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Abstract

Optimality conditions via subdifferentiability and generalised Charnes-Cooper trans-
formation are obtained for a continuous-time nonlinear fractional programming
problem. Perturbation functions play a key role in the development. A dual prob-
lem is presented and certain duality results are obtained.

1. Introduction

Continuous-time programming originated from the bottleneck problems stud-
ied by Bellman [1]. Levinson [7] and Tyndall [14] established duality theo-
rems for continuous-time linear programming problems. Hanson and Mond
[5], Fair and Hanson [3], Kaul and Kaur [6], Singh [11, 12], Singh and Fair
[13] and several other authors considered the continuous-time nonlinear pro-
gramming problem and obtained optimality conditions and duality results.
Recently Zalmai [15-18] considered the following continuous-time nonlinear
programming problem:

fT

Maximise <f>{z) = f(z(t),t)dt
Jo

subject to g{z{t), t) < 0 almost everywhere in [0, T], z e Z

where Z° is a nonempty convex subset of the Banach space l£,[0, T], <f>
is a concave real valued function denned on Z° and g(z(t), t) = v(z)(t)
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230 S. Suneja et al. [2]

with v a function denned on Z° and taking values into the normed space
V™[0, T] and g is convex in its first argument, for all t in [0, T]. Zalmai
[15] obtained optimality conditions and duality results for the above problem
by defining a perturbation function and using its subgradients.

In [18] Zalmai presented a continuous-time analogue of a duality formu-
lation due to Craven and Mond [8, 9] for a class of homogeneous fractional
programming problems. Recently Zalmai [19] presented optimality and du-
ality theory for a class of continuous-time generalised (minmax) fractional
programming problems. However, in this work, Zalmai assumed differentia-
bility of functions involved and instead of using Charnes-Cooper type trans-
formation, a parametrisation approach was used.

In this paper, we obtain optimality conditions and duality results for a
general class of continuous-time nonlinear fractional programming via sub-
differentiability and generalised Charnes-Cooper transformation. The devel-
opment in Section 2 is analogous to the work of Schaible [10]; however the
main portion of the paper (Sections 3 and 4) is based on the works of Ge-
offrion [4] and Zalmai [15]. A perturbation function is defined in Section 3
(Definition 3.3), which plays a key role in the development. For convenience
of notation, we define also

Z = {z& Z°\g(z(t), t) < 0 almost everywhere in [0, T]}.

2. Continuous-time nonlinear fractional programming

We consider the following problem:

ff{z{t),t)dt
Maximise 4>{z) = ^ ^

' h(z(t),t)dt
0

subject to g(z(t), t) < 0 almost everywhere in [0, T] where z e Z ° ; Z°
and g are the same as in Section 1, - / , h are convex (in their first argu-
ment) real valued functions defined on £ ^ [ 0 , T] x [0, T] and f{z{t), t) >
0, h{z{t), t) > 0 for all z in Z° and t£[Q,T]. Nonnegativity of / is not
such a severe restriction. Since we are maximising, even the boundedness of
/ from below will produce a function that will be nonnegative. Here, by max-
imise (j>(z), we mean there exist z e l£,[0, T] such that <j)(z) = max<p(z)
and 4>(z) is finite.
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[3] Continuous-time fractional programming 231

We apply the generalised Charnes-Cooper transformation,

•-It
-If

T I " 1

h{{z),t)dt\ , (2.1)

T - 1

to Problem (FP) and the following transformed problem is obtained.

(FP)' Maximise f uf (^-, t\ dt

subject to ug ( - ^ , M < 0 almost everywhere in [0, T],

i
K > 0 ,

seLnJQ,T], ueR.

In (2.2)' we have weakened the constraint from equality in (2.2) to in-
equality in order to have the feasible set of (FP)' be convex. However, for
our development to work, we need u to be strictly positive rather than being
nonnegative, making the feasible set of (FP)' to be nonclosed. This in turn
causes some optimality theory to be inapplicable to our problem. Let

l= l(s,u)\seLn
oo[0,T), ueR, u= h{z{t),t)dt\

s(t) = uz(t),
' ) •

= {s,u)\s€Llo[0,T], U€R, u>0,s/ueZ0};
R+ = the set of positive reals.

