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Abstract

Our main result states that whenever we have a non-Euclidean norm ‖ · ‖ on a two-dimensional vector
space X, there exists some x , 0 such that for every λ , 1, λ > 0, there exist y, z ∈ X satisfying ‖y‖ = λ‖x‖,
z , 0 and z belongs to the bisectors B(−x, x) and B(−y, y). We also give several results about the geometry
of the unit sphere of strictly convex planes.
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1. Introduction

In a normed linear space (X, ‖ · ‖), a vector x is said to be isosceles orthogonal
to a vector y (denoted by x ⊥I y) if ‖x − y‖ = ‖x + y‖. Isosceles orthogonality was
introduced by James in [6]. Since then, several papers and surveys have studied
properties related to the geometric structure of the space in the light of that notion
of orthogonality, and various characterisations (for example, for strict convexity)
have been obtained. Two interesting surveys on this topic are [2] and [9], and the
monograph [10] gives further background.

In this paper, (X, ‖ · ‖) will denote a two-dimensional normed space (usually referred
to as a Minkowski plane), and S X and BX will stand for the unit sphere and the closed
unit ball, respectively. Since we are dealing with normed spaces, BX is always a planar
convex body centred at the origin and S X coincides with its boundary. The segment
joining two points x, y will be denoted by [x, y]. As we will deal with segments,
intervals and two-dimensional vectors, we need to determine the meaning of (x, y).
Throughout the paper, this will denote a vector in X. Of course, we will need to
have a basis {e, v} fixed previously, so that (x, y) means xe + yv. For open intervals
(or segments) we will use the notation ]x, y[, and for semiopen intervals (segments)
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we will write [x, y[ and ]x, y]. For the linear span of a pair of vectors x, y ∈ X we will
use 〈x, y〉.

We will utilise the concept of the bisector of the segment joining two points. For
x, y ∈ X, the bisector of [x, y] is defined as follows (see, for example, [2–5, 8]):

B(x, y) = {z ∈ X : ‖x − z‖ = ‖y − z‖}.

In Section 2 we prove Proposition 2.1, stated here in a slightly different way.

Proposition 1.1. A norm ‖ · ‖ on X is strictly convex if and only if for every nonzero
z ∈ X there exists, up to ±1, exactly one vector which is isosceles orthogonal to z in S X .

This solves in the negative the following conjecture, proposed by Alonso, Martini
and Wu [2, Conjecture 5.3.], with a different approach to the one used to give the
solution that can be found in [1, Proposition 5] combined with [7, Corollary 2.5].

Conjecture 1.2. In any non-Euclidean Minkowski plane X, there exist x, y ∈ S X , with
x , ±y, such that B(−x, x) ∩ B(−y, y) , {0}.

As far as we know, the if-and-only-if statement of our Proposition 2.1 cannot be
found in the literature.

Section 3 is devoted to the main result (Theorem 3.2) in our paper. We propose the
following characterisation of Euclidean normed planes.

Theorem 1.3. The norm ‖ · ‖ is not Euclidean if and only if, for some x , 0 and for each
λ∈ (0,+∞)\{1}, there is a y such that ‖y‖=λ‖x‖, 〈x, y〉= X and B(−x, x)∩ B(−y, y), 0.

Remark 1.4. The definitions of isosceles orthogonality and bisectors given above
imply the equivalences z ∈ B(−x, x) if and only if x ⊥I z if and only if x ∈ B(−z, z).

It is easily checked that bisectors enjoy a certain property of linearity:

B(λx + z, λy + z) = z + λB(x, y) for all x, y, z ∈ X and for all λ ∈ R.

Therefore, for any a, b ∈ X,

B(a, b) =
a + b

2
+
‖a − b‖

2
B
( a − b
‖a − b‖

,
b − a
‖b − a‖

)
,

so the geometric properties of bisectors can be determined by careful analysis of
properties of bisectors of the type B(−x, x), with x ∈ S X .

2. Side results

We will prove that [2, Conjecture 5.3] is false by proving Proposition 2.1. One
implication can be seen in [1, Proposition 5], while the other is proven in [7,
Corollary 2.5]. However, our proof of Proposition 2.1 is different and more geometric
than the earlier proofs.

