce one from
B at D, inside the cone, if BD — PD = nJ, where n is an integer
and A is the wave-length of light; and, for diffraction of the first
order,n» =1 and BD — PD = A. An observer at .D will see bright
light if he looks in the direction .D B, which makes a smaller angle with
CA (the reverse direction of the sun) than does the direction BA
(the direction of the primary bow). Thus the observer will see
diffraction inside the rainbow.

7. The calculation proceeds as follows:

Let DB=d; then DP=d — A. In AABP, let AB = ¢; then
AP = ¢ + A and

BP = [(c + A)2 —c?]¥% = (2cA)*¢ since A <ec.
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The angle DBP is given (ignoring 42 on the r.h.s. since 1 <d) by
DB%+ BP* —2DB BPcos LDBP = DP? = (d — A)®
d? 4 2¢A — 2d(2cA)* cos L DBP = d? — 2d},

AVE ¢

The difference, to an observer at D, of the direction of the primary
bow and that of first order diffraction is clearly Z VBD, = y, say
Then

giving

p = LVBD:%T—LDBP

inyp = cos L DBP = () (14 ¢
sin p = cos =13 +d

We may ignore c¢/d, since ¢ is of the order of the diameter of a drop,
and d is usually of the order of a mile, so that

AVAE
= sin—1{ =
y = sin (20)

YRV
or Wy :(2_0) , since 4 < ¢, as above.

8. Therefore the angle between direction of main bow and that of
first order diffraction does not depend on the distance from observer
to drop as long as this is large, but does depend on the size of the
drop. This explains why the phenomenon is not observed during a
“monkey’s wedding’ in which the observer is in sunshine but still
within the rainstorm: such a situation gives an excellent rainbow
but no diffraction. Again, no diffraction bow will be seen in light
temperate storms in which the drops vary in size considerably.

9. As a matter of interest one may take the average diameter of
a drop in a tropical rainstorm as 0-5 cm, and D’ as 140°. Then,
from Fig. 2 it will be seen that

/ BAC = 40°
¢ = BC cosec 40°;

and from Fig. 1 that BC = perpendicular from G to CD when
0 =6 =60° and £ DCJ = 40° so that £ DCG is 100°. BC is
therefore £(0-5) sin 100° i.e. about 0-24, so that ¢ = 0-375 cm.

Taking A for red light as 6-44 X 10-5 cm, this gives

6-44 ¥
i =|— -5
vy (red light) —[:'75 x 10 :'

= 0-0092 radians
= a little over }°
This agrees with the observed difference.
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10. If the drops are smaller the difference of direction is larger.

Also, A for blue light is less than A for red light,
1 for blue light is less than y for red light,

and so the blue part of the diffraction bow is closer to the blue part
of the main bow than the red part of the diffraction bow is to the red
part of the main bow; actually taking A (blue) as about half 4 (red),
the proportion is 2~ or about 0-7. But the blue part of the main bow
is on the outside (as A decreases, u increases, .". 6’ decreases, and so
D’ increases). Therefore the colours in the diffraction bow appear
in the same order as in the main bow, but further apart. This again
agrees with observation.

Rhodes University, D. R. ExcrisH
Grahamstown,
South Africa.

ORTHOGONAL CURVILINEAR COORDINATES

By T. A. S. JACKSON

Although the gradient of a scalar, and the curl and divergence of a
vector can be obtained by various elementary methods in terms of
curvilinear components and coordinate vectors, the corresponding
results for the components of strain and the vector divergence of
stress are usually obtained by specializing the formulae for covariant
derivatives. The purpose of this note is to give an elementary
approach to these latter results in the spirit of the theory of Cartesian
tensors. Apart from standard elementary vector analysis the only
prerequisite is a geometrical appreciation of the analysis of defor-
mation. For completeness an elementary analytical derivation of the
results about gradient, ourl and divergence is given first by a method
which, whilst certainly not new, does not appear to be very well
known.

Let the surfaces wu,(z,y,2) = constant (¢=1,2,3) intersect
orthogonally in a certain region. Then the u; are a set of orthogonal
curvilinear coordinates in this region. The unit coordinate vectors
e, and the positive scalars kb, are defined by

1

ei=h,.Vui, ki:rvu—i"

(i=1,2,3).

We may assume that the u; are numbered in such an order that

el = 02 X ea.
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