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Abstract

We investigate the asymptotic distribution of the number of exceedances among d

identically distributed but not necessarily independent random variables (RVs) above
a sequence of increasing thresholds, conditional on the assumption that there is at
least one exceedance. Our results enable the computation of the fragility index, which
represents the expected number of exceedances, given that there is at least one exceedance.
Computed from the first d RVs of a strictly stationary sequence, we show that, under
appropriate conditions, the reciprocal of the fragility index converges to the extremal
index corresponding to the stationary sequence as d increases.
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1. Introduction

Since the pioneering papers of Balkema and de Haan (1974) and Pickands (1975), it is well
known that the distribution of a random exceedance above a high threshold can be reasonably
approximated by a generalized Pareto distribution (GPD). This led to the peaks-over-threshold
approach (POT approach), where a GPD is fitted to the exceedances above a high threshold in
a given sample, which is by now quite common in statistical analyses; see, for example, Reiss
and Thomas (2007, Chapter 5), Beirlant et al. (2004, Chapter 5), and Embrechts et al. (1997,
Chapter 6).

Much less seems to be known about the (random) number of exceedances, unless the obser-
vations are independent and identically distributed, in which case the number of exceedances
above a high threshold obviously follows a binomial distribution with a small probability of
success and, thus, can be approximated by a Poisson distribution (see Barbour et al. (1992)).

We consider in this paper a random vector X = (X1, . . . , Xd), whose components Xi are
identically distributed but not necessarily independent. Keeping the dimension d fixed, we are
interested in the asymptotic conditional distribution of exceedance counts given that there is at
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Distribution of exceedance counts 271

least one exceedance (ACDEC). Specifically, choose a threshold s ∈ R and denote by

Ns :=
d∑

i=1

1(s,∞)(Xi)

the number of exceedances among X1, . . . , Xd . We want to study the asymptotic conditional
distribution of Ns as the threshold increases, i.e.

pk := lim
s↗ P(Ns = k | Ns > 0) = lim

s↗
P(Ns = k)

P(Ns > 0)
, 1 ≤ k ≤ d,

if it exists.
Note that we keep the number d fixed. If X1, . . . , Xd is a block of random variables (RVs)

taken from a stationary process satisfying some mixing condition, and the block size d = d(n)

satisfies d(n) → ∞ and d(n)/n → 0 as n → ∞, then the asymptotic cluster size distribution

πk := lim
n→∞ P(Ns(n) = k | Ns(n) > 0), k ∈ N,

exists under suitable regularity conditions (see Hsing et al. (1988, Theorems 4.1, 4.2)). We
refer the reader to Embrechts et al. (1997, Section 8.1) for a discussion. An investigation
of the asymptotic distribution of general cluster functionals is provided in Yun (2000) and
Segers (2003), among others; we refer the reader to Beirlant et al. (2004, Section 10.3.2) for
an overview.

If the ACDEC actually exists then we can define the fragility index (FI) corresponding to
{X1, . . . , Xd} as the asymptotic expectation of the number of exceedances given that there is
at least one exceedance:

FI := lim
s↗ E(Ns | Ns > 0) =

d∑
k=1

kpk.

The fragility index was introduced in Geluk et al. (2007) to measure the stability of the stochastic
system {X1, . . . , Xd}. The system is called stable if FI = 1, otherwise it is called fragile.
The collapse of a bank, symbolized by an exceedance Xi > s, would be a typical example,
illustrating the fragility index as a measure of joint stability among a portfolio of d banks.

Using tools from multivariate extreme value theory, we show in this paper that the ACDEC
exists, if the copula of the random vector X is in the domain of attraction of a multivariate
extreme value distribution. In this case, the ACDEC can be represented in terms of a norm
on R

d . In particular, for the usual Lλ-norm with λ ∈ [1, ∞], the ACDEC turns out to be quite
simple and, in addition, enables the computation of the asymptotic ACDEC with an increasing
dimension d . The asymptotic ACDEC is in this case the distribution of a stopping rule. This
will be done in Section 3. The fragility index will be computed under quite general conditions
in Section 4.

Computed from the first d RVs of a strictly stationary sequence (Xk)k∈N, we show that,
under appropriate conditions, the reciprocal of the fragility index converges to the extremal
index associated with (Xk)k∈N as d increases. This will be shown in Section 5.

Our approach immediately enables the computation of the extended fragility index, defined as
the asymptotic expected number of exceedances, given that there are at least m ≥ 1 exceedances:

FI(m) := lim
s↗ E(Ns | Ns ≥ m) =

∑d
k=m kpk∑d
k=m pk

, 1 ≤ m ≤ d.
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But now we encounter the problem that the denominator
∑d

k=m pk in the definition of FI(m)

may vanish, although the ACDEC exists.
Take, for example, independent components X1, . . . , Xd . Then Ns follows a binomial

distribution B(d, p(s)) with p(s) = P(X1 > s) and, thus,

pk = lim
s↗

(
d
k

)
p(s)k(1 − p(s))d−k∑d

j=1

(
d
j

)
p(s)j (1 − p(s))d−j

=
{

1, k = 1,

0, 2 ≤ k ≤ d.

In this case the FI(m) would not be defined for m ≥ 2, but FI = FI(1) = 1.
If, on the other hand, X1 = · · · = Xd almost surely then, clearly,

pk =
{

1, k = d,

0, 1 ≤ k ≤ d − 1,

and FI(m) is defined for any 1 ≤ m ≤ d with FI(m) = d. In Section 6 we provide a precise
characterization of the case

∑d
k=m pk = 0 in terms of multivariate extreme value theory.

The mathematical results established in Section 6 enable the characterization of the case of
no exceedance P(Xk > s, k ∈ K) = 0 for a subset K ⊂ {1, . . . , d}, although P(Xk > s) > 0,
k ∈ K . This will be achieved in Section 7.

By Sklar’s theorem (see, for example, Nelson (2006, Theorem 2.10.9)) we can assume the
representation

(X1, . . . , Xd) = (F−1(U1), . . . , F
−1(Ud)),

where F is the (univariate) distribution function (DF) of X1, and the random vector U =
(U1, . . . , Ud) follows a copula on R

d , i.e. each Ui is distributed uniformly on (0, 1). By
F−1(q) := inf{t ∈ R : F(t) ≥ q}, q ∈ (0, 1), we denote the generalized inverse of F .

From the equivalence F−1(q) > t ⇔ q > F(t), q ∈ (0, 1), t ∈ R, we obtain

Ns =
d∑

i=1

1(s,∞)(F
−1(Ui)) =

d∑
i=1

1(F (s),1](Ui).