Proposition 2.1. Let (X, ‖ · ‖) be a normed plane. Then it is strictly convex if and only
if B(−x, x) ∩ B(−y, y) = 0 for every linearly independent pair x, y ∈ S X .
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Remark 2.2. As we have noted in Remark 1.4, every bisector is an affine
transformation of a B(−x, x) for some x ∈ S X . This readily implies that the following
statements are equivalent.

• There exists λ > 0 such that B(−x, x) ∩ B(−y, y) = 0 for linearly independent
x, y ∈ λS X .

• B(−x, x) ∩ B(−y, y) = 0 for every linearly independent pair x, y ∈ S X .
• B(−x, x) ∩ B(−y, y) = 0 for every λ > 0 and linearly independent x, y ∈ λS X .
• B(z − x, z + x) ∩ B(z − y, z + y) = z for every λ > 0, z ∈ X and every linearly

independent pair x, y ∈ λS X .
• B(x, x′) ∩ B(y, y′) = (x + x′)/2, whenever ‖x − x′‖ = ‖y − y′‖ and x + x′ = y + y′.

Remark 2.3. Our problem is to determine what happens when 0 , z ∈ X, x, y ∈ S X

are such that z ∈ B(−x, x) ∩ B(−y, y) and x and y are linearly independent. This is
equivalent to ‖z − x‖ = ‖z + x‖ and ‖z − y‖ = ‖z + y‖ or, with λx = ‖z − x‖−1, λy =

‖z − y‖−1, to
λx(z + x), λx(z − x), λy(z + y), λy(z − y) ∈ S X .

We have, then, two pairs of points in the sphere, say

a = λx(z + x), a′ = λx(z − x); b = λy(z + y), b′ = λy(z − y),

and two positive values (not necessarily different) α, β, such that

αz = a + a′ = λx(z + x + z − x) = 2λxz, βz = b + b′ = λy(z + y + z − y) = 2λyz.

In particular, α = 2λx = ‖a + a′‖/‖z‖ and β = 2λy = ‖b + b′‖/‖z‖. In the statement we
ask for x and y to be linearly independent, and we also have

a − a′ = λx(z + x − (z − x)) = 2λxx, b − b′ = λy(z + y − (z − y)) = 2λyy,

so a − a′ and b − b′ must also be independent. From these last equalities, we obtain
2λx = ‖a − a′‖ and 2λy = ‖b − b′‖, so combining with the previous statements, we
obtain ‖a − a′‖ = ‖a + a′‖/‖z‖ and ‖b − b′‖ = ‖b + b′‖/‖z‖, or

‖a + a′‖
‖a − a′‖

= ‖z‖ =
‖b + b′‖
‖b − b′‖

.

Proof of the easy implication of Proposition 2.1. Suppose ‖ · ‖ is not strictly convex.
Then there is some segment [c, c′] ⊂ S X . Take

a = 1
4 (3c + c′), a′ = 1

4 (−3c′ − c), b = c, b′ = − 1
2 (c + c′).

It is straightforward that a, a′, b, b′ ∈ S X , that 0 , z = 1
2 (b + b′) = 1

2 (a + a′), and also
that a − a′ and b − b′ are independent. Also, ‖a − a′‖ = ‖b − b′‖ = 2, and this implies
that ‖a + a′‖/‖a − a′‖ = ‖b + b′‖/‖b − b′‖. Observe that 0 , z ∈ B(−x, x) ∩ B(−y, y),
with x = a − z and y = b − z. �
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Proof of the other implication of Proposition 2.1. For the remainder of this section,
let us suppose that ‖ · ‖ is strictly convex.