LEMMA 2.1. W is a convex subset of L^[0 , T] x R.

PROOF. Let (s , , « , ) , (s2, u2) € W, 0 ^ A ̂  1. Then M, > 0, u2 > 0 ,
5,/M, e Z ° , s2/u2 G Z ° . Therefore for 0 ̂  X ̂  1, (1 -X)ux +Xu2 > 0 , and

(I -X)sl+Xs2 (1-Aw, 5, Xu2 s2

( 1 - A ) M , + XU2 (1 - X)ux +AM 2 M, (1 - X)ut+ Xu2 u2
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where

, 2

, + p 2 = 1 , and 0 < p t < 1, i = 1, 2. Hence W is a convex set.
Now we proceed to show that the function y/{: W -» /? defined by

is a concave function in its first argument, and the functions vx\W
Vx

m[0, T] defined by

and v2: W —» i? defined by

are convex functions in their first arguments.

LEMMA 2.2. The function y/}: W -> R defined by

,u)= / uf{s{t)lu,t)dt
Joto

is a concave function.

P R O O F . Let ( s , , « , ) e W, {s2,u2)eW, 0 < A < 1 .
Then u{ > 0 , «2 > 0, sjul e Z°, s2/u2 e Z° and

= ^ , ( (1 — A)st +ks2, (1 - A ) M , +A«2)

[ - A)M. 5,(0 AM2 SM)

M, ( 1 - A ) M , + A M 2 M2

1 5 1 , M , ) + A V / 1 ( 5 2 , M2).

Hence ^, is a concave function in its first argument.
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LEMMA 2.3. The function vx: W -> V™[0, T] defined by v}(s, u)(t) =
ug{s(t)/u, t) and v2: W -* R defined by v2(s, u) = /o

r uh(s-&, t)dt- 1
are convex functions in s.

The proof of the above lemma is very similar to the proof of Lemma 2.2.
In the next lemma we shall show that Problem (FP)' obtained from (FP)

by means of the generalised Charnes-Cooper transformation is equivalent to
(FP) in the sense of having optimal solutions.

LEMMA 2.4. Problem (FP) has an optimal solution if and only if (FP)' has
one and the optimal solutions of (FP) and (FP)' are connected by (2.1) and
(2.2).

PROOF. Let (FP) have an optimal solution z*(t). We assert that

u = \j\{z\t),t)d}[ , (2.3)

(2.4)

is an optimal solution of (FP) ' . The feasibility of (s*(t), «*) for Prob-
lem (FP)' clearly follows from the feasibility of z*(t) for Problem (FP).
Let (s(t), u) be any other feasible solution for (FP)' then z(t) = s(t)/u is
feasible for (FP) and

fTf(z\t),t)dt fTf(z(t),t)dt
Jo > Jo

/ h(z*(t),t)dt f h(z(t),t)dt
o Jo

which implies that

flo

because of the feasibility of (s(t), u) and the assumption that f(z(t), t) > 0
for all z e Z ° . On using (2.3) and (2.4), we get

which shows that (s*(t), «*) is an optimal solution of (FP) ' ; conversely let
Problem (FP)' have an optimal solution (s*(t), u*). We shall show that
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z*(t) = s*(t)/u* is an optimal solution of (FP). Clearly z*(t) is feasible for
Problem (FP). Let z{t) be any other feasible solution for (FP). Then (2.1)
and (2.2) give a feasible solution (s(t), u) of (FP)' and

The last inequality when combined with (2.1) and (2.2) gives

fTf(z*(t),t)dt (Tf{z{t),t)dt
Jo •> Jo

fTh{z*{t),t)dt fTh{z{t),t)dt
Jo Jo

because of the feasibility of (s*(t), if) for (FP)' and the assumption that
f(z(t) ,t)>0 for all z e Z°. Hence z*(t) is an optimal solution of (FP).
Thus Problems (FP) and (FP)' are equivalent with respect to their sets of
optimal solutions.

REMARK 2.1. We assume that supzeZ{f{z(t), t)} > 0.

