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A Continuous Field of Projectionless
C∗-Algebras
Andrew Dean

Abstract. We use some results about stable relations to show that some of the simple, stable, projec-
tionless crossed products of O2 by R considered by Kishimoto and Kumjian are inductive limits of
type I C∗-algebras. The type I C∗-algebras that arise are pullbacks of finite direct sums of matrix
algebras over the continuous functions on the unit interval by finite dimensional C∗-algebras.

1 Introduction

Quasi-free automorphisms of On were defined by Evans in [Ev] as follows. Let F(H)
denote the full Fock space

⊕∞
n=0(⊗nH) for a separable Hilbert space H, where ⊗0H

denotes the one-dimensional subspace spanned by the vacuum vector Ω. Define a
linear map O : H → B

(
F(H)

)
by O( f )Ω = f and O( f )( f1 ⊗ f2 ⊗ · · · ⊗ fn) =

f ⊗ f1 ⊗ · · · ⊗ fn. The map O satisfies the relations O( f )∗O(g) = 〈g| f 〉1 and∑n
i=1 O(hi)O(hi)∗ ≤ 1 for any orthonormal basis {hi} with equality mod K

(
F(H)

)
if H is finite dimensional. Let O(H) denote the C∗-algebra generated by the im-
age of this map. If dim H = ∞ then O(H) ∼= O∞, and if dim H = n < ∞ then
O(H)/K

(
F(H)

)
∼= On. If U is a unitary on H, then U gives rise to an automorphism

of O(H), denoted O(U ), such that O(U )O( f ) = O(U f ) for all f ∈ H. These in turn
induce automorphisms of the On’s, and such automorphisms are called quasi-free.

In this paper we shall consider the crossed products of On by R actions induced
by one-parameter subgroups of U (n). Let {e1, . . . , en} be an orthonormal basis for
Cn and let S1 = π ◦ O(e1), . . . , Sn = π ◦ O(en), where π is the quotient map from
O(Cn) onto On. Then, up to covariant isomorphism, all such automorphism groups
are of the form αt (S1) = e2πiλ1t S1, . . . , αt (Sn) = e2πiλnt Sn for some real numbers
λ1, . . . , λn. If all of the λ’s are zero, then we have just a trivial action and the crossed
product is the suspension of On. If we assume that λ1 �= 0 then, since a real crossed
product is not changed, up to isomorphism, by scaling the real parameter, we may
assume that λ1 = 1. We then have an n − 1 parameter family of crossed products
On �αλ R, where λ = (λ2, . . . , λn).

In [Ks] Kishimoto showed that On �αλ R is simple if and only if one of the follow-
ing two conditions holds:

1. {1, λ2, . . . , λn} generates R as a closed subgroup and λ2, . . . , λn are all positive.
2. {1, λ2, . . . , λn} generates R as a closed subsemigroup.

In the special case of O2, this reduces to saying that λ2 is irrational, case 1 holding
when λ2 > 0, case 2 holding when λ2 < 0. In [KK2] Kishimoto and Kumjian
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showed that in either of the above cases On �αλ R is stable. Furthermore, in case 1 it
is projectionless and in case 2 it is purely infinite. In [KK1] the same authors showed
that in case 1 there is a unique trace on On �αλ R.

Combining Cuntz’s calculation of the K-theory of the On’s with Connes’ analog
of the Thom isomorphism theorem for real crossed products, cf. [Cu] and [Co], we
see that K0(On �αλ R) ∼= 0 and K1(On �αλ R) ∼= Z/(n− 1)Z.

Elliott has conjectured that all stable, simple, separable, nuclear C∗-algebras not
of type I are characterised up to isomorphism by K-theoretic and tracial invariants.
More precisely, the proposed invariant consists of the K1 group, the ordered K0 group,
the cone of densely defined, lower semi-continuous traces, denoted T+, and the nat-
ural pairing between K0 and T+. This conjecture has been borne out in many special
cases; cf. [E1] for a survey. In [E2] Elliott showed that a wide variety of values of
the above invariant occur for C∗-algebras satisfying the classification hypotheses and
arising as inductive limits of type I C∗-algebras. Among the values given by Elliott’s
construction are those of the simple projectionless crossed products of On mentioned
above.

This suggested that these algebras could be inductive limits of type I C∗-algebras,
and our object in the present paper is to show that, at least for λ’s in a dense category
2 subset of the positive multi-indices, this is the case. Our methods will involve first
obtaining a continuous field of C∗-algebras by varying the R action, then carefully
analysing some of the fibres of the field for which the action results in a crossed prod-
uct with a more tractable structure, deducing an inductive limit structure for these
fibres, and finally, using results from the theory of stable relations, in particular those
in [ELP], to deduce the existence of similar inductive limit structure in other fibres.
The proofs for general On are virtually the same as for the the special case of O2, with
just some additional complication in the book-keeping. Thus for most of the paper
we shall concentrate on O2 and leave the general case to the final section, where we
also deal with some other questions raised along the way.

Acknowledgment The author would like to thank his supervisor, G. A. Elliott for his
advice, The Fields Institute and The University of Copenhagen for their hospitality,
and NSERC and the Department of Mathematics at the University of Toronto for
funding.

2 A Continuous Field of C∗-Algebras

It follows from Corollary 3.6 of [Rie] that the algebras O2 �αλ R fit into a continuous
field with the images of fixed elements of Cc(R,O2) in each crossed product giving
continuous sections (cf. also [ENN]). In this section we shall analyse the rational
fibres of this continuous field, arriving at a description of them as mapping tori over
C∗-algebras that we can describe in terms of generators and relations. In the next
section these presentations are analysed in more detail.

Suppose λ = p/q is a rational number expressed in lowest terms. Then the action
αλ is periodic with period q. We make the change of variables t �→ qt to get an action
with period 1 for which the crossed product is isomorphic. For the remainder of this
section we shall call this new action α, explicitly, αt (S1) = e2πiqt S1, αt (S2) = e2πi pt S2.
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In [Bl, Prop. 10.3.2] it is shown that the crossed product O2 �α R is isomorphic to
the mapping torus of O2 �α T by an automorphism generating the dual action of Z.
(Cf. [OP] for a more general version of this theorem.)