We will also assume that 0 , z ∈ X, a, a′, b, b′ ∈ S X , β ≥ α > 0 are such that

a + a′ = αz, b + b′ = βz,
‖a + a′‖
‖a − a′‖

=
‖b + b′‖
‖b − b′‖

,

and a − a′ and b − b′ are linearly independent.
We will split the proof into several elementary results that may be useful for other

purposes.
Let us fix some notation. We consider X endowed with the basis {z, (a − a′)/2}, so

that a = (α, 1), a′ = (α,−1), δ = 2/‖a − a′‖ and d = (0, δ), d′ = (0,−δ), with a, a′, d, d′ ∈
S X . Of course, δ > 1. The lines r+ and r− defined, respectively, by (0, δ), (α, 1) and
(0,−δ), (α,−1) are given by r+(x) = δ + (1 − δ)x/α, r−(x) = −δ + (δ − 1)x/α, and the
only point that their graphs have in common is c = (δα/(δ − 1), 0). So

d = (0, δ) = (0, r+(0)), d′ = (0,−δ) = (0, r−(0)),
a = (α, 1) = (α, r+(α)), a′ = (α,−1) = (α, r−(α)),
c = (δα/(δ − 1), 0) = (δα/(δ − 1), r+(δα/(δ − 1))).

Lemma 2.4. Consider the convex hull conv{d, d′, c} and the vertical line {α} × R. The
following symmetric inclusions hold:

conv{d, d′, c} ∩ (]0, α[ × R) ⊂ int(BX),
BX ∩ (]α,∞[ × R) ⊂ int(conv{d, d′, c}).

Proof. Observe that

conv{d, d′, c} ∩ (]0, α[ × R) = conv{d, d′, a, a′} ∩ (]0, α[ × R),
conv{d, d′, c} ∩ (]α,∞[ × R) = conv{a, a′, c} ∩ (]α,∞[ × R).

For the first part, take x = (x1, x2) ∈ conv{a, a′, d, d′}, with x1 ∈ ]0, α[. We will show
that x ∈ int(BX). Since

x ∈ conv{(0, r+(0)), (0, r−(0)), (α, r+(α)), (α, r−(α))},

we have r−(x1) ≤ x2 ≤ r+(x1). As ‖ · ‖ is strictly convex, both (x1, r+(x1)) and
(x1, r−(x1)) belong to the interior of BX . As (x1, x2) is a convex combination of
(x1, r+(x1)) and (x1, r−(x1)), we also have x ∈ int(BX).

For the second part, let x = (x1, x2) ∈ BX , with x1 > α. Suppose that x2 ≥ r+(x1) =

δ + (1 − δ)x1/α. Then the strict convexity of ‖ · ‖, ‖x‖ ≤ 1 and ‖d‖ = 1 imply that

1 >
∥∥∥∥∥ αx1

x +
x1 − α

x1
d
∥∥∥∥∥ =

∥∥∥∥∥ αx1
(x1, x2) +

x1 − α

x1
(0, δ)

∥∥∥∥∥
=

∥∥∥∥∥(α, αx2

x1

)
+

(
0, δ −

αδ

x1

)∥∥∥∥∥ =

∥∥∥∥∥(α, δ +
x2 − δ

x1
α
)∥∥∥∥∥.
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Now
δ +

α(x2 − δ)
x1

≥ δ +
α

x1

(
δ + (1 − δ)

x1

α
− δ
)

= 1,

which implies that (α, 1) is a convex combination of (α,−1) and (α, δ + (x2 − δ)α/x1).
But ‖(α, 1)‖ = ‖(α,−1)‖ = 1 and ‖(α, δ + (x2 − δ)α/x1)‖ < 1, a contradiction. The case
x2 ≤ r−(x1) is analogous. �

Proposition 2.5. For the ball (α, 0) + δ−1BX we have essentially the same symmetric
inclusions:

BX ∩ (]α,∞[ × R) ⊂ (α, 0) + δ−1 int(BX),
((α, 0) + δ−1BX) ∩ (]−∞, α[ × R) ⊂ int(BX).

Proof. Let x = (x1, x2) ∈ BX be such that x1 > α. We may suppose x2 ≥ 0. Instead of
showing that x belongs to the interior of (α, 0) + δ−1BX , we shall see that

(δx1 − δα, δx2) ∈ int(BX).

As (x1, x2), (0, x2) and (0, δ) belong to BX , it suffices to show that

(δx1 − δα, δx2) ∈ conv{(x1, x2), (0, x2), (0, δ)}.

For this, we need δx1 − δα ∈ ]0, x1[. This is equivalent to x1 < αδ/(δ − 1), and this
inequality is true since c = (αδ/(δ − 1), 0) is the only point in r+ ∩ r−.