3. Optimality conditions

Following Zalmai [15], we define optimality conditions, optimal multipli-
ers for (FP), perturbation function and stability for (FP)'.

DEFINITION 3.1 (Optimality conditions). A pair (z, W) e L^JO, T] x
Z,^[0, T], z e Z ° , is said to satisfy the optimality conditions for Prob-
lem (FP) if and only if

(i) z maximises

fTf(z(t),t)dt T
^ / w(t)g(z(t), t)dt

JofTh(z(t),t)dt
Jo

over Z° ,
(ii) W(t)g(z(t), t) = 0 almost everywhere in [0,T],

(iii) w(t) > 0 almost everywhere in [0, T],
(iv) g(z(t) ,t)<0 almost everywhere in [0, T].

DEFINITION 3.2 (Optimal multiplier). An element W e ^ [ 0 , T] is said to
be an optimal multiplier for Problem (FP) if and only if (z, W) satisfies the
optimality conditions for some z e Z° C L" [0, T].
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[7] Continuous-time fractional programming 235

DEFINITION 3.3. We say p: V{
m[0, T]

Problem (FP)' if and only if

p(y)= sup
(s,u)€W

R is a perturbation function for

- ^ , t\ < y(t) almost everywhere

m[0,T]foTyeVi
m[0,T]

fT /s(t) \and / uh — , t) dt < 1
Jo \ u /

and p{y) = -oo if there does not exist (s, u) in W such that g(s(t)/u, t) <
y(t) almost everywhere in [0, T] and /o

r uh(s(t)/u, t) dt < 1. It is instruc-
tive to note that only one of the constraints of (FP)' is perturbed. Perturbing
the second integral constraint involving h is still open for investigation. It
is easy to see that p{-) is a nondecreasing function.

DEFINITION 3.4 (Subgradient of perturbation function). If the perturbation
function p is finite at y e F,m[0, T], we say that w € i ^ [ 0 , T] is a
subgradient of p at y if and only if

P(y) -P(y)< f w(t)(y(t) -y(t)) dt for all y e F / > , T].
Jo

We let

Y = yeV{
m[0,T]

g(—,t\< y(t) almost everywhere in [0, T],

f uh (S-^- ,t\dt<\ for some (s, u) e W

REMARK 3.1. We remark that the variable u, being strictly positive, is
dropped from the constraint ug(s(t)/u, t) < 0 without affecting the fea-
sible set of (FP)'. This helps the construction of the set Y to be better
adopted for the investigation to follow.

DEFINITION 3.5 (Stable problem). We say that Problem (FP)' is stable if p{0)
is finite and there exists a positive number M such that p(0) >
for all y e Y.

LEMMA 3.1. (i) The set Y is convex.

(ii) The Junction p is concave on Y.

PROOF. This can be established along the lines of the finite-dimensional case
as presented in Geoffrion [4].
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LEMMA 3.2. Suppose

(1) Problem (FP) has an optimal solution;
(2) ffieOOJ],

Then w is an optimal multiplier for (FP) if and only if W e dp(0) where p
is perturbation function of (FP)' and dp{0) is the set of all subgradients of
p at 0.

PROOF. Suppose w is an optimal multiplier for (FP). Then by Definition
3.2, there exists a z e Z ° C ^ [ 0 , T] such that (z, w) satisfies optimality
conditions (i)-(iv) of Definition 3.1. By conditions (i) and (ii) of Definition
3.1, we have

[Tf(z(t),t)dt [Tf(z(t),t)dt T
Jo < Jo |_ /

jTh{z{t),t)dt [Th(z(t),t)dt Jo

Jo Jo

w(t)g(z(t), t) dt for all z e Z°.
o

(3.1)
Let a = [J0

Th(z(t), t)dtrl, s(t) = [J0
Th(z(t), t)dt]-lz{t). Then (s, a) e

W. For (s, u) e W, s/u € Z° and by (3.1),

Now proceeding as in Zalmai [15], it can be shown that W e dp(0).
Conversely suppose w e dp(0). Further suppose that z is an optimal

solution of (FP). Then

= \j {z{t), t)dt\ , s(t) = \j\(z(t),t)dt] z{t) (3.2)

is an optimal solution of (FP)' by Lemma 2.4. Now we shall show that
(z , ID) satisfies optimality conditions (i)-(iv) of Definition 3.1 and then in-
voke Definition 3.2.