To analyse these mapping-tori it will be convenient to express O2 in a different
way. Write M2∞ ⊗K as the infinite tensor product, indexed by the integers, of copies
of M2 trailing off as the identity to the right and as e11 to the left. (Assume we have
fixed systems of matrix units {ek

i j}k∈Z for each factor in the tensor product.) Let β
denote the automorphism of M2∞ ⊗ K given by shifting one position to the right in
the infinite tensor product. Observe that β scales the unique trace on M2∞ ⊗ K by
1/2, i.e., τ ◦ β = (1/2)τ . If e is the unit of the 0-th copy of M2 (i.e., e = · · · e−2

11 ⊗
e−1

11 ⊗1⊗1⊗· · · ), then it follows from [Rør] that e
(

(M2∞⊗K)�β Z
)

e ∼= O2, and in
fact more is true. Define an action α̃t of T ∼= R/Z on (M2∞ ⊗K) �β Z as follows. On
M2∞⊗K in its tensor product expression α̃t is the product type automorphism given
by infinitely many copies of ut = γ

t
1e11+γt

2e22, where γt
1 and γt

2 denote e2πiqt and e2πi pt

respectively. If V is the adjoined unitary in the multiplier algebra of (M2∞ ⊗K) �β Z
implementing β, then α̃t (V ) = γt

1V . This action fixes e, so we get an action, also
denoted α̃t , of T on e

(
(M2∞ ⊗ K) �β Z

)
e. We then have the following.

Lemma 2.1 The C∗ dynamical systems (O2, αt ,T) and
(

e
(

(M2∞⊗K)�βZ
)

e, α̃t ,T
)

are covariantly isomorphic.

Proof At this point we introduce a simplification in our notation. When we write
ek

i j ⊗ · · · ⊗ ek+n
st for an element of M2∞ ⊗ K it is assumed that all entries to the right

of those shown are 1’s and all those to the left are e11’s, so for example e−1
11 ⊗ 10 ⊗ 11

is the element e. Let T1 = Ve and T2 = (e−1
11 ⊗ e0

21 ⊗ 11)Ve. Then straightforward
computations show that T∗1 T1 = T∗2 T2 = e, T1T∗1 + T2T∗2 = e, α̃t (T1) = γt

1T1 and
α̃t (T2) = γt

2T2. Thus by the universal property of O2 there is an isomorphism of O2

onto the sub-C∗-algebra of (M2∞ ⊗K) �β Z generated by T1 and T2 intertwining the
actions. It remains to show that T1 and T2 generate all of e

(
(M2∞⊗K)�βZ

)
e. Notice

that as β−k(e) ≥ e in (M2∞⊗K)�β Z for k ≥ 0, we have eAV ke = (eAe)(eVe)k for all
A ∈ M2∞⊗K. As eVe = T1 we have only to see that e(M2∞⊗K)e ⊆ C∗(T1,T2). This
follows from the observations that e(M2∞⊗K)e is generated by those tensors with e11

in all positions to the left of zero, that if eAe ∈ C∗(T1,T2) for some A ∈ M2∞⊗K then
βk(eAe) = (Ve)kA(eV ∗)k = Tk

1AT∗k
1 ∈ C∗(T1,T2) for all k ≥ 0, and the calculations

T1T∗2 = e0
21, T1T∗1 = e0

11 and T2T∗2 = e0
22, which show that the matrix units for the

0-th copy of M2 are included.
The next step in our analysis is to interchange the order of the two crossed prod-

ucts. On the dense subalgebra Cc(Z,M2∞⊗K) of (M2∞⊗K)�βZ we have (α̃t g)(k) =
(t, k)qαt

(
g(k)
)

for all g ∈ Cc(Z,M2∞ ⊗ K), t ∈ R/Z, and k ∈ Z, where (t, k) de-

notes the pairing of an element of T with an element of Z ∼= T̂. Consider the ac-
tion, denoted β̃, on (M2∞ ⊗ K) �α̃ T defined by (β̃k f )(t) = (t, k)

q
βk

(
f (t)
)

for all
f ∈ Cc(T,M2∞⊗K), t ∈ R/Z, and k ∈ Z. We then have the following lemma, which
is easy to check.

Lemma 2.2 The map Φ : C
(

T,Cc(Z,M2∞ ⊗ K)
)
→ Cc

(
Z,C(T,M2∞ ⊗ K)

)
given
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by (Φ f )(k, t) = (t, k)
q

f (t, k) for all t ∈ R/Z and k ∈ Z extends to an isomorphism of(
(M2∞ ⊗ K) �β Z

)
�α̃ T with

(
(M2∞ ⊗ K) �α̃ T

)
�β̃ Z.

Now we dissect the crossed product (M2∞⊗K)�α̃T while keeping track of β. If we
view M2∞⊗K as the limit of the inductive system M2 → M2⊗M2⊗M2 → ⊗5M2 →
· · · , where the maps are the inclusions given by x �→ e11⊗x⊗1, we see that the action
α̃ is of inductive limit type, i.e., it leaves invariant each of the sub-C∗-algebras in this
increasing sequence. The crossed product of the limit, M2∞⊗K, is then the inductive
limit of the crossed products (M22n+1 ) �α̃ T with the obvious inclusions. The action
α̃ of T on M22n+1 is exterior equivalent to the trivial action via the unitary cocycle
t �→ ⊗2n+1ut . Thus we get an isomorphism ψn : (M22n+1 ) �α̃ T→ (M22n+1 ) �id T given
by (ψnx)(t) = x(t)(⊗2n+1ut ) for all x ∈ C(T,M22n+1 ). The Fourier transform defines
an isomorphism F : (M22n+1 )�id T→ (M22n+1 )⊗C0(Z) by (F f )(k) =

∫
R/Z f (t)(t, k) dt

for all k ∈ Z, so we have that (M2∞ ⊗ K) �α̃ T is AF. To determine its structure
completely we have only check how the inclusions of the (M22n+1 ) �α̃ T’s one into the
next are transformed by the exterior equivalence and the Fourier transform. We get
a diagram:

(M22n+1 ) �α̃ T
ψn−−−−→ (M22n+1 ) �id T

F
−−−−→ (M22n+1 )⊗C0(Z)

x �→e11⊗x⊗1

	 Γ1
n

	 Γ2
n

	
(M22n+3 ) �α̃ T

ψn+1−−−−→ (M22n+3 ) �id T
F

−−−−→ (M22n+3 )⊗C0(Z).

For the first square we see that (Γ1
n y)(t) = γt

1

(
e11 ⊗ y(t) ⊗ ut

)
for all t ∈ T, y ∈

C(T,M22n+1 ), and for the second (Γ2
nz)(k) = e11⊗

(
z(2q+k)⊗e11 +z(q+ p +k)⊗e22

)
,

for all k ∈ Z, z ∈ Cc(Z,M22n+1 ). We thus arrive at the following description:

Lemma 2.3 (M2∞ ⊗ K) �α̃ T is isomorphic to the limit of the inductive system
{M22n+1 ⊗C0(Z),Γ2

n}
∞
n=0.