Since δx2 > x2, the only other thing we need to show is that (δx1 − δα, δx2) lies
below the line defined by (0, δ) and (x1, x2). This line is the graph of the function
y(t) = x2t/x1 + δ − δt/x1, and so we need

δx2 < x2(δx1 − δα)/x1 + δ − δ(δx1 − δα)/x1.

After some elementary computations, we see that this inequality is equivalent to

0 < x1 − x2α + αδ − δx1.

To finish the proof of the first part we only need to observe that the second part of
Lemma 2.4 implies that (α, 1) is above the line defined by (0, δ) and (x1, x2), so that
1 > x2α/x1 + δ − δα/x1. This is also equivalent to 0 < x1 − x2α + αδ − δx1, and so we
are done.

For the second inclusion, take y = (y1, y2) ∈ (α, 0) + δ−1S X , with y1 < α, and y′ =

(y′1, y
′
2) = (2α − y1,−y2) symmetric to y with respect to (α, 0), and suppose that y ∈ S X .

As both (α, 1) and (α, 0) + δ−1(α, 1) belong to ((α, 0) + δ−1S X) ∩ r+, there are no more
points in this intersection, and this means that (α, 0) + δ−1S X lies below r+ outside
the interval [α, α(1 + δ)]. As S X lies above this line in [0, α], we get y1 < 0. Now
y′ ∈ (α,0) + δ−1S X and y′1 = 2α − y1 > 2α together imply |y2| = |y′2| < δ

−1 < 1, and from
this we get y1 < −α. We also have ‖(y1 − α, y2)‖ = δ−1, and so

(y1 − α, y2), (α, y2) ∈ int(BX), (y1, y2) ∈ S X and (y1, y2) ∈ [(y1 − α, y2), (α, y2)],

a contradiction. �
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Lemma 2.6. With the previous notation, β > α implies ‖b − b′‖ < ‖a − a′‖.

Proof. We may suppose that ‖z‖ = 1. Recall that, in the basis we are dealing with,
1
2 (a + a′) = (α, 0) and 1

2 (b + b′) = (β, 0).
Let b = (b1, b2), b′ = (b′1, b

′
2) be the expressions in coordinates of b, b′ in the basis

{z, (a − a′)/2}. It is clear that (b′1,b
′
2) = (2β − b1,−b2), and we may suppose b1 ≥ β > α.

Then, with β′ = r+(β) < r+(α) = 1, Lemma 2.4 implies

b ∈ BX ∩ ([β,∞[ × R) ⊂ [(β, 0) + β′BX] ∩ ([β,∞[ × R),

so ‖b − (β, 0)‖ < ‖a − (α, 0)‖, and we are done. �

Lemma 2.7. Let z ∈ int(BX)\{0}. There exists exactly one pair x, x′ ∈ S X such that
z = 1

2 (x + x′).

Proof. For the existence, we will define some auxiliary functions. For t ∈ [0, 2π],
first let x(t) be defined as the only point in S X ∩ {λ(cos(t), sin(t)) : λ ∈ ]0,∞[}. Then
take z ∈ int(BX)\{0} and define f (t) as ‖z − y(t)‖, where y(t) is the only point in
S X ∩ {z + λx(t) : λ ∈ ]0,∞[}. It is clear that all these functions are continuous and,
moreover, f (2π) = f (0). So there exists t ∈ [0, π[ such that f (t + π) = f (t). For this t,
we have z = 1

2 (y(t) + y(t + π)).
For the uniqueness, suppose that we have four different points x, x′, y, y′ ∈ S X such

that x + x′ = y + y′ = 2z. Take as a basis {z, 1/2(x − x′)}, so that x + x′ = y + y′ = (2, 0),
x = (1, 1), x′ = (1,−1) and y = (y1, y2), y′ = (y′1y′2). As usual, δ = 1/‖(0, 1)‖.

Now suppose y1 > 1. By the first inclusion in Proposition 2.5, y ∈ S X implies
y ∈ (1, 0) + δ−1 int(BX). But the second inclusion in the same proposition implies that,
then, y′ ∈ int(BX), so we are done. �

To finish our proof of the remaining implication of Proposition 2.1, we only need
to notice that, for β > α > 0, Lemma 2.6 leads to a contradiction with our initial
assumptions and, if α = β, the contradiction arises from Lemma 2.7. �

3. Main result

We can now state and prove the last step before the main result. We are no longer
assuming (X, ‖ · ‖) to be strictly convex.