The conditions (ii), (iii) and (iv) of Definition 3.1. can be proved on similar
lines as given by Zalmai [15]. To establish condition (i), we let y{t) =
g(s(t)/u, t) = v(s, u)(t) in the subgradient inequality

P(y) < P(O) + I xD{t)y{t) dt for all y G K,w[0, T], (3.3)
Jo
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which holds as w G dp(0). Therefore (3.3) becomes

p(v(s, u)) < p(0)-

= [ nf(S-^-,t)dt+f w(t)g(^,t)dt for ail (s, u) <E W.
Jo \ u ) Jo \ u J (34)

For z G Z ° , let u = [J0
Th(z(t), t)dt]~l and s(t) = [f0

Th(z(t), t)dt]~lz(t).
Then (s, u) e W and uh(s{t)/u, t) = 1. Therefore by Definition 3.3 (of

LTf(z(t),t)dt
-Jf <P{g(*{t),t)) for all ZGZ° . (3.5)
/ h{z(t),t)dt
Jo

Combining (3.2), (3.4) and (3.5), we have

W(t)g(z(t),t)dt.
[Tf(z(t),t)dt [Tf(z{t),t)dt

JQ ^ /̂o

/ h(z(t),t)dt f h(z(t),t)dt Jo

Jo Jo

By using condition (ii) of Definition 3.1, it can be easily seen that condition
(i) holds.

The next result displays a relationship between stability and optimal mul-
tiplier functions, which needs the following lemma proved by Zalmai [15].

LEMMA 3.3. Suppose F is a concave real-valued function defined on a convex
set X of a real normed space with norm || • ||. Then F has a subgradient at
X if and only if there exists a positive constant M such that F(x) - F(x) <

- S | | for all x&X.

THEOREM 3.1. Suppose Problem (FP) has an optimal solution. Then

(a) an optimal multiplier for (FP) exists if and only if (FP)' is stable,
(b) w e L^[0, T] is an optimal multiplier for (FP) if and only if w G

dp(0).

PROOF, (a) The proof follows by Lemma 3.1, Lemma 3.2, Lemma 3.3, Def-
inition 3.5 and the fact that p(0) is finite because of the existence of an
optimal solution of (FP) and therefore of (FP) ' . Part (b) is just a restate-
ment of the conclusion of Lemma 3.2.
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The next two theorems exhibit the equivalence of the saddlepoint of the
Lagrangian function L and the optimality conditions for problem (FP) where

is defined by

ff{z{t),t)dt T
L(z,w) = ̂ f / w(t)g(z(t),t)dt.

h(z(t),t)dt Jo

Jo

DEFINITION 3.6 (Saddlepoint). Suppose z e Z° and W e £™[0, T], W(t) >
0 almost everywhere in [0,T]. We say (z, w) is a saddlepoint of the
Lagrangian function L if and only if

L(z, w) < L(z, W) < L(z, w)

for all w e L™[0, T], w(t) > 0 almost everywhere in [0, T] and all z e

THEOREM 3.2. A pair (z, w) is a saddlepoint of the Lagrangian function L
if and only if it satisfies the optimality conditions (i)-(iv) of Definition 3.1.

PROOF. Suppose (z, w) satisfies the optimality conditions (i)-(iv) of Defi-
nition 3.1. Then by condition (i), we have

L(z, W) < L(z, W) for all zeZ°. (3.6)

On using conditions (ii) and (iv), we get

L(z, w) < L(z, iB) for all w e L^JO, T],

w(t) > 0 almost everywhere in [0, T\.

Combining (3.6) and (3.7), it follows that (z, w) is a saddlepoint of the
Lagrangian L.