Next we see what becomes of the automorphism β̃. We have a similar diagram:

(M22n+1 ) �α̃ T
ψn−−−−→ (M22n+1 ) �id T

F
−−−−→ (M22n+1 )⊗C0(Z)

x �→γ−t
1 e11⊗e11⊗x(t)

	 β̃ ′
	 β̃ ′′

	
(M22n+3 ) �α̃ T

ψn+1−−−−→ (M22n+3 ) �id T
F

−−−−→ (M22n+3 )⊗C0(Z).

For the first square we get (β̃ ′y)(t) = γt
1e11 ⊗ e11 ⊗ y(t), for all t ∈ T and y ∈

C(T,M22n+1 ), and for the second
(
β̃ ′ ′(z)

)
(k) = e11 ⊗ e11 ⊗ z(k + q) for all z ∈

Cc(Z,M22n+1 ).
The dual action α̂ of Z on e

(
(M2∞ ⊗ K) �β Z

)
e �α̃ T is just the restriction of the

dual action of Z, also denoted α̂, on
(

(M2∞ ⊗ K) �β Z
)

�α̃ T ∼=
(

(M2∞ ⊗ K) �α̃

T
)

�β̃ Z. Since α̂ commutes with β̃ to describe it we need only see what it does on
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(M2∞ ⊗ K) �α̃ T. We again get a diagram:

(M22n+1 ) �α̃ T
ψn−−−−→ (M22n+1 ) �id T

F
−−−−→ (M22n+1 )⊗C0(Z)

(α̂ f )(t)=(t,1) f (t)

	 α̂ ′

	 α̂ ′ ′

	
(M22n+1 ) �α̃ T

ψn+1−−−−→ (M22n+1 ) �id T
F

−−−−→ (M22n+1 )⊗C0(Z),

and it is easy to check that (α̂ ′ f )(t) = (t, 1) f (t) for all t ∈ T and f ∈ C(T,M22n+1 ),
(α̂ ′ ′ f )(k) = f (k + 1) for all k ∈ Z and f ∈ C(T,M22n+1 ).

Finally, we cut down by the projection e. Cutting down the inductive system by e
at each stage gives us M2 → M22 → M23 → · · · , where the inclusions are x �→ x ⊗ 1
at each stage. Using the same symbols for the cutdown versions of the maps found
above we get:

β̃ ′ ′(z)(k) = e11 ⊗ z(k + q)

(α̂ ′ ′ f )(k) = f (k + 1)

(Γ2
nz)(k) = z(2q + k)⊗ e11 + z(p + q + k)⊗ e22,

and e
(

(M2∞ ⊗ K) �α̃ T
)

e ∼= lim
−→
{M2n ⊗C0(Z),Γ2

n}.

We may summarise this situation in the following two diagrams:

. . . ◦ ◦ ◦
α−1

��

�����������������

���
��

��
��

��

◦ . . .

. . . ◦ ◦ ◦ ◦ . . .

Diagram 1: Infinite case (λ < 0)

. . . ◦ ◦ ◦
α−1

��

����
��

��
�

�����������������

��

◦ . . .

. . . ◦ ◦ ◦ ◦ . . .

Diagram 2: Finite case (λ > 0)
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In these diagrams the dots and downward thin arrows represent the Bratteli dia-
gram of the inductive system we have found for e

(
(M2∞ ⊗ K) �α̃ T

)
e. (The arrows

shown are repeated at every dot in the diagram, which extends infinitely to either side
and downward.) The thick downward arrow represents an adjoined partial isometry
implementing β̃ ′ ′ on that summand, i.e., setting a minimal projection in the upper
dot equivalent to a minimal projection in the lower dot, and the arrow labelled α−1

is supposed to indicate that the automorphism α̂ ′ ′ moves everything one step over.
It is also to be understood that there is a compatibility between the fat arrows and the
Bratteli diagram, the partial isometries with the same range and base spaces being
identified. (All this will be precisely stated in the next section.) From this point on
we shall only consider the finite case, leaving the infinite case to the closing remarks
in Section 5. In the next section we shall undertake an analysis of the universal C∗-
algebras given by generators and relations described by such a diagram, and conclude
that these diagrams in fact give a complete description of the positive rational fibres
of our continuous field.

3 The Rational Fibres

Theorem 3.1 Let W n denote the set of words of length n in the letters a, b. Let p and
q be two distinct positive integers with (p, q) = 1. Let A(p, q) denote the universal
C∗-algebra with generators and relations as described below. Then A(p, q) is a simple
AF algebra. Furthermore, the map α given below on the generators defines an automor-
phism, to be denoted α̂, of A(p, q), and for λ = p/q we have O2�αλ R ∼= Mα̂

(
A(p, q)

)
,

the mapping torus of A(p, q) by α̂.

Generators:

Ek,n
w,v for k ∈ Z, n ∈ N,w, v ∈W n

V k,n for k ∈ Z, n ∈ N

Relations:

Ek,n
w,vEl,n

s,t = 0 if l �= k(1)

Ek,n
w,vEk,n

s,t = δvsE
k,n
w,t(2)

Ek,n∗
w,v = Ek,n

v,w(3)

Ek,n
w,v = Ek−p,n+1

wb,vb + Ek−q,n+1
wa,va(4)

V k,n∗V k,n =
∑

w∈W n

Ek,n
w,w(5)

V k,nEk,n
w,vV

k,n∗ = Ek,n+1
aw,av(6)

V k,nEk,n
w,w = V k−p,n+1Ek−p,n+1

wb,wb + V k−q,n+1Ek−q,n+1
wa,wa(7)
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Automorphism:

α(Ek,n
w,v) = Ek−1,n

w,v α(V k,n) = V k−1,n

We shall undertake some preliminary analysis before proving this theorem. For
the sake of simplicity we shall in the following assume q > p, though obviously
analogous statements hold with similar proofs if p > q. The K-theory of A(p, q) will
be discussed in Section 5.

In order to keep track of the generators and relations it will be helpful to use
diagrams like Diagram 2 above as a sort of short-hand to represent them. We do this
as follows. For a fixed pair (n, k) relations (2) and (3) show that {Ek,n

w,v | w, v ∈ W n}
generates a quotient of a full matrix algebra isomorphic to M2n (C). (We shall later
see that it’s not a proper quotient, the natural map is injective.) We represent one of
these subalgebras with a dot, ◦.

For fixed n, relation (1) shows that the dots corresponding to different values of
k represent orthogonal subalgebras. {Ek,n

w,v | w, v ∈ W n, k ∈ Z} with relations (1),
(2), and (3) thus gives a presentation of a copy of c0(Z) ⊗ M2n (C). We represent
these subalgebras by rows of dots, one row for each n, the dots being the orthogonal
summands as above.