Throughout this paper, we therefore consider a random vector U following an arbitrary copula
C on R

d , denoted by U ∼ C; 1 − c < 1 will be a threshold converging to 1 and

N1−c =
d∑

i=1

1(1−c,1](Ui)

is the number of exceedances among U1, . . . , Ud above 1 − c.

2. Auxiliary results and tools

It turns out that multivariate extreme value theory provides the tools to investigate theACDEC

pk = lim
c↓0

P(N1−c = k | N1−c > 0) = lim
c↓0

P(N1−c = k)

P(N1−c > 0)
, 1 ≤ k ≤ d.

In this section we compile several definitions and results from multivariate extreme value theory.
For the general theory, we refer the reader to the books de Haan and Ferreira (2006), Resnick
(1987), (2007), Beirlant et al. (2004), and Falk et al. (2004), among others.
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A copula C on R
d is said to be in the domain of attraction of a multivariate extreme value

DF (EVDF) G, denoted by C ∈ D(G), if and only if

Cn

((
1 + x1

n
, . . . , 1 + xd

n

))
→ G(x) as n → ∞

for any x = (x1, . . . , xd) ≤ 0 ∈ R
d . All operations on vectors are meant componentwise. The

EVDF G is characterized by its max-stability

Gn

(
x

n

)
= G(x), x ≤ 0 ∈ R

d , n ∈ N,

and it has standard negative exponential margins G(xei ) = exp(x), x ≤ 0, 1 ≤ i ≤ d, where
ei denotes the ith unit vector in R

d . More precisely, there exists a norm ‖ · ‖D on R
d with

‖ei‖D = 1, 1 ≤ i ≤ d , such that

G(x) = exp(−‖x‖D), x ≤ 0 ∈ R
d;

see Falk et al. (2004, Section 4.3).
The following result, which essentially goes back to Deheuvels (1978), (1984), is established

in Aulbach et al. (2012).

Theorem 2.1. We have C ∈ D(G) if and only if there exists a norm ‖ · ‖D on R
d such that

lim
y↑1

C(y) − (1 − ‖y − 1‖D)

‖y − 1‖D

= 0. (2.1)

In this case G(x) = exp(−‖x‖D), x ≤ 0 ∈ R
d .

Viewed as a function from [0, ∞)d to [0, ∞), ‖·‖D is also known as the stable tail dependence
function (see Huang (1992), Drees and Huang (1998), and Beirlant et al. (2004)).

In the bivariate case with x = (1, 1), the number 2 − ‖(1, 1)‖D is the tail dependence
parameter:

lim
c↓0

P(U2 > 1 − c | U1 > 1 − c) = 2 − ‖(1, 1)‖D;
see Reiss and Thomas (2007, Chapter 13) and Beirlant et al. (2004, Section 8.3.2).

A D-norm ‖ · ‖D is in general monotone, i.e.

‖x‖D ≤ ‖y‖D, 0 ≤ x ≤ y,

and always between the maximum norm and the L1-norm, i.e.

‖x‖∞ = max(x1, . . . , xd) ≤ ‖x‖D ≤
∑
i≤d

|xi |, 0 ≤ x ∈ R
d;

see Falk et al. (2004, Section 4.3). A complete characterization of a D-norm and, thus, an
answer to the question of when an arbitrary norm is a D-norm is given in Hofmann (2009).

The following result is an immediate consequence of Theorem 2.1.

Corollary 2.1. Suppose that U ∼ C ∈ D(G). Then there exists a norm ‖ · ‖D on R
d such

that, for any nonempty subset K ⊂ {1, . . . , d},

P(Uk ≤ 1 − c, k ∈ K) = 1 − c

∥∥∥∥ ∑
k∈K

ek

∥∥∥∥
D

+ o(c)

as c ↓ 0. In this case G(x) = exp(−‖x‖D), x ≤ 0 ∈ R
d .
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Note that we have equality in the preceding result, i.e.

P(Uk ≤ 1 − c, k ∈ K) = 1 − c

∥∥∥∥ ∑
k∈K

ek

∥∥∥∥
D

,

for c close to 0 if C is a GPD copula, i.e. if C has the representation

C(u) = 1 − ‖(1 − u1, . . . , 1 − ud)‖D (2.2)

for u ∈ (0, 1]d close to (1, . . . , 1); we refer the reader to Aulbach et al. (2012) for details.

3. Computation of the ACDEC

In this section we establish the ACDEC. By G(x) = exp(−‖x‖D), x ≤ 0 ∈ R
d , we denote

an arbitrary EVDF on R
d with standard exponential margins and corresponding D-norm ‖·‖D;

U = (U1, . . . , Ud) denotes a random vector that follows a copula C on R
d . In the next lemma

we compute the unconditional asymptotic distribution of exceedance counts.

Lemma 3.1. Suppose that C ∈ D(G). Then we have

(i) P(N1−c = 0) = 1 − c

∥∥∥∥ ∑
1≤j≤d

ej

∥∥∥∥
D

+ o(c),

(ii) P(N1−c = k) = c
∑

0≤j≤k

(−1)k−j+1
(

d − j

k − j

) ∑
T ⊂{1,...,d}
|T |=d−j

∥∥∥∥ ∑
i∈T

ei

∥∥∥∥
D

+ o(c), 1 ≤ k ≤ d,

as c ↓ 0.

Proof. Corollary 2.1 immediately implies that

P(N1−c = 0) = P(Uj ≤ 1 − c, 1 ≤ j ≤ d) = 1 − c

∥∥∥∥
d∑

j=1

ej

∥∥∥∥
D

+ o(c)

for c ↓ 0. For 1 ≤ k ≤ d , we obtain, by the well-known additivity formula,

P(N1−c = k)

=
∑

S⊂{1,...,d}
|S|=k

P(Ui > 1 − c, i ∈ S, Uj ≤ 1 − c, j ∈ S�)

=
∑

S⊂{1,...,d}
|S|=k

P(Ui > 1 − c, i ∈ S | Uj ≤ 1 − c, j ∈ S�) P(Uj ≤ 1 − c, j ∈ S�)

=
∑

S⊂{1,...,d}
|S|=k

[(
1 −

∑
1≤r≤|S|

(−1)r+1
∑
K⊂S
|K|=r

P(Ui ≤ 1 − c, i ∈ K | Uj ≤ 1 − c, j ∈ S�)

)

× P(Uj ≤ 1 − c, j ∈ S�)

]

=
∑

S⊂{1,...,d}
|S|=k

[(
1 −

∑
1≤r≤|S|

(−1)r+1
∑
K⊂S
|K|=r

P(Ui ≤ 1 − c, i ∈ K ∪ S�)

P(Uj ≤ 1 − c, j ∈ S�)

)

× P(Uj ≤ 1 − c, j ∈ S�)

]
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=
∑

S⊂{1,...,d}
|S|=k

[
P(Uj ≤ 1 − c, j ∈ S�)

−
∑

1≤r≤|S|
(−1)r+1

∑
K⊂S
|K|=r

P(Ui ≤ 1 − c, i ∈ K ∪ S�)

]
.