Conversely, suppose (z, W) is a saddlepoint of the Lagrangian L. Then

W(t) > 0 almost everywhere in [0, T] (3.8)

and
L(z, w) < L(z, W) < L(z, w) (3.9)

for all w e £™[0, T], w(t) > 0 ahnost everywhere in [0, T] and for all
Z 6 Z ° .
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The condition (i) of Definition 3.1 follows from the first inequality in (3.9)
and condition (iii) follows from (3.8). The second inequality in (3.9) gives

I
T
[w(t)-w(t)]g(z(t),t)dt<0

0
for all w(t) > 0 almost everywhere in [0, T\.

The condition (iv) of Definition 3.1 now follows on similar lines as given by
Zalmai [15]. Now, we know that conditions (iii) and (iv) of Definition 3.2
hold, therefore

W(t)g(tz(t), t) < 0 almost everywhere in [0, T]. (3.10)

If strict inequality holds in (3.10) over a subset D of [0, T] with positive
measure then

L(z, w) > L(z, 0)

which contradicts the hypothesis that (z, w) is a saddlepoint of the La-
grangian L. Thus w(t)g(z(t), t) = 0 almost everywhere in [0, T] which
is condition (ii). Hence (z, w) satisfies the optimality conditions (i)-(iv) of
Definition 3.1.

THEOREM 3.3 (Kuhn Tucker Saddlepoint Theorem). Suppose Problem (FP)'
is stable. Then z e Z° is an optimal solution of (FP) ifand only ifthere exists
W G £™[0, T], w(t) > 0 almost everywhere in [0, T] such that (z, w) is
a saddlepoint of the Lagrangian L.

PROOF. Suppose z is an optimal solution of (FP). Since (FP)' is stable;
therefore by Theorem 3.1, part (a), there exists an optimal multiplier W e
L^[0 , T] which means that (z , w) satisfies the optimality conditions (i)-
(iv) of Definition 3.1. Hence by Theorem 3.2, (z, w) is a saddlepoint of
the Lagrangian L. Conversely, suppose (z, w) is a saddlepoint of the La-
grangian L. Then by (3.8) condition (iii) holds and by (3.9) conditions (ii)
and (iv) of Definition 3.1 hold as seen in Theorem 3.2.

The condition (iv) shows that z(t) is a feasible solution of (FP) and the
first inequality of (3.9) when combined with (3.8) and condition (ii) gives

fTf(z(t),t)dt ff{z{t),t)dt
^Y < ̂  for every feasible solution z of (FP).
f h(z(t),t)dt f h(z(t),t)dt

Jo Jo

Hence z is an optimal solution of (FP).
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4. Duality

[12]

We associate the following dual problem with Problem (FP)

(DFP) Minimise y/(w) subject to w(t) > 0 almost everywhere in [0, T]

where

y/{w) = sup
/ f{z(t),t)

Jo
dt

h(z(t),t)dt

rT

- / w(t)g(z(t),t)dt
Jo

and w 6i™[0, T].
Let Z denote the set of all feasible solutions of (FP) and Dz denote the

set of all feasible solutions of (DFP). We prove the weak and strong duality
results for (FP) and (DFP).

THEOREM 4.1. Suppose z e Z and w e Dz . Then y/{w) > <f>{z).

PROOF. By the definition of y/,

y/(w) = Sup
fTf(z(t),t)dt T

K /
[ h(z(t)t)dt J°

w(t)g(z(t),t)dt

h(z(t),t)dt

fTf(Z(t),t)dt T
>^Y / w(t)g(z(t),t)dt for all ze

f h(z(t),t)dt Jo

Jo

fTf(z(t),t)dt
for all z G Z

h(z(t),t)dt

The last inequality follows because for every z e Z , g(z(t), t) < 0 almost
everywhere in [0, T] and w e Dz gives w(t) > 0 almost everywhere in
[0 ,71 .

COROLLARY 4.1. Suppose there exist z e Z and w e Dz such that i//(W) —
<j>(z). Then z and w are optimal solutions of Problems (FP) and (DFP)
respectively.
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THEOREM 4.2. Suppose Problem (FP) has an optimal solution z. Then w e
£^,[0> T] is an optimal solution of the dual Problem (DFP) with tf>{2) -
V(tD) if and only if W e dp{0) where p is the perturbation function of the
transformed Problem (FP) ' .