Relation (4) gives an inclusion of the subalgebra corresponding to the n-th row
into that of the n + 1-st row. We represent this inclusion in the fashion of a Bratteli
diagram, using thin arrows to indicate which minimal direct summands are mapped
into which.

. . . ◦ ◦ ◦

����
��

��
�

����������������� ◦ . . .

. . . ◦ ◦ ◦ ◦ . . .

(In this picture, the longer downward arrow moves q dots over, the short one moves
p dots over.)

Relations (5) and (6), in combination with (2) and (3), show that V k,n is a partial
isometry with support projection in the k-th dot in the n-th row subalgebra and range
projection in the k-th dot in the n+1-st row subalgebra that sets a minimal projection
in its support dot Murray-von Neumann equivalent to a minimal projection in its
range dot. We shall represent one of these partial isometries by a fat downward arrow
from its support dot to its range dot. Putting all of the above together we arrive at a
picture like Diagram 2 above.

Below we shall deduce rules for reading off the structure of A(p, q) from finite
subsets of the full sets of generators and relations, using these pictures as an aid.

Let S(n, L,K) denote the set of generators {Ek,n+1
w,v | w, v ∈W n+1, L−K − q ≤ k ≤

L+K}∪{Ek,n
w,v | w, v ∈W n, |L−k| ≤ K}∪{V k,n | |L−k| ≤ K}, where L is any integer

and K is any positive integer. Let A
(

S(n, L,K)
)

denote the sub-C∗-algebra of A(p, q)
generated by S(n, L,K). From relations (2), (3) and (5) it follows that each V n,k is
a sum of terms (V n,kEk,n

w,w). Now repeated applications of relations (4) and (7) show
that for any finite set of generators F, the sub-C∗-algebra of A(p, q) generated by the
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elements of F is contained in some A
(

S(n, L,K)
)

. This shows that, in a sense made
precise below, to see that A(p, q) is AF we need only look at pieces of the diagram
that look like

◦k−q

���������������������

�����
��

��
��

��

◦k−p

�������������������������������

����������

��

◦k

�������������������������������

				
		

		
		

��

n

◦k−2q ◦k−p−q ◦k−q ◦k−2p ◦k−p ◦k n + 1

Diagram 3

i.e., finite, two row diagrams whose lower rows contain the ends of the arrows ema-
nating from the dots in their upper rows. (In this diagram we have assumed p/q <
1/2.)

Let C∗
(

S(n, L,K)
)

denote the universal C∗-algebra given by the following pre-

sentation. The generators of C∗
(

S(n, L,K)
)

are identified with the the elements of
S(n, L,K) and the relations are those in the statement of Theorem 3.1 that only in-
volve elements of S(n, L,K), in other words, C∗

(
S(n, L,K)

)
is a universal C∗-algebra

for a diagram like Diagram 3 above. Clearly the identification of the generators gives
a surjective map from C∗

(
S(n, L,K)

)
to A
(

S(n, L,K)
)

. Our analysis below will show

that C∗
(

S(n, L,K)
)

, and hence A
(

S(n, L,K)
)

, is finite dimensional.
In the following we shall refer to a diagram of the form

◦

��



















		��
��

��
��

��

n

◦k−q ◦k−p ◦k n + 1

Diagram 4

as a mer. The C∗-algebra generated by the elements shown in this diagram (with only
the relations shown) is M2n+2⊕M2n+2 , where dot k−q includes into the first summand
with multiplicity one, dot k− p goes into the second summand with multiplicity one,
and dot k includes into each summand with multiplicity one. We shall use these mers
to define a relation between the dots in the lower row of a two row diagram such as
Diagram 3 above. We shall say that dot A is related by a mer to dot B if there is a
sub-diagram of the form of Diagram 4 with A as the target of the fat arrow and B as
the target of a thin arrow. We shall also say that A is related to B by mers if there is a
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sequence of dots starting with A and ending with B with each dot related to the next
(what could also be called being related by a polymer). Finally, we say that any dot is
related (by mers) to itself. (In terms of the pictures, dot A is related to dot B if there
is a zig-zag path going up fat arrows and down thin ones from dot A to dot B.)

Lemma 3.2 Consider the two row diagram corresponding to some set of generators
S(n, L,K), and consider a dot, #(l, n + 1) in the lower row that is not related by
mers in this diagram to any dot lying to the left of it. Then the elements of the set S
described below form the first row of matrix units for a full matrix algebra con-
tained in C∗

(
S(n, L,K)

)
. Furthermore, this matrix algebra is a direct summand of

C∗
(

S(n, L,K)
)

.
Let w ∈W n+1 be distinguished as the first word in W n+1, and fix an element s ∈W n.

Then S is the union of those Aνs described below, where ν is a word in the letters p and
q, for which the elements of Aν are words in the elements of S(n, L,K); explicitly, moving
the sum of the letters of ν to the right of dot #(l, n + 1) in the diagram for S(n, L,K)
brings one to a dot still in the diagram, and if ν begins with a p, then Aν is included only
if V l+p,n∗ ∈ S(n, L,K).

A0 = {E
l,n+1
w,v | v ∈W n+1}

Ap = {E
l,n+1
w,sb V l+p,n∗El+p,n+1

as,v | v ∈W n+1}

Aq = {E
l,n+1
w,sa V l+q,n∗El+q,n+1

as,v | v ∈W n+1}

Apq = {E
l,n+1
w,sb V l+p,n∗El+p,n+1

as,sa V l+p+q,n∗El+p+q,n+1
as,v | v ∈W n+1}

Aqp = {E
l,n+1
w,sa V l+q,n∗El+q,n+1

as,sb V l+p+q,n∗El+p+q,n+1
as,v | v ∈W n+1}

and in general, if m is a word in p’s and q’s, the sum of whose letters is |m|, then

an element in Amq consists of the word in Am ending in El+|m|,n+1
as,sa followed by

V l+|m|+q,n∗El+|m|+q,n+1
as,v for some v ∈ W n+1, and an element of Amp consists of the word

in Am ending in El+|m|,n+1
as,sb followed by V l+|m|+p,n∗El+|m|+p,n+1

as,v for some v ∈W n+1.

Proof It is straightforward to check that for v, u ∈ S, v∗v is a projection, vv∗ = uu∗,
and uv∗ = 0 if u �= v, so the elements of S do form the first row for a system of matrix
units for a full matrix algebra. Call this matrix algebra Fl and let 1Fl denote its unit.
(Strictly speaking we still have to show that Fl is not zero, but this will be obvious
from the sequel.)