Corollary 2.1, together with the equality
∑

1≤r≤|S|(−1)r+1 ∑
K⊂S, |K|=r 1 = 1, now implies

that

P(N1−c = k) =
∑

S⊂{1,...,d}
|S|=k

[
1 − c

∥∥∥∥ ∑
j∈S�

ej

∥∥∥∥
D

+ o(c)

−
∑

1≤r≤|S|
(−1)r+1

∑
K⊂S
|K|=r

(
1 − c

∥∥∥∥ ∑
j∈K∪S�

ej

∥∥∥∥
D

)]

=
∑

S⊂{1,...,d}
|S|=k

[
c

( ∑
1≤r≤|S|

(−1)r+1
∑
K⊂S
|K|=r

∥∥∥∥ ∑
j∈K∪S�

ej

∥∥∥∥
D

−
∥∥∥∥ ∑

j∈S�
ej

∥∥∥∥
D

)
+ o(c)

]

=
∑

S⊂{1,...,d}
|S|=k

[
o(c) + c

∑
0≤r≤|S|

(−1)r+1
∑
K⊂S
|K|=r

∥∥∥∥ ∑
j∈K∪S�

ej

∥∥∥∥
D

]

= c
∑

S⊂{1,...,d}
|S|=k

∑
0≤r≤|S|

(−1)r+1
∑
K⊂S
|K|=r

∥∥∥∥ ∑
j∈K∪S�

ej

∥∥∥∥
D

+ o(c).

With a suitable index transformation we obtain

P(N1−c = k) = c
∑

S⊂{1,...,d}
|S|=k

∑
0≤r≤|S|

(−1)r+1
∑
K⊂S
|K|=r

∥∥∥∥ ∑
j∈K∪S�=:T
|T |=r+d−k

ej

∥∥∥∥
D

+ o(c)

= c
∑

0≤r≤k

(−1)r+1
∑

K⊂{1,...,d}
|K|=r

∑
T ⊃K

|T |=r+d−k

∥∥∥∥ ∑
i∈T

ei

∥∥∥∥
D

+ o(c)

= c
∑

0≤r≤k

(−1)r+1
∑

T ⊂{1,...,d}
|T |=r+d−k

∑
K⊂T
|K|=r

∥∥∥∥ ∑
i∈T

ei

∥∥∥∥
D

+ o(c)

= c
∑

0≤r≤k

(−1)r+1
∑

T ⊂{1,...,d}
|T |=r+d−k

(
r + d − k

r

)∥∥∥∥ ∑
i∈T

ei

∥∥∥∥
D

+ o(c)

= c
∑

0≤j≤k

(−1)k−j+1
(

d − j

k − j

) ∑
T ⊂{1,...,d}
|T |=d−j

∥∥∥∥ ∑
i∈T

ei

∥∥∥∥
D

+ o(c),

which completes the proof of Lemma 3.1.

The next result is just a reformulation of Lemma 3.1.
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Corollary 3.1. Suppose that C ∈ D(G). Then

ak := lim
c↓0

P(N1−c = k)

c
=

∑
0≤j≤k

(−1)k−j+1
(

d − j

k − j

) ∑
T ⊂{1,...,d}
|T |=d−j

∥∥∥∥ ∑
i∈T

ei

∥∥∥∥
D

for 1 ≤ k ≤ d , and

a0 := lim
c↓0

1 − P(N1−c = 0)

c
=

∥∥∥∥ ∑
1≤j≤d

ej

∥∥∥∥
D

.

Note that we have the equalities ak = P(N1−c = k)/c, 1 ≤ k ≤ d, and a0 = (1−P(N1−c =
0))/c for c close to 0 if C is a GPD copula as in (2.2).

The next result is the main result of this section. It is an obvious consequence of Corollary 3.1.

Theorem 3.1. (ACDEC.) Suppose that C ∈ D(G). Then

pk := lim
c↓0

P(N1−c = k | N1−c > 0) = ak

a0
, 1 ≤ k ≤ d,

defines a probability distribution on {1, . . . , d}.
Take, for example, ‖x‖D = ‖x‖λ = (

∑
i≤d |xi |λ)1/λ for 1 ≤ λ < ∞ and ‖x‖∞ =

maxi≤d |xi |. Then, for 1 ≤ k ≤ d ,

pk =
(

d

k

) ∑
0≤j≤k

(−1)k−j+1
(

k

j

)(
1 − j

d

)1/λ

. (3.1)

The Marshall–Olkin D-norm is the convex combination of the maximum norm and the
L1-norm:

‖x‖MO := ϑ‖x‖1 + (1 − ϑ)‖x‖∞, x ∈ R
d , ϑ ∈ [0, 1];

see Falk et al. (2004, Example 4.3.2). In this case we obtain

p1 = ϑd

ϑd + 1 − ϑ
, pd = 1 − ϑ

ϑd + 1 − ϑ
, pk = 0, 2 ≤ k ≤ d − 1.

In the particular case where the D-norm is the usual Lλ-norm with λ ∈ [1, ∞], we can
derive the limit

lim
d→∞ pk = lim

d→∞ pk(d) (3.2)

of the ACDEC as the dimension d increases. Since

pk =
{

1, k = 1,

0, 2 ≤ k ≤ d,

in the λ = 1 case and

pk =
{

0, 1 ≤ k ≤ d − 1,

1, k = d,

in the λ = ∞ case, the limit behavior of pk in (3.2) is clear for λ ∈ {1, ∞}. We therefore
restrict ourselves in the following to λ ∈ (1, ∞).

The following auxiliary result will be crucial. It can be shown by induction.
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Lemma 3.2. We have, for k ∈ N,

∑
0≤j≤k

(−1)j
(

k

j

)
j i =

{
0, 0 ≤ i ≤ k − 1,

(−1)kk!, i = k.

The next proposition provides the asymptotic ACDEC for the Lλ-norm.

Proposition 3.1. (Asymptotic ACDEC.) Suppose that the underlying D-norm is the Lλ-norm
with 1 < λ < ∞. Then we have, for k ∈ N,

p∗
k (λ) := lim

d→∞ pk = 1

λk

k−1∏
j=1

(
1 − 1

jλ

)
.

Proof. Recall that

pk = pk(d) =
(

d

k

) ∑
0≤j≤k

(−1)k−j+1
(

k

j

)(
1 − j

d

)1/λ

, 1 ≤ k ≤ d.