Proposition 3.1. Let x, y, z be nonzero vectors in X and (γn), (δn) ⊂ R be a pair of
positive sequences converging monotonically to 0. If γnx, δny ∈ B(−z, z) for every
n ∈ N, then y = ±x.

Proof. We may suppose ‖z‖ = 1.
If the result does not hold, then we may take {x, y} as a basis of X. In coordinates,

x = (1, 0), y = (0, 1), z = (z1, z2), and we may suppose z1, z2 > 0. Indeed, if z1 < 0 then
we may take −x instead of x and the case z1 = 0 is absurd.

As γnx, δny ∈ B(−z, z), in coordinates,

‖(z1 + γn, z2)‖ = ‖(z1 − γn, z2)‖, ‖(z1, z2 + δn)‖ = ‖(z1, z2 − δn)‖, for all n.
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Set αn = ‖(z1 + γn, z2)‖−1 and βn = ‖(z1, z2 + δn)‖−1. Observe that αn→ 1, βn→ ‖z‖ = 1,
and also that the convexity of ‖ · ‖ implies that ‖(z1 ± γn, z2)‖ and ‖(z1, z2 ± δn)‖ are at
least 1, so γn ≤ 1, δn ≤ 1 for every n.

The choice of (αn) and (βn) gives

αn(z1 ± γn, z2), βn(z1, z2 ± δn) ∈ S X , for all n,

so we have a pair of sequences (αn)z and (βn)z that converge to z and such that each
αnz is the midpoint of the segment ({αnz1} × R) ∩ BX and each βnz is the midpoint of
the segment (R × {βnz2}) ∩ BX .

We will analyse the shape of the unit ball BX of such a norm and will eventually
rule out every possibility.

Suppose there is some v = (v1, v2) ∈ BX with v1 > z1. Then BX contains the triangle
conv{(v1, v2), (0, 0), (z1, z2)}. Note that v1z2 , z1v2, because v1z2 = z1v2 is absurd, so
this is actually a triangle. If v1z2 > v2z1 (respectively, v1z2 < v2z1), then the interior of
this triangle contains (z1 + γn, z2) (respectively, (z1 − γn, z2)) for infinitely many n. As
(z1 ± γn, z2), (z1, z2 ± δn) < int BX for every n, and applying the analogous reasoning
to v2, we get v1 ≤ z1 and v2 ≤ z2 for every (v1, v2) ∈ BX . So

{(v1, v2) ∈ BX : v1, v2 ≥ 0} ⊆ conv{(z1, z2), (0, z2), (0, 0), (z1, 0)}.

Now consider r2 as the line that is vertically symmetric to r1 = {(t, z2) : t ∈ R} with
respect to r0 = {(t, tz2/z1) : t ∈ R} = 〈z〉, that is, the line r2 = {(t, 2tz2/z1 − z2)}. For
every t, the (unique) point in r2 ∩ ({t} × R) is symmetric to (the point in) r1 ∩ ({t} × R)
with respect to r0 ∩ ({t} × R). As BX lies below r1, it is readily seen that βn(z1, z2 − δn)
lies above r2 for every n. So, with an argument similar to that in the previous paragraph,
we can see that every (v1, v2) ∈ BX lies above r2. As r2 contains both (z1, z2) and
(0,−z2), the point where r2 intersects the horizontal axis is (z1/2,0), so we can describe
the situation as follows:

{(v1, v2) ∈ BX : v1, v2 ≥ 0} ⊆ conv{(z1, z2), (0, z2), (0, 0), (z1/2, 0)}.

Now consider r3 as the line that is horizontally symmetric to r2 with respect to r0,
that is, the midpoint of r3 ∩ (R × {t}) and r2 ∩ (R × {t}) is r0 ∩ (R × {t}) for every t.
The same argument implies that BX lies below r3, and (0, z2/3) is the point where r3
intersects the vertical axis. So

{(v1, v2) ∈ BX : v1, v2 ≥ 0} ⊆ conv{(z1, z2), (0, z2/3), (0, 0), (z1/2, 0)}.