To show that Fl is a direct summand of C∗
(

S(n, L,K)
)

it will suffice to show that

1Fl is in the centre of C∗
(

S(n, L,K)
)

and that 1FlC
∗
(

S(n, L,K)
)

1Fl = Fl.

To see that 1Fl is in the centre of C∗
(

S(n, L,K)
)

it suffices to check that it com-
mutes with the elements of S(n, L,K). We check this first for the E’s. 1Fl =∑

m|Am⊆S(
∑

v∈Am
v∗v). Consider an element Ek,n+1

f ,g . As any v ∈ Am ends in a ma-

trix unit of dot #(l + |m|, n + 1), we have that Ek,n+1
f ,g ⊥ v∗v if v ∈ Am and l +

|m| �= k. Suppose l + |m| = k and consider
∑

v∈Am
v∗v. If |m| = 0 then this
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is the unit of the (k, n + 1)-th dot and it commutes with Ek,n+1
f ,g . If |m| �= 0 then∑

v∈Am
v∗v =

∑
v∈Am

(
∑

t∈W n+1 Ek,n+1
t,as v∗vEk,n+1

as,t ), and we get Ek,n+1
f ,g (
∑

v∈Am
v∗v) =∑

v∈Am
(Ek,n+1

f ,as v∗vEk,n+1
as,g ) = (

∑
v∈Am

v∗v)Ek,n+1
f ,g . Thus, we have that 1Fl commutes with

Ek,n+1
f ,g .

Checking that 1Fl commutes with the V ’s in S(n, L,K) is a bit more tedious. We
first introduce some notation. Fix a V n,k in S(n, L,K). Define

Λ = {m | Am ⊆ S and |m| = k− l}

Λp = {m | Am ⊆ S and |m| = k− l− p}

Λq = {m | Am ⊆ S and |m| = k− l − q}.

Then we have that
1FlV

k,n =
∑
m∈Λ

(∑
v∈Am

v∗v
)

V k,n

and

V k,n1Fl =

blob 1︷ ︸︸ ︷∑
d∈Λp

V k,n
(∑

v∈Ad

v∗v
)

+

blob 2︷ ︸︸ ︷∑
t∈Λq

V k,n
(∑

v∈At

v∗v
)
,

where we use the convention that a sum over an empty index set gives 0. Notice that
Λ = { f p | f ∈ Λp} ∪ {gq | g ∈ Λq}. (This uses that k �= l. That k = l is not
a possibility follows from our definition of S(n, L,K) and the assumption that dot
(l, n + 1) is not related by mers to any dots further left in the diagram for S(n, L,K).)
We then have

∑
m∈Λ

(∑
v∈Am

v∗v
)

V k,n =

blob 3︷ ︸︸ ︷∑
d∈Λp

( ∑
v∈Adp

v∗v
)

V k,n +

blob 4︷ ︸︸ ︷∑
t∈Λq

(∑
v∈Atq

v∗v
)

V k,n .

We shall show that blob 1 is equal to blob 3 (a similar argument shows that blob 2
is equal to blob 4). Look first at blob 3.∑

d∈Λp

( ∑
v∈Adp

v∗v
)

V k,n =
∑
d∈Λp

{ ∑
t∈W n+1

Ek,n+1
t,as V k,nw∗d wdV k,n∗Ek,n+1

as,t V k,n
}
,

where wd is the word in Ad that ends in Ek−p,n+1
as,sb . In the above Ek,n+1

t,as V k,nw∗d wdV k,n∗ ·

Ek,n+1
as,t V k,n is equal to 0 if t starts with a b, and if t = ar for some r in W n it is equal to

Ek,n+1
ar,as V k,nw∗d wdEk,n

s,r = Ek,n+1
ar,as V k,nw∗d wdEk−p,n+1

sb,rb by relations (4), (5) and (6). Thus we
get:

∑
d∈Λp

( ∑
v∈Adp

v∗v
)

V k,n =
∑
d∈Λp

{∑
r∈W n

Ek,n+1
ar,as V k,nw∗d wdEk−p,n+1

sb,rb

}

=
∑
d∈Λp

{∑
r∈W n

V k,nEk−p,n+1
rb,sb w∗d wdEk−p,n+1

sb,rb

}(†)
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where we have used for the second equality the fact that Ek,n+1
ar,as V k,n = V k,nEk,n

r,s =

V k,n(Ek−p,n+1
rb,sb + Ek−q,n+1

ra,sa ) and that Ek−q,n+1
ra,sa w∗d = 0. Now we look at blob 1.

∑
d∈Λp

V k,n
(∑

v∈Ad

v∗v
)
=
∑
d∈Λp

V k,n
( ∑

u∈W n

Ek−p,n+1
ub,ub + Ek−q,n+1

ua,ua

)(∑
v∈Ad

v∗v
)

=
∑
d∈Λp

V k,n
( ∑

u∈W n

Ek−p,n+1
ub,ub

)(∑
v∈Ad

v∗v
)

=
∑
d∈Λp

V k,n
{ ∑

u∈W n

Ek−p,n+1
ub,sb w∗d wdEk−p,n+1

sb,ub

}

where the first equality follows from relations (2), (3), (5) and (6), and the second
comes from the fact that elements of Ad for d ∈ Λp end in a matrix unit for dot
#(k − p, n + 1). The last expression in the above is clearly equal to the expression
for blob 3 given in equation (†) above. Thus we have that 1Fl is in the centre of
C∗
(

S(n, L,K)
)

.

To show that 1FlC
∗
(

S(n, L,K)
)

1Fl = Fl it will suffice to show that 1Fl x1Fl ∈ Fl

for each element x ∈ S(n, L,K). For any Ek,n+1
f ,g and Y ∈ S either Y Ek,n+1

f ,g is zero or

it is also in S. Thus 1Fl E
k,n+1
f ,g 1Fl = (

∑
Y∈S Y ∗Y )Ek,n+1

f ,g (
∑

Y∈S Y ∗Y ) ∈ C∗(S) = Fl.

Suppose Y ∈ Am, so Y ends in a matrix unit of dot #(l + |m|, n + 1), and suppose
V k,n ∈ S(n, L,K). If l + |m| �= k then YV k,n = 0. If l + |m| = k, then |m| �= 0
as we have assumed that dot #(l, n + 1) is not related by mers to any dots further
left in the diagram for S(n, L,K). We have Y = ZV k,n∗Ek,n+1

as,v for some v ∈ W n+1

and some element Z of S ending in either a matrix unit for dot #(k − p, n + 1) or
one for dot #(k − q, n + 1). YV k,n = Z(V k,n∗Ek,n+1

as,v V k,n). If v begins with a b, then

V k,n∗Ek,n+1
as,v V k,n = 0, and if v = ar for some r ∈W n then V k,n∗Ek,n+1

as,ar V k,n = Ek,n+1
s,r =

Ek−p,n+1
sb,rb + Ek−q,n+1

sa,ra . Now one of ZEk−p,n+1
sb,rb , ZEk−q,n+1

sa,ra is zero and the other is an

element of S. Thus 1FlV
k,n1Fl ∈ C∗(S) = Fl.