Set f (x) := x1/λ, x ≥ 0. Taylor’s expansion of length k implies that, for ε ∈ (0, 1),

f (1 − ε) = f (1) +
∑

1≤i≤k−1

f (i)(1)

i! (−ε)i + f (k)(ξ)

k! (−ε)k,

where ξ ∈ (1 − ε, 1) and

f (i)(x) = x1/λ−i
∏

0≤r≤i−1

(
1

λ
− r

)
.

We thus obtain, for 1 ≤ j ≤ k < d with ε = j/d,(
1 − j

d

)1/λ

= 1 +
∑

1≤i≤k−1

(
− j

d

)i
∏

0≤r≤i−1(1/λ − r)

i!

+ ξ
1/λ−k
j

(
− j

d

)k
∏

0≤r≤k−1(1/λ − r)

k! ,

where ξj ∈ (1 − j/d, 1). This implies that, for fixed 1 ≤ k < d,

pk =
(

d

k

) ∑
0≤j≤k

(−1)k−j+1
(

k

j

)(
1 − j

d

)1/λ

=
(

d

k

)(
(−1)k+1 +

∑
1≤j≤k

(−1)k−j+1
(

k

j

)(
1 − j

d

)1/λ)

=
(

d

k

)(
(−1)k+1 +

∑
1≤j≤k

(−1)k−j+1
(

k

j

){
1 +

∑
1≤i≤k−1

(
− j

d

)i
∏

0≤r≤i−1(1/λ − r)

i!

+ ξ
1/λ−k
j

(
− j

d

)k
∏

0≤r≤k−1(1/λ − r)

k!
})
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=
(

d

k

) ∑
1≤j≤k

(−1)k−j+1
(

k

j

){ ∑
1≤i≤k−1

(
− j

d

)i
∏

0≤r≤i−1(1/λ − r)

i!

+ ξ
1/λ−k
j

(
− j

d

)k
∏

0≤r≤k−1(1/λ − r)

k!
}

=
(

d

k

) ∑
1≤i≤k−1

∏
0≤r≤i−1(1/λ − r)

i!
( ∑

1≤j≤k

(−1)k−j+1
(

k

j

)(
− j

d

)i)

+
(

d

k

)∏
0≤r≤k−1(1/λ − r)

k!
∑

1≤j≤k

(−1)k−j+1
(

k

j

)(
− j

d

)k

ξ
1/λ−k
j .

The first term on the right-hand side of this equation vanishes by Lemma 3.2. For fixed k and
d → ∞, the second term converges to∏

0≤r≤k−1(1/λ − r)

(k!)2

∑
1≤j≤k

(−1)−j+1
(

k

j

)
jk = (−1)k−1

∏
0≤r≤k−1(1/λ − r)

k!

= 1

λk

k−1∏
j=1

(
1 − 1

jλ

)

by Lemma 3.2.

Note that p∗
k (λ) = 1/(λk)

∏k−1
j=1(1 − 1/(jλ)), k ∈ N, is the distribution of a stopping time.

Let X1, X2, . . . be independent RVs with values in {0, 1}, and let

P(Xj = 0) = 1 − 1

jλ
= 1 − P(Xj = 1), j ∈ N.

Set
τ(λ) := min{j ∈ N : Xj = 1}.

Then, obviously,

P(τ (λ) = k) = 1

λk

k−1∏
j=1

(
1 − 1

jλ

)
= p∗

k (λ), k ∈ N.

Note that P(τ (λ) < ∞) = 1, 1 ≤ λ < ∞, whereas P(τ (∞) = ∞) = 1, if we include
λ ∈ {1, ∞} in our considerations.

Denote by Pλ the ACDEC on N as in (3.1), i.e. Pλ(k) = pk(d), k ∈ N. Then Proposition 3.1

can be formulated as follows, where ‘
w−→’ denotes weak convergence.

Proposition 3.2. We have, for λ ∈ [1, ∞), as d → ∞,

Pλ
w−→ τ(λ).

4. Computation of the fragility index

In this section we compute the fragility index under the condition that C ∈ D(G). The
following theorem is the main result of this section.
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Theorem 4.1. Suppose that C ∈ D(G), G(x) = exp(−‖x‖D), x ≤ 0 ∈ R
d . Then

FI = d

‖ ∑
1≤j≤d ej‖D

.

Proof. We have

E(N1−c | N1−c > 0) =
d∑

i=1

E(1(1−c,1](Ui) | N1−c > 0)

=
d∑

i=1

P(Ui > 1 − c)

1 − P(N1−c = 0)

= d
c

1 − P(N1−c = 0)

→ d

‖ ∑d
i=1 ei‖D

as c ↓ 0

by Corollary 3.1.

The number

ε :=
∥∥∥∥ ∑

1≤j≤d

ej

∥∥∥∥
D

= ‖(1, . . . , 1)‖D ∈ [1, d]

measures the dependence structure of the margins ofG, and we have in particular, by Takahashi’s
(1988) theorem,

ε = 1 ⇐⇒ ‖ · ‖D = ‖ · ‖∞ ⇐⇒ complete dependence of the margins

and
ε = d ⇐⇒ ‖ · ‖D = ‖ · ‖1 ⇐⇒ independence of the margins.

The number ε was introduced in Smith (1990) as the extremal coefficient of G∗, defined as
that constant which satisfies

G∗(x, . . . , x) = Fε(x), x ∈ R, (4.1)

where G∗ is an arbitrary d-dimensional EVDF with identical margins G∗
j = F, j ≤ d.

We have thus established in Theorem 4.1 the fact that ε/d ∈ [1/d, 1] equals the reciprocal of
the fragility index. This is in complete accordance with the extremal coefficient for stationary
processes, which can be interpreted as the reciprocal of the mean cluster size of the limiting
compound Poisson process; we refer the reader to Embrechts et al. (1997, Section 8.1). In
Section 5 we will show that the reciprocal 1/FI actually converges to the extremal index, if
(U1, . . . , Ud) is a clipping from a stationary process and d → ∞.

Using the D-norm representation of an EVDF, property (4.1) of ε can easily be seen as
follows. Transforming the margins of G∗ to the negative exponential distribution F(x) =
exp(x), x ≤ 0, we can assume without loss of generality that G∗(x) = exp(−‖x‖D),
x ≤ 0 ∈ R

d . Then we have, for x ≤ 0,

G∗(x, . . . , x) = exp(−‖(x, . . . , x)‖D)

= exp(x‖(1, . . . , 1)‖D)

= exp(xε)

= exp(x)ε.
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In the case where the D-norm is the Lλ-norm with λ ∈ [1, ∞], we have ε = d1/λ and, thus,
the fragility index is given by

FI = d1−1/λ =
{

1, λ = 1,

d, λ = ∞.