By iterating this process, for every n,

{(v1, v2) ∈ BX : v1, v2 ≥ 0} ⊆ conv{(z1, z2), (0, z2/(2n − 1)), (0, 0), (z1/2n, 0)}

and this is absurd. The proof is therefore complete. �

Finally, we have the following new characterisation (in the negative) of the
Euclidean case among all Minkowski planes.
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Theorem 3.2. The norm ‖ · ‖ is not Euclidean if and only if, for some x , 0 and for each
λ∈ (0,+∞)\{1}, there is a y such that ‖y‖=λ‖x‖, 〈x, y〉=R2 and B(−x, x)∩B(−y, y),0.

Proof. (⇐): This is the simple part. If ‖ · ‖ is Euclidean, then B(−x, x) and B(−y, y) are
both straight lines, and they are different provided that 〈x, y〉 = R2.

(⇒): First, let us assume ‖ · ‖ not to be strictly convex.
Let a, b ∈ S X such that [a, b] ⊂ S X . Take x = (3a + b)/4 and z = (a + 3b)/4 and

observe that (x − z)/2 = (a − b)/4 belongs to both B(−x, x) and B(−z, z). Furthermore,
for every α ∈ [−1, 1],

‖z − α(x − z)/2‖ = ‖(a + 3b)/4 − α(a − b)/4‖ = ‖(1 − α)a/4 + (3 + α)b/4‖ = 1

because the last is a convex combination of a and b. This means that the full segment
[(z − x)/2, (x − z)/2] lies in B(−z, z). By symmetry, it is also included in B(−x, x).

Now let λ > 0. If λ ≤ 1, then λ(z − x)/2 ∈ B(−x, x) ∩ B(−λz, λz). If λ ≥ 1, then
(z − x)/2 ∈ B(−x, x) ∩ B(−λz, λz), so in any case the result follows with y = λz.

To deal with the case where ‖ · ‖ is strictly convex, suppose that, for every x , 0 and
a certain λ ∈ (0,+∞)\{1}, there exists no y with ‖y‖ = λ‖x‖ satisfying 〈x, y〉 = R2 and
B(−x, x) ∩ B(−y, y) , 0.

Consider x0 such that B(−x0, x0) is not a straight line. (The existence of such a
bisector is guaranteed in any non-Euclidean Minkowski plane; see [2, Theorem 5.5].)
Then B(−x0, x0) = B(−λx0, λx0).

Let us assume this is not the case: let p ∈ B(−x0, x0), p < B(−λx0, λx0). Now, if
we take the unique (see [7, Corollary 2.5]) y = B(−p, p) ∩ λ‖x0‖S X , we come to a
contradiction, as p ∈ B(−x0, x0) ∩ B(−y, y).

On the other hand, B(−λx0, λx0) = λB(−x0, x0), as we said in Remark 1.4;
therefore, B(−x0, x0) = λB(−x0, x0). Now, take linearly independent e, v ∈ B(−x0, x0).
As B(−x0, x0) = λB(−x0, x0), we have λu ∈ B(−x0, x0) for every u ∈ B(−x0, x0) so
λnu ∈ B(−x0, x0) and, in particular,

λne, λnv ∈ B(−x0, x0) for every n ∈ Z. (3.1)

As B = {e, v} is a basis in X, we may take coordinates giving e = (1, 0), v = (0, 1) and
x0 = (α, β). For the sake of clarity, we will suppose x1, x2 > 0. (If we had x1 < 0 we
could just take −e instead of e and the case x1 = 0 is absurd.) We may also suppose
λ ∈ ]0, 1[. Indeed, if we have λ > 1 we can take µ = λ−1 and we are in exactly the same
situation as before: B(−x0, x0) = µB(−x0, x0) with µ < 1.

Rewriting (3.1) in coordinates we get

‖(α − λn, β)‖ = ‖(α + λn, β)‖ = ‖(−α + λn,−β)‖ = ‖(−α − λn,−β)‖,

‖(α, β − λn)‖ = ‖(α, β + λn)‖ = ‖(−α,−β + λn)‖ = ‖(−α,−β − λn)‖.

But, by Proposition 3.1, this cannot happen and the proof is complete. �
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