Lemma 3.3 Consider the diagram describing a set of generators S(n, L,K) and the C∗-
algebra C∗

(
S(n, L,K)

)
. Suppose l1, . . . , lm are the numbers of those dots in the lower

row of the diagram that are not related by mers to dots further left. Then by Lemma 3.2
there is a full matrix algebra Fli , a direct summand of C∗

(
S(n, L,K)

)
containing the

matrix units of the li-th dot. We have in fact C∗
(

S(n, L,K)
)
∼= Fl1⊕· · ·⊕Flm . Further-

more, the multiplicity with which a dot is contained in Fli is given by the number of ways
in which it is related by polymers to dot li . Finally, the inclusion of the sub-C∗-algebra
generated by just the dots into C∗

(
S(n, L,K)

)
is unital.

Thus if we look back at Diagram 3 (even though this isn’t of the form
C∗
(

S(n, L,K)
)

) we see that the algebra generated by the elements shown has three
direct summands, of size 3 · 2(n+1), 5 · 2(n+1) and 3 · 2(n+1). Dots k − 2q, k − p − q
and k− 2p include into these, one dot into each summand in the order shown, each
with multiplicity one. Also dot k − q includes with multiplicities one, one and zero
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respectively into these summands, dot k − p with multiplicities zero, one and one,
and dot k with multiplicities one, two and one.

Proof It is convenient at this point to generalise our notation from Lemma 3.2. We
add a superscript to the symbols S and Am defined there to indicate the dot in ques-
tion, so the sets in Lemma 3.2 will now be denoted Sl and Al

m.
The final comment about the inclusion being unital is obvious.
We show first that the various Fli are orthogonal. Suppose dots l1 and l2 are not

related by polymers to dots further left and l1 < l2. From our assumption if v ∈ Sl1

and u ∈ Sl2 we have that vu = uv = 0, since any element of Sl begins with a matrix
unit of dot #(l1, n + 1) and ends with a matrix unit of a dot related by polymers to
dot #(l1, n + 1), and similarly for dot #(l2, n + 1). We also have that v∗u = u∗v = 0
for any v ∈ Sl1 , u ∈ Sl2 , so it remains only to show that uv∗ = vu∗ = 0. We need
only consider a u ∈ Sl2 and a v ∈ Sl1 that end in matrix units for the same dot, in
fact the same matrix unit, so suppose u ∈ Al2

µ and v ∈ Al1
ν , where l2 + |µ| = l1 + |ν|.

Then since l1 and l2 are assumed to be unrelated µ is not a tail of ν, so reading from
right to left we must come to a point where µ and ν have different letters, µ = rqt ,
ν = xpt say, for some words r, t , x. Looking at the partial isometries u and v as
words in the generators we see that there are partial isometries Ur, Ux and Y such

that Ur ∈ Al2
r , Ur ends in a matrix unit El2+|r|,n+1

as,sa , Ux ∈ Al1
x , Ux ends the matrix unit

El1+|x|,n+1
as,sb , u = UrY and v = UxY . That uv∗ = 0 now follows from observing that Ur

and Ux have orthogonal supports, both contained in the range of Y .
To show that C∗

(
S(n, L,K)

)
∼= Fl1 ⊕ · · · ⊕ Flm it will suffice to show that the

unit of C∗
(

S(n, L,K)
)

is in Fl1 + · · · + Flm . We shall show that if dot #(k, n + 1) is
the fat foot of a mer, then C∗(Sk) ⊆ C∗(Sk−p) + C∗(Sk−q). Since the unit of dot
#(k, n + 1) is in C∗(Sk), this will allow us to conclude, by moving right to left through
the diagram, that the unit of C∗

(
S(n, L,K)

)
is contained in the sum of the C∗(Sl)

for dots #(l, n + 1) that are not at the fat feet of mers. These however are exactly the
Fli ’s. So consider a dot #(k, n + 1) that is the fat foot of a mer, and let v ∈ Sk. Then

v = Ek,n+1
w,sa Z or v = Ek,n+1

w,sb X for some Z or X in C∗
(

S(n, L,K)
)

(assume the former, a
similar argument works for the other case). Observe that

Ek,n+1
w,w = (Ek,n+1

w,as V k,nEk−q,n+1
sa,w )(Ek−q,n+1

w,sa V k,n∗Ek,n+1
as,w )

+ (Ek,n+1
w,as V k,nEk−p,n+1

sb,w )(Ek−p,n+1
w,sb V k,n∗Ek,n+1

as,w ),

so we have

v = (Ek,n+1
w,as V k,nEk−q,n+1

sa,w )(Ek−q,n+1
w,sa V k,n∗Ek,n+1

as,sa Z)

+ (Ek,n+1
w,as V k,nEk−p,n+1

sb,w )(Ek−p,n+1
w,sb V k,n∗Ek,n+1

as,sa Z).

The first expression on the right above is in C∗(Sk−q) and the second is in C∗(Sk−p).
Now finally we determine the multiplicities of the inclusions. Suppose as above

we have a set of generators S(n, L,K) and that the corresponding diagram contains
dots #(l, n + 1) and #(k, n + 1) where the former is not related by polymers to any dots
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further left. Consider a minimal projection Ek,n+1
w,w in dot #(k, n + 1). The multiplicity

of the inclusion of this dot into Fl is the rank of the projection 1Fl (Ek,n+1
w,w )1Fl in Fl. If

l = k, then Al
0 is a set of generators for dot #(k, n + 1), while v∗v is orthogonal to dot

#(k, n + 1) for any v ∈ Sl \Al
0, so the statement is clear in this case. If l + |µ| �= k, then

Al
µ ⊥ Ek,n+1

w,w . Thus if there are no words µ for which l + |µ| = k, in particular if k < l,

then the multiplicity is zero. Notice that C∗(Al
µ) is a full matrix algebra whose unit,

1Al
µ
, commutes with the matrix units of any dot on the n + 1st row, so 1Fl (Ek,n+1

w,w )1Fl

is the sum of the projections 1Al
µ
(Ek,n+1

w,w )1Al
µ

where µ runs over those words such that

l + |µ| = k (we use here the definition of S(n, L,K)). Given such a µ, looking at
the formula for the elements of Al

µ we see that there is exactly one v in Al
µ for which

v∗v(Ek,n+1
w,w )v∗v = v∗v, while for all other u ∈ Al

µ we have u∗uEk,n+1
w,w = 0. Thus the

rank of 1Fl (Ek,n+1
w,w )1Fl in Fl is the number of words µ for which l + |µ| = k. This is

exactly the number of ways by which dot #(k, n + 1) is related by polymers to dot
#(l, n + 1).