Using Lemma 3.2, it is straightforward to also compute the variance corresponding to the
fragility index for a general D-norm:

σ 2(FI) := lim
c↓0

E((N1−c − FI)2 | N1−c > 0)

=
d∑

k=1

k2pk −
( d∑

k=1

kpk

)2

= 2d2 − d − 2
∑

1≤i �=j≤d ‖ei + ej‖D

‖ ∑d
i=1 ei‖D

−
(

d

‖ ∑d
i=1 ei‖D

)2

.

The variance vanishes, of course, for the L1-norm and the maximum norm.
For the Marshall–Olkin D-norm ‖x‖ϑ = ϑ‖x‖1 + (1 − ϑ)‖x‖∞, ϑ ∈ [0, 1], we obtain

ε = d − (1 − ϑ)(d − 1) as well as

FI(ϑ) = d

d − (1 − ϑ)(d − 1)
, σ 2(FI(ϑ)) = ϑ(1 − ϑ)

d(d − 1)2

d − (1 − ϑ)(d − 1)
.

5. Extremal index

In what follows we show that the reciprocal of the fragility index FI(d) as a function of the
dimension d converges to the extremal index of a strictly stationary sequence. To adjust to
the common notation of stationary processes, we switch in this chapter from the uniformly on
(0, 1) distributed RV Uk to the initial Xk .

Let (Xd)d∈N be a strictly stationary sequence of RVs, and let θ be a number in [0, 1]. Assume
that, for every τ > 0, there exists a sequence (ud)d∈N of numbers such that

lim
d→∞ d(1 − F(ud)) = τ, (5.1)

where F is the DF of X1, and

lim
d→∞ P

(
max

1≤k≤d
Xk ≤ ud

)
= exp(−θτ). (5.2)

Then θ is called the extremal index of the sequence (Xd)d∈N. We refer the reader to Embrechts
et al. (1997, Section 8.1) for a discussion of the extremal index. It is in particular well known
(see Hsing et al. (1988)) that the extremal index is the reciprocal of the mean cluster size of
the limiting compound process associated with the point process of the exceedances among
X1, . . . , Xd above ud for d → ∞.

The following result links the fragility index with the extremal index.

Theorem 5.1. Let (Xd)d∈N be a strictly stationary sequence with extremal index θ . Suppose
that the copula C(d) associated with the vector X(d) = (X1, . . . , Xd) satisfies the expansion

C(d)(y) = 1 − ‖1 − y‖D(d) + o(d|1 − y|) (5.3)
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with y = (y, . . . , y) uniformly for y ∈ [0, 1] and d ∈ N, where ‖ · ‖D(d) is a D-norm on R
d .

Then the fragility index FI = FI(d) exists for X(d) for each d ∈ N, i.e.

FI(d) = d

‖1‖D(d)

,

and we have

lim
d→∞

1

FI(d)
= θ.

Note that condition (5.3) is derived from condition (2.1) in a natural way using the fact that
every D-norm is bounded above by the L1-norm.

Proof of Theorem 5.1. We have

FI(d) = lim
s↗

d∑
k=1

E
(

1(s,∞)(Xk)

∣∣∣ max
1≤k≤d

Xk > s
)

= lim
s↗

d(1 − F(s))

1 − P(Xk ≤ s, 1 ≤ k ≤ d)

= lim
s↗

d(1 − F(s))

1 − C(d)(F (s), . . . , F (s))

= d

‖1‖D(d)

by condition (5.3). We have, moreover, by the same condition,

P
(

max
1≤k≤d

Xk ≤ ud

)
= C(d)(F (ud), . . . , F (ud))

= 1 − (1 − F(ud))‖1‖D(d) + o(d(1 − F(ud)))

= 1 − d(1 − F(ud))

FI(d)
+ o(d(1 − F(ud))),

and, thus, by conditions (5.1) and (5.2),

exp(−θτ) + o(1) = 1 − τ + o(1)

FI(d)
+ o(τ)

as d → ∞. This implies that

lim
d→∞

1

FI(d)
= 1 − exp(−θτ) + o(τ)

τ
.

Letting τ converge to 0 yields the assertion.

The preceding result enables a further interpretation of the extremal index. Take again
the Marshall–Olkin D-norm, i.e. the convex combination of the L1- and the maximum norm,
which are the two extremal D-norms representing independence and complete dependence of
the margins of the associated EVDF:

‖ · ‖MO = ϑ‖ · ‖1 + (1 − ϑ)‖ · ‖∞,

where ϑ ∈ [0, 1] (see Section 4.3 of Falk et al. (2004)). Take an arbitrary D-norm ‖ · ‖D(d)

on R
d . Since every D-norm is bounded above by the L1-norm and bounded below by the
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maximum norm, there exists a unique ϑd ∈ [0, 1] such that ‖1‖D(d) coincides with the pertaining
Marshall–Olkin norm of 1, i.e.

‖1‖D(d) = ϑd‖1‖1 + (1 − ϑd)‖1‖∞ = 1 + (d − 1)ϑd .

We thus find that the sequence of reciprocals ‖1‖D(d)/d of the fragility index FI(d) converges
as d → ∞ if and only if limd→∞ ϑd ∈ [0, 1] exists. Theorem 5.1 now yields limd→∞ ϑd = θ ,
the extremal index.

The extremal index can therefore be considered as the ‘proportion of tail independence’
contained in the vector X(d) for large d , as the L1-norm represents the case of independence of
the margins of the limiting extreme value distribution G(d)(x) = exp(−‖x‖D(d) ), x ≤ 0 ∈ R

d ,
of the copula C(d) associated with X(d).

Example 5.1. (GPD process.) Let (Zk)k ∈ N be a strictly stationary process with 0 ≤ Z1 ≤ c

almost surely for some c > 1 and E(Z1) = 1. Let U be a uniformly on (0, 1) distributed RV,
which is independent of the process (Zk)k∈N, and set

Xk := 1 − U

Zk

, k ∈ N.

Then the process (Xk)k∈N is a GPD process (see Buishand et al. (2008)). It is obviously strictly
stationary and the copula C(d) corresponding to (X1, . . . , Xd) is a GPD copula.

We show in the following that C(d) satisfies condition (5.3) and that the extremal index
corresponding to (Xk)k∈N is 0.

Note that we have, for 1 − 1/c ≤ xk ≤ 1, k ≤ d,

P(Xk ≤ xk, 1 ≤ k ≤ d) = 1 −
∫

max
1≤k≤d

((1 − xk)zk)(P ∗(Z1, . . . , Zd))(dz)

= 1 − E
(

max
1≤k≤d

((1 − xk)Zk)
)

= 1 − ‖(1 − x1, . . . , 1 − xd)‖D(d) ,

where

‖y‖D(d) := E
(

max
1≤k≤d

(|yk|Zk)
)
, y ∈ R

d ,

defines a D-norm on R
d for each d ∈ N. Condition (5.3) is therefore automatically satisfied.

