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COMMENTS ON THE SPINOR STRUCTURE 
OF SPACE-TIME* 

BY 

K. K. LEE 

ABSTRACT. A simpler proof of the theorem on the spinor struc­
ture of space-time is given. Some geometrical insights are provided. 

The definition and the implications of the existence of a spinor structure on a 
space-time* have been elucidated by Geroch [1]. By construction, he has estab­
lished that a necessary and sufficient condition for a non-compact space-time M to 
admit a spinor structure is that there exists on M a global system of orthonormal 
tetrads [1]. The same is true for a compact space-time M [2]. This short note 
provides a simpler proof of the theorem and some geometrical insights into the 
theorem are given. 

It is well-known that the space-time M possesses a spinor structure if and only 
if the second Stiefel-Whitney class of M9 w2(M), vanishes [3], where the q-th 
Stiefel-Whitney class is a characteristic cohomology class of HQ(M,Z2). The 
geometrical meaning for the condition wa(M)=0, for q=l, 2, 3, 4, is equivalent 
to the existence of a continuous field of orthogonal (4—(q— l))-frames over the q-
dimensional skeleton of M [5]. Consequently, saying that the space-time M admits 
a spinor structure is equivalent to claiming that an orthogonal triad can be placed 
at each point of every two-surface of M in a continuous way. To say that there 
exists on the space-time M a global system of orthogonal tetrads is tantamount to 
claiming that wQ(M)=0 for all q, q= 1, 2, 3, 4. It is then obvious that we only 
have to prove that if the space-time M admits a spinor structure, then there exists 
on M a global system of orthonormal tetrads. 

The q-th Stiefel-Whitney class of M is equal to the obstruction of the vector 
bundle f over M with Z2 coefficients [4]. But the obstruction 0a(|), is a charac­
teristic cohomology class of HQ(M, ^^(F)). For the bundle of orthonormal frames 
on M, the structure group is the proper Lorentz group, L0, which is homeomorphic 
to P 3 X Rz where P 3 is the 3-dimensional real projective space. Since the space-time 
M is orientable, we have w1(M)=0. w2(M)=0 because the space-time admits a 
spinor structure. 03(|) e H3(M, TT2(L0)), but 7r2(L0)=0, thus 03(f)=O. Conse­
quently w3(M)=0. For non-compact space-time M, i74(M)=0, thus w4(M)=0. 

* Partly supported by the National Science Foundation while the author was at Physics 
Department, Syracuse University, Syracuse, N.Y. 13210. 

* A space-time M is an orientable 4-dim differentiate manifold with a metric of Lorentz 
signature (—, 4-, + , +) . 
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If Mis a compact space-time, the Euler-Poincaré characteristic class of M vanishes 
[5, p. 203], thus w4(M)=0. The proof is completed. 

It is evident from the proof that the theorem is not true if the dimension of the 
space-time is greater than four. 
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