Proof of Theorem 3.1 It follows easily from Lemmas 3.2, 3.3 and the discussion
preceding Lemma 3.2 that A(p, q) is AF. To show that A(p, q) is simple we use the
following simple observation: If p and q are coprime natural numbers, then for some
natural number N(p, q) all numbers greater than N(p, q) may be written as sums of
positive multiples of p and q. Notice that in the diagram for S(n, L,K) the direct
summands of C∗

(
S(n, L,K)

)
are labeled by the last q dots to the left on the lower

row, as these dots are unrelated by mers, and every other dot is related to at least one
of these by a polymer. Consider the following increasing sequence of sub-C∗-algebras
of A(p, q).

An = A
(

S(n,−Kn,Kn)
)

where K1 = 1 and Kn+1 = Kn + N(p, q) + 1 + q. Repeated applications of relations (4)
and (7) show that A(p, q) is the inductive limit of the sequence A1 ⊆ A2 ⊆ · · · . Rela-
tions (4) and (7) define a map from C∗

(
S(n,−Kn,Kn)

)
to C∗

(
S(n+1,−Kn+1,Kn+1)

)
by sending the terms on the left, read in the first C∗-algebra to the terms on the right,
read in the second C∗-algebra. Call the limit of this sequence C , and write Cn for
C∗
(

S(n,−Kn,Kn)
)

. The analysis carried out above implies that the map Cn → Cn+1

sends each minimal direct summand of Cn with non-zero multiplicities into every
minimal direct summand of Cn+1. It follows from this that all of these maps are
injective and that C is a simple C∗-algebra. We get a commutative diagram:

C1








� � �� C2








� � �� . . . �� C








A1
� � �� A2

� � �� . . . �� A(p, q).

Since C is simple the last downward map is an isomorphism (with inverse given
by the universal property of A(p, q)), and hence so are all the downward maps at the
finite stages. In fact it is now easy to see that A

(
S(n, L,K)

)
∼= C∗

(
S(n, L,K)

)
by the

obvious map for any S(n, L,K), and we henceforth identify them in this way.
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It is easy to see that the map α is a bijection of the set of generators with itself that
preserves the relations and so extends to an automorphism α̂ of A(p, q).

The proof is concluded by showing that there exists a covariant homomorphism of(
A(p, q), α̂

)
onto (O2 �αλ T, α̂λ) and referring to [Bl] or [OP] (that such a map must

be an isomorphism follows from simplicity of A(p, q)). We have already observed
that the E’s along with relations (1)–(4) give a presentation of e

(
(M2∞ ⊗K) �α̃ T

)
e.

The explicit correspondence is given as follows. If we identify the letter a with 1 and
b with 2, then the matrix units Ew,w for w, v ∈ W n are in a natural correspondence
with the matrix units of M2n coming from its expression as an n-fold tensor prod-
uct of copies of M2. With this identification Ek,n

v,w gets mapped to the corresponding
matrix unit in the k-th direct summand of M2n ⊗C0(Z) in our direct limit decompo-
sition of e

(
(M2∞ ⊗ K) �α̃ T

)
e. Let V denote the adjoined unitary in the multiplier

algebra of (M2∞ ⊗ K) �α̃ T �β̃ Z implementing the action β̃ ′ ′. Then if we assume

the identification of the matrix units with the E’s already made, we may send V k,n

to
∑

w∈W n+1 (Ek,n+1
w,w Ve) and check that relations (1)–(7) are satisfied. Straightforward

computations then show that the ∗-homomorphism into O2 �αλ T given by the uni-
versal property of A(p, q) has a dense image and carries α̂ onto α̂ ′ ′.

Definition 3.4 In [ELP] the following definitions are given. A zero dimensional
NCCW-complex is just a finite dimensional C∗-algebra. A one-dimensional NCCW-
complex is a pull-back of the following form. Let F1 and F2 be two finite dimensional
C∗-algebras with unital maps α1, α2 : F1 → F2. Let ev(0), ev(1) denote the maps
from F2 ⊗ C[0, 1] to F2 given by evaluation at zero and one respectively. We then
form the pull-back of the following diagram:

F1	α1⊕α2

F2 ⊗C[0, 1] −−−−−−→
ev(0)⊕ev(1)

F2 ⊕ F2.

We shall weaken these requirements slightly. Define a non-unital one-dimensional
NCCW-complex as a pull-back as above, but without the requirement that the maps
α1 and α2 be unital. Given a description of a non-unital one-dimensional NCCW-
complex as above we call F1 the zero skeleton, F2 ⊗ C[0, 1] the one-cell and the map
α1 ⊕ α2 the attaching map.

We then have the following corollary.

Corollary 3.5 For any rational number λ ∈ Q ∩ (0,∞) \ {1}, O2 �αλ R is an in-
ductive limit of non-unital one-dimensional NCCW-complexes with the property that
every direct summand of the zero skeleton is included with non-zero multiplicity into
each direct summand of the fibre of the one-cell at both endpoints by the attaching map.

Proof Observe that both An and α̂(An) are included into An+1 in the fashion de-
scribed. If we let Bn denote the non-unital NCCW-complex consisting of continuous
functions from [0, 1] into An+1 that are in An at zero and whose value at one is α̂ of
their value at zero we get an increasing sequence B1 ⊆ B2 ⊆ · · · , of sub-C∗-algebras
of Mα̂

(
A(p, q)

)
whose union is dense.
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4 Stable Relations and the Main Result for O2

In this section we shall require some results about stable relations. We refer the reader
to [L] and [ELP] for details.

We use the notation C∗〈G|R〉 to denote the universal C∗-algebra with generators
G subject to the relations R, if it exists. C∗〈{x1, . . . , xn} | ‖xi‖ ≤ 2〉 does exist and we
shall denote it by F(2)

n . In the following we shall regard relations among n variables
to be just elements of this C∗-algebra. We say that a C∗-algebra C∗〈G|R〉 is finitely
presented if R and G are both finite sets. As observed in [ELP, 2.2.5] this is no real
constraint on R.