Next we show that the extremal index of (Xk)k∈N exists and that it is equal to 0. With d = 1
we obtain, for 1 − 1/c ≤ x ≤ 1,

P(X1 ≤ x) = 1 − (1 − x) E(Z1) = x,

and, thus, with ud := 1 − τ/d, τ > 0, we have

d(1 − P(X1 ≤ ud)) = τ

for large d.
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Finally, we obtain

P
(

max
1≤k≤d

Xk ≤ ud

)
= C(d)(ud, . . . , ud)

= 1 − ‖(1 − ud, . . . , 1 − ud)‖D(d)

= 1 − τ

d
‖(1, . . . , 1)‖D(d)

→
d→∞ 1

= exp(−θτ),

as ‖(1, . . . , 1)‖D(d) = E(max1≤k≤d Zk) ≤ c and, thus, the extremal index of (Xk)k∈N is θ = 0.

6. The extended fragility index

The extended fragility index FI(m) is the obvious extension of the fragility index by the
condition that there are at least m exceedances, i.e.

FI(m) := lim
c↓0

E(N1−c | N1−c ≥ m) =
∑d

k=m kpk∑d
k=m pk

for m ∈ {1, . . . , d} and pk = limc↓0 P(N1−c = k | N1−c > 0), 1 ≤ k ≤ d, if these limits
exist.

We call the system {U1, . . . , Ud} m-stable if FI(m) = m and fragile if FI(m) > m.
We now encounter the problem that we might divide by 0 in the definition of FI(m) for

m ≥ 2, i.e.
∑d

k=m pk = 0, which is, for example, the case for the L1-norm; see the discussion
after Theorem 3.1. When does this occur in general? In this section we develop a precise
characterization.

This characterization will be formulated in terms of multivariate extreme value theory. The
following well-known representations of an EVDF G on R

d with standard negative exponential
margins G(xei ) = exp(x), x ≤ 0, 1 ≤ i ≤ d, will be crucial. We have, for x ≤ 0 ∈ R

d ,

G(x) = exp(−‖x‖D) (Hofmann)

= exp

(
−

∫
Sd

max(−uixi)µ(du)

)
(Pickands–de Haan–Resnick)

= exp(−ν([−∞, x]�)) (Balkema–Resnick),

where µ is the angular measure on the unit simplex Sd = {u ∈ [0, 1]d : ∑
i≤d ui = 1},

satisfying µ(Sd) = d and
∫
Sd

uiµ(du) = 1, 1 ≤ i ≤ d, and ν is the σ -finite exponent measure
on [−∞, 0]d\{∞}; for details, see Falk et al. (2004).

The following auxiliary result is of interest in its own right. It implies in particular the
general inequality∑

∅�=T ⊂{1,...,d}
(−1)|T |−1

∥∥∥∥ ∑
i∈T

xiei

∥∥∥∥
D

≥ 0, x ≤ 0 ∈ R
d or x ≥ 0 ∈ R

d .

Lemma 6.1. Let G be an EVDF on R
d with corresponding D-norm ‖ · ‖D and exponent

measure ν. Then we have, for x ≤ 0 ∈ R
d ,

ν(x, 0] =
∑

∅�=T ⊂{1,...,d}
(−1)|T |−1

∥∥∥∥ ∑
i∈T

xiei

∥∥∥∥
D

.
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Proof. Since ν is σ -finite, there exists a sequence of measurable subsets B1 ⊂ B2 ⊂ · · · of

 := [−∞, 0] \ {−∞} with

⋃
n∈N

Bn = 
 and ν(Bn) =: bn < ∞, n ∈ N.
Set

νn(·) := ν(· ∩ Bn), n ∈ N.

Then νn, n ∈ N, defines a sequence of finite measures on 
, νn(
) = bn, n ∈ N, with

lim
n→∞ νn(B) = ν(B)

for any measurable subset B of 
.
The �-monotonicity of an arbitrary finite measure implies that

νn(x, y] =
∑

m∈{0,1}d
(−1)

d−∑
j≤d mj νn

([
−∞,

∑
i≤d

y
mi

i x
1−mi

i ei

])
≥ 0

for any −∞ < x ≤ y ≤ 0, and, thus, switching to complements,

νn(x, y] =
∑

m∈{0,1}d
(−1)

d−∑
j≤d mj

(
bn − νn

([
−∞,

∑
i≤d

y
mi

i x
1−mi

i ei

]�))

=
∑

m∈{0,1}d
(−1)

d+1−∑
j≤d mj νn

([
−∞,

∑
i≤d

y
mi

i x
1−mi

i ei

]�)

for any n ∈ N; note that

∑
m∈{0,1}d

(−1)
d−∑

j≤d mj =
∑

m∈{0,1}d
(−1)

∑
j≤d mj =

d∑
k=0

(−1)k
(

d

k

)
= 0

and that

νn

([
−∞,

∑
i≤d

y
mi

i x
1−mi

i ei

]�)
→

n→∞ ν

([
−∞,

∑
i≤d

y
mi

i x
1−mi

i ei

]�)

=
∥∥∥∥ ∑

i≤d

y
mi

i x
1−mi

i ei

∥∥∥∥
D

.

We thus obtain

ν(x, y] = lim
n→∞ νn(x, y]

=
∑

m∈{0,1}d
(−1)

d+1−∑
j≤d mj lim

n→∞ νn

([
−∞,

∑
i≤d

y
mi

i x
1−mi

i ei

]�)

=
∑

m∈{0,1}d
(−1)

d+1−∑
j≤d mj ν

([
−∞,

∑
i≤d

y
mi

i x
1−mi

i ei

]�)

=
∑

m∈{0,1}d
(−1)

d+1−∑
j≤d mj

∥∥∥∥ ∑
i≤d

y
mi

i x
1−mi

i ei

∥∥∥∥
D

.
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Setting y = 0 and replacing mi by 1 − mi we obtain

ν(x, 0] =
∑

m∈{0,1}d
(−1)

d+1−∑
j≤d mj

∥∥∥∥ ∑
i≤d

0mi x
1−mi

i ei

∥∥∥∥
D

=
∑

m∈{0,1}d
(−1)

1+∑
j≤d mj

∥∥∥∥ ∑
i≤d

01−mi x
mi

i ei

∥∥∥∥
D

=
∑

∅�=T ⊂{1,...,d}
(−1)|T |−1

∥∥∥∥ ∑
i∈T

xiei

∥∥∥∥
D

.