PROOF. Suppose w e dp(Q). Then by arguing in a manner similar to Zalmai
[15], we can establish that ili(t) > 0 almost everywhere in [0, T], i.e. w e
Dz. Since z is an optimal solution of (FP), therefore by Lemma 2.4, with
a = [Jo h { z ( t ) , t) dt]~l , 5{t) = ( J 0

T h { z { t ) , 0 dt]~x z(t) ,{s,u) i s a n o p t i m a l
solution of (FP) ' . Now proceeding as in the converse of Lemma 3.2, we get

fTf(z{t),t)dt r fTf{z{t),t)dt
^j / W(t)g(z(t), t)dt< ^y for all z G Z ,

f h{z{t),t)dt Jo f h(z(t),t)dt
Jo

which gives y/{w) < 4>{z). By Theorem 4.1, if/(W) > 0 (z) . It now follows
from Corollary 4.1 that w is an optimal solution of the dual problem. Con-
versely suppose tJD e £^,[0, T] is an optimal solution of the dual problem
(DFP) with if/(m) = <f>(2). Since 2 is an optimal solution of (FP), therefore
by Lemma 2.4, with

\h(z(t) , 0 dt\ 2(0 , tt = I £ h{2(t) , t) dt
- 1

(5, ft) is an optimal solution of (FP) ' . By the definition of />(•), p{0) =
4>{2) = y{w) which gives that

fTf{z{t),t)dt T

K / w(t)g(z(t),t)dt<p(O). (4.1)
/ h{z{t),t)dt Jo

Jo

Therefore for all (s, u) e W, ye Vy
m[0, T],

g(s(t)/u, t) < y(t), / uh{s{t)/u ,t)dt<\,
Jo

we have (by (4.1))

) ^ w ( t ) y ( t ) d t .^ f

h{z{t),t)dt
Jo
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Hence

p(y)<p(O)+ I w{t)y{t)dt. (4.2)
Jo

Therefore by (4.2), and in view of the fact that p{y) = — oo if there exist no
(s, M) e W such that

P(y) < P(P) = I w{t)y{t) dt for all y e F,m[0, T].
Jo

Hence w e dp(0).

THEOREM 4.3. Suppose

(1) p(0) is finite,
(2) W€ dp(0).

77ie« z 6 ^£j[0, T] w an optimal solution of the primal problem (FP)
if and only if (z, W) satisfies the optimality conditions (i), (ii) and (iv) of
Definition 3.1.

PROOF. Suppose z is an optimal solution of the primal problem (FP). Then
by Theorem 3.1 and Definition 3.2 we see that (z, w) satisfies condition (i),
(ii) and (iv) of Definition 3.1.

Conversely suppose (z, w) satisfies conditions (i), (ii) and (iv) of Defini-
tion 3.1. Then condition (iii) of Definition 3.1 is satisfied as shown by Zalmai
[15]. Hence by Theorem 3.3, (z , fi) is a saddlepoint of the Lagrangian L.

Also W e dp(0) gives that Problem (FP)' is stable. Hence by Theorem
3.3, z is an optimal solution of (FP).

THEOREM 4.4. Suppose Problem (FP)' is stable. Then

(1) Problem (DFP) has an optimal solution.
(2) The optimal values of Problems (FP) and (DFP) are equal.
(3) ID e £™[0, T] is an optimal solution of Problem (DFP) if and only

if w e dp(0)
(4) Every optimal solution W of Problem (DFP) characterises the set of

all optimal solutions (if there are any) of Problem (FP) as maximisers of

fTf(z(t),t)dt T
^ / W(t)g((t),t)dt

h(z(t),t)dt J0

Jo
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over Z ° which also satisfy the constraints g(z(t) ,t)<0 almost everywhere
in [0, T] and wg(z(t),0 = 0 almost everywhere in [0,T].

PROOF. Since Problem (FP)' is stable, p(0) is finite. By Lemma 3.1 and
Lemma 3.3, p has a subgradient w at y = 0 . Since p(0) exists, Problem
(FP)' has an optimal solution and consequently Problem (FP) has an optimal
solution z. Then by Theorem 4.2, conclusions (1), (2) and (3) hold. The
conclusion (4) follows from (3) and Theorem 4.3.
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