The following characterization is the main result of this section.

Proposition 6.1. Suppose that the random vector U = (U1, . . . , Ud) follows a copula C ∈
D(G). Choose m ∈ {2, . . . , d}. Then we have, for the ACDEC,

∑d
k=m pk = 0 if and only if

we have, for any subset K ⊂ {1, . . . , d} with at least m elements,

lim
c↓0

P(Uk > 1 − c, k ∈ K)

c
= 0

⇐⇒
∑
T ⊂K

(−1)|T |−1
∥∥∥∥ ∑

i∈T

xiei

∥∥∥∥
D

= 0 for all x ≥ 0 ∈ R
d (6.1)

⇐⇒
∑
T ⊂K

(−1)|T |−1
∥∥∥∥ ∑

i∈T

ei

∥∥∥∥
D

= 0 (6.2)

⇐⇒ µ
({

u ∈ Sd : min
i∈K

ui > 0
})

= 0 (6.3)

⇐⇒ ν
(

×
k∈K

(−∞, 0] ×
i �∈K

[−∞, 0]
)

= 0, (6.4)

i.e. the projection νK := ν ∗ (πi, i ∈ K) of the exponent measure ν onto its components i ∈ K

is the null measure on (−∞, 0]|K|.

Proof. We have, by Corollary 3.1,

d∑
k=m

pk = 0

⇐⇒ lim
c↓0

P(N1−c ≥ m | N1−c > 0) = 0

⇐⇒ lim
c↓0

1

c
P

( ⋃
K⊂{1,...,d}

|K|≥m

{Uk > 1 − c, k ∈ K}
)

= 0

⇐⇒ lim
c↓0

1

c
P(Uk > 1 − c, k ∈ K) = 0, K ⊂ {1, . . . , d}, |K| ≥ m

⇐⇒ condition (6.1) is satisfied,

where the final equivalence is an immediate consequence of Corollary 2.1 and the well-known
additivity formula.
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Note that µ̃ := µ/d defines a probability measure on Sd , and let T = (T1, . . . , Td) be a
random vector with values in Sd , whose distribution is µ̃. Set Z = (Z1, . . . , Zd) := dT . Then
we have

Zi ∈ [0, d], i ≤ d;
∑
i≤d

Zi = d
∑
i≤d

Ti = d; E(Zi) = d E(Ti) = 1, i ≤ d.

Let V be an RV that is independent of Z and uniformly on (0,1) distributed, and set

Q = (Q1, . . . , Qd) := 1

V
Z.

Note that 1/V follows a standard Pareto distribution on [1, ∞).
We have, for x ≥ (d, . . . , d) ∈ R

d ,

P

(
1

V
Z ≤ x

)
= P

(
V ≥ max

i≤d

1

xi

Zi

)

=
∫

Sd

P

(
V ≥ max

i≤d

dti

xi

)
µ̃(dt)

= 1 −
∫

Sd

P

(
V ≤ max

i≤d

dti

xi

)
µ̃(dt)

= 1 −
∫

Sd

max
i≤d

dti

xi

µ̃(dt)

= 1 −
∫

Sd

max
i≤d

ti

xi

µ(dt)

= 1 −
∥∥∥∥
(

1

x1
, . . . ,

1

xd

)∥∥∥∥
D

.

From the well-known additivity formula, for γk ≤ 1/d, k ∈ K , we obtain

P

(
Qk >

1

γk

, k ∈ K

)
= 1 − P

(⋃
k∈K

{
Qk ≤ 1

γk

})

= 1 −
∑

∅�=T ⊂K

(−1)|T |−1 P

(
Qi ≤ 1

γi

, i ∈ T

)

= 1 −
∑

∅�=T ⊂K

(−1)|T |−1
(

1 −
∥∥∥∥ ∑

i∈T

γiei

∥∥∥∥
D

)

=
∑

∅�=T ⊂K

(−1)|T |−1
∥∥∥∥ ∑

i∈T

γiei

∥∥∥∥
D

as
∑

∅�=T ⊂K(−1)|T |−1 = 1.
Choosing identical γk = γ ≤ 1/d , k ∈ K , we obtain

P

(
Qk >

1

γ
, k ∈ K

)
= 0 ⇐⇒

∑
T ⊂K

(−1)|T |−1
∥∥∥∥ ∑

i∈T

ei

∥∥∥∥
D

= 0

and, thus, the equivalence of condition (6.1) and (6.2).
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Moreover, condition (6.1) is satisfied if and only if P(Qk > xk, k ∈ K) = 0 for all xk ≥ d,
k ∈ K , i.e.

0 = P(Qk > xk, k ∈ K) = P

(
V < min

k∈K

1

xk

Zk

)
=

∫ 1

0
P

(
v < min

k∈K

1

xk

Zk

)
dv

⇐⇒ P

(
min
k∈K

1

xk

Zk > v

)
= 0, 0 < v < 1

⇐⇒ P

(
min
k∈K

1

xk

Zk = 0

)
= 1

⇐⇒ P(min
k∈K

Zk = 0) = 1

⇐⇒ µ
({

u ∈ Sd : min
k∈K

uk = 0
})

= d,

which is condition (6.3).
Denote by πK : [−∞, 0]d � x �→ (xk)k∈K ∈ [−∞, 0]|K| the projection of a vector in

[−∞, 0]d onto the vector of its coordinates given by the subset K ⊂ {1, . . . , d}. Then the
measure induced by the exponent measure ν and the projection πK is the angular measure of
the EVDF GK , defined as the marginal distribution of G given by K with |K| = m:

GK(y1, . . . , ym) = G

(∑
k∈K

yikek

)

= exp
(
−ν

((
×

k∈K
[−∞, yik ] × [−∞, 0]d−m

)�))

= exp
(
−(ν ∗ πK)

(( m×
i=1

[−∞, yi]
)�))

= exp
(
−νK

(( m×
i=1

[−∞, yi]
)�))

, y1, . . . , ym ≤ 0.

From Lemma 6.1, it follows that condition (6.1) is equivalent to νK((y, 0]) = 0, y ∈ R
m,

which is condition (6.4).

To summarize, the preceding considerations imply that, for an arbitrary copula C in the
domain of attraction of an EVDF G(x) = exp(−‖x‖D), x ≤ 0 ∈ R

d , the index

m∗ := max{1 ≤ m ≤ d : FI(m) is well defined}
exists, providing the maximum range {1, . . . , m∗} on which the extended FI(m) is defined:

FI(m) = lim
c↓0

E(N1−c | N1−c > 0) =
∑d

k=m kpk∑d
k=m pk

, 1 ≤ m ≤ m∗.

Moreover,

m∗ = max

{
1 ≤ m ≤ d :

d∑
k=m

pk > 0

}

= max

{
1 ≤ m ≤ d : there exists K ⊂ {1, . . . , d}, |K| = m :
∑

∅�=T ⊂K

(−1)|T |−1
∥∥∥∥ ∑

i∈T

ei

∥∥∥∥
D

> 0

}
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= max

{
1 ≤ m ≤ d : there exists K ⊂ {1, . . . , d}, |K| = m :
∑

∅�=T ⊂K

(−1)|T |−1
∥∥∥∥ ∑

i∈T

xiei

∥∥∥∥
D

> 0 for all x > 0 ∈ R
d

}

= max
{

1 ≤ m ≤ d : there exists K ⊂ {1, . . . , d}, |K| = m :
µ

({
u ∈ Sd : min

k∈K
uk > 0

})
> 0

}
= max{1 ≤ m ≤ d : there exists K ⊂ {1, . . . , d}, |K| = m : νK((−∞, 0]m) > 0}.

For the Marshall–Olkin D-norm ‖ · ‖ϑ = ϑ‖ · ‖∞ + (1 − ϑ)‖ · ‖1, we obtain, for example,

FI = FI(1) = d

d − ϑ(d − 1)
; FI(m) = d, 2 ≤ m ≤ d.

7. No exceedance above a high threshold

The considerations in Section 6 also enable the characterization of those copulas C such that
P(U > c0) = 0 for some c0 ∈ (0, 1)d , where the random vector U follows the copula C, i.e.
there will be no exceedance above a high threshold.

Let U be uniformly on (0, 1) distributed, and set U := (U1, U2) := (U, 1 − U). Then U

follows a bivariate copula and satisfies U1 + U2 = 1, i.e.

P(U > c) = 0, c = (c1, c2) ∈ (0, 1)2, c1 + c2 > 1,

which is illustrated in Figure 1.
Note that

P(U ≤ c) = 1 − ‖(1 − c1, 1 − c2)‖1, 0 ≤ c1, c2 ≤ 1, c1 + c2 ≥ 1,

i.e. U follows a bivariate GPD copula whose D-norm is the L1-norm.

(1,1)

(1,0)

(0,1)

(0,0)

c = (c1,c2)

U = (U,1 – U)

Figure 1: Support line of the random vector U = (U, 1 − U).
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Now let U = (U1, U2) follow an arbitrary bivariate copula C such that P(U > c0) for some
c0 ∈ (0, 1)2. Then we obtain, for c0 ≤ c ≤ (1, 1),

0 = P(U1 > c1, U2 > c2)

= 1 − (P(U1 ≤ c1) + P(U2 ≤ c2) − P(U1 ≤ c1, U2 ≤ c2))

= 1 − c1 − c2 + C(c),

and, thus,
C(c) = 1 − ‖(1 − c1, 1 − c2)‖1,

i.e. in the bivariate case we have no exceedance above a high threshold if and only if the
underlying copula is a GPD copula, whose D-norm is the L1-norm.

Also, in higher dimensions, a GPD copula

C(c) = 1 − ‖(1 − c1, . . . , 1 − cd)‖1, c0 ≤ c ≤ (1, . . . , 1) ∈ R
d ,

whose D-norm is the L1-norm yields no exceedance P(U > u) = 0 above a high threshold u

close to (1, . . . , 1). This is immediate from the additivity formula.
In dimension d ≥ 3, however, the L1-norm is no longer the only D-norm that entails no

exceedance above a high threshold. Take, for example, the angular measure µ which puts equal
weight 1 on each of the set of d points{(

0,
1

d − 1
, . . . ,

1

d − 1

)
, . . . ,

(
1

d − 1
, . . . ,

1

d − 1
, 0

)}

=
{

1

d − 1

∑
j≤d, j �=i

ej , 1 ≤ i ≤ d

}
⊂ Sd.

The corresponding D-norm is

‖x‖D =
∫

Sd

max
k≤d

(|xk|uk)µ(du)

=
∑
i≤d

∫
{(1/(d−1))

∑
j≤d, j �=i ej }

max
k≤m

(|xk|uk)µ(du)

=
∑
i≤d

1

d − 1
max

j≤d, j �=i
|xj |

= 1

d − 1

∑
i≤d

(
max

j≤d, j �=i
|xj |

)
, x ∈ R

d .

Note that ‖ · ‖D = ‖ · ‖1 ⇔ d = 2.
Now choose a random vector U that follows the above GPD copula C(u) = 1 − ‖1 − u‖D ,

u0 ≤ u ≤ 1 ∈ R
d . Then we obtain, for u = u

∑
i≤m ei ∈ [u0, (1, . . . , 1)],

P(U > u) = 1 − P

(⋃
i≤m

{Yi ≤ u}
)

=
∑

∅�=T ⊂{1,...,d}
(−1)|T |−1

∥∥∥∥ ∑
i∈T

uei

∥∥∥∥
D

= 0,

where the final equation is established by induction.
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From the fact that

P(Uk ≤ 1 − c, k ∈ K) = 1 − c

∥∥∥∥ ∑
k∈K

ek

∥∥∥∥
D

for c close to 0, if U = (U1, . . . , Ud) follows an arbitrary GPD copula with D-norm ‖ · ‖D ,
we find that the characterization of

∑d
k=m pk = 0 in Proposition 6.1 provides the following

characterization of the case of no exceedance among Uk, k ∈ K ⊂ {1, . . . , d} above a high
threshold. Simply repeat its proof. By µ and ν, we denote the angular and exponent measures
corresponding to ‖ · ‖D .

Proposition 7.1. Suppose that the random vector U = (U1, . . . , Ud) follows a GPD copula
C with corresponding D-norm ‖ · ‖D . Then we have, for an arbitrary subset K ⊂ {1, . . . , d}
with at least two elements,

P(Uk > 1 − c, k ∈ K) = 0 for some c close to 0

⇐⇒
∑
T ⊂K

(−1)|T |−1
∥∥∥∥ ∑

i∈T

xiei

∥∥∥∥
D

= 0 for all x ≥ 0 ∈ R
d

⇐⇒
∑
T ⊂K

(−1)|T |−1
∥∥∥∥ ∑

i∈T

ei

∥∥∥∥
D

= 0

⇐⇒ µ
({

u ∈ Sd : min
i∈K

ui > 0
})

= 0

⇐⇒ ν
(

×
k∈K

(−∞, 0] ×
i �∈K

[−∞, 0]
)

= 0,

i.e. the projection νK := ν ∗ (πi, i ∈ K) of the exponent measure ν onto its components i ∈ K

is the null measure on (−∞, 0]|K|.
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