Definition 4.1 (cf. [L, 13.2.2]) The n-tuple (a1, . . . , an) of elements in a C∗-algebra
A is called a representation of a set of relations R ⊆ F(2)

n if ‖a j‖ ≤ 2 and Φa(p) = 0
for all p ∈ R, where Φa : F(2)

n → A is induced by xi �→ ai . If for some δ < 1
only ‖Φa(p)‖ ≤ δ is required to hold for all p ∈ R, then (a1, . . . , an) is called a
δ-representation.

Definition 4.2 (cf. [L, 13.2.1]) By a finite, bounded set of relations in n variables we
mean a finite subset R of F(2)

n such that ‖x j + IR‖ ≤ 1, where IR is the ideal generated
by R.

Definition 4.3 A finite, bounded set of relations R in F(2)
n is said to be weakly stable

if for every ε > 0 there exists a δ > 0 such that if (a1, . . . , an) is a δ-representation
of R in a C∗-algebra A there exists a representation (b1, . . . , bn) of R in A such that
‖ai − bi‖ < ε for i = 1, . . . , n.

It follows from the results of [ELP] and [L] that any non-unital one-dimensional
NCCW-complex can be finitely presented with a weakly stable set of relations (in fact
we may assume just one relation).

Lemma 4.4 A projectionless quotient of a non-unital one-dimensional NCCW- com-
plex having the property that every direct summand of the zero skeleton is mapped non-
trivially into every direct summand of the fibre of the one-cell at both endpoints by the
attaching map is a non-unital one-dimensional NCCW-complex.

Proof Suppose we are given a non-unital one-dimensional NCCW-complex satis-
fying our hypotheses: A is isomorphic to the pullback of F1 and F2 ⊗ C[0, 1] with
α1 ⊕ α2 : F1 → F2 ⊕ F2 and ev(0) ⊕ ev(1) : F2 ⊗ C[0, 1] → F2 ⊕ F2 where F1 and
F2 are finite dimensional algebras and both α1 and α2 map every direct summand of
F1 into every direct summand of F2 with non-zero multiplicity. Then the primitive
spectrum of A, denoted σ(A), is the union of a finite set, identified with the spectrum
of F1, and a finite number of copies of R, identified with σ

(
F2 ⊗C0(0, 1)

)
, with the

topology specified as follows (cf. [El2]). The relative topology on σ(F1) is the discrete
topology, each line in σ

(
F2 ⊗C0(0, 1)

)
is open in σ(A) and homeomorphic to a line

in the relative topology, taking the union of any line in σ
(

F2 ⊗ C0(0, 1)
)

with any
point of σ(F1) with the relative topology gives the one point compactification of the
line, and every point in σ(A) is closed.
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Let I be a proper ideal in A. The spectrum of I is then identified in a natural
way with an open subset of σ(A), and the spectrum of A/I is homeomorphic to the
compliment σ(A) \ σ(I). We shall first see what the set σ(I) can be.

Consider σ(I)∩ σ(F1). Suppose this set is not empty and is not all of σ(F1). Since
it is not empty, there is some neighbourhood of a point in σ(F1) contained in it,
and this neighbourhood must contain the ends of all of the lines. Thus any point
in σ(F1) \ σ(I) is an isolated point of σ(A/I), which therefore has an elementary
C∗-algebra as a direct summand, and in particular has projections.

Suppose that σ(I) ⊇ σ(F1). Then we have that σ(A/I) is contained in the union
of finitely many closed intervals, and A/I is a quotient of a finite direct sum of matrix
algebras over C[0, 1]. As these are unital, so is A/I, in particular, it has a projection.

We have reduced the proof of our lemma to the case in which σ(I) is contained in
σ
(

F2⊗C(0, 1)
)

. If we write σ
(

F2⊗C(0, 1)
)
∼= L1

∐
· · ·
∐

Lk where each L is home-
omorphic to R, it is easy to see that, if A/I is projectionless, then for each i, Li ∩ σ(I)
must be connected (otherwise A/I would contain a quotient of a matrix algebra over
C[0, 1]). Furthermore, σ(I) can not intersect all of the Li ’s non-trivially or we would
again have projections in the quotient. Thus we have only to consider the case in
which σ(I) is a disjoint union of open intervals, at most one in each Li , and not in
every Li . We show that in this case the quotient is a non-unital one-dimensional
NCCW-complex. Suppose F2 = A1 ⊕ · · · ⊕Ak, where each A is a full matrix algebra,
and let ϕ(1)

j , ϕ(2)
j denote the maps from F1 to the j-th minimal direct summand of F2

at the left and right endpoints respectively. Suppose further that the ideal I cuts the
lines Ll to Lk. Define F ′1 and F ′2 as follows. F ′1 = F1⊕(A1

l ⊕· · ·⊕A1
k)⊕(A2

l ⊕· · ·⊕A2
k)

and F ′2 = (A1⊕· · ·⊕Al−1)⊕(A1
l ⊕· · ·⊕A1

k)⊕(A2
l ⊕· · ·⊕A2

k), where the superscripts
are just to distinguish the two copies. Define maps α ′1, α ′2 from F ′1 to F ′2 as follows.
α ′1 maps F1 into the 1-st l− 1 summands of F ′2 by ϕ(1)

1 , . . . , ϕ(1)
l−1 respectively. It maps

F1 into A1
l , . . . ,A

1
k by ϕ(1)

l , . . . , ϕ(1)
k respectively. α ′1 maps A1

l , . . . ,A
1
k to A2

l , . . . ,A
2
k

respectively each with the identity map. All the other partial maps for α ′1 are zero. α ′2
maps F1 into the first l − 1 summands of F ′2 by ϕ(2)

1 , . . . , ϕ(2)
l−1 respectively. It maps

F1 into A2
l , . . . ,A

2
k by ϕ(2)

l , . . . , ϕ(2)
k respectively, it maps A2

l , . . . ,A
2
k to A1

l , . . . ,A
1
k re-

spectively, each with the identity map, and all of the other partial maps for α ′2 are
zero. It is then easy to see that A/I is isomorphic to the non-unital one-dimensional
NCCW-complex with zero-skeleton F ′1, one-cell F ′2 ⊗ C[0, 1] and attaching map
α ′1 ⊕ α

′
2.

We shall refer to the additional condition on a non-unital one-dimensional
NCCW-complex mentioned in Lemma 4.4 as the endpoint property.

Definition 4.5 We shall say that a separable C∗-algebra A has the local approxi-
mation property with respect to a class of C∗-algebras C if for every finite set F of
elements of A and every ε > 0 there is a C ∈ C and a ∗-homomorphism ϕ : C → A
such that each element of F lies within ε of the image of ϕ.

Lemma 4.6 If a separable projectionless C∗-algebra has the local approximation prop-
erty with respect to the class of non-unital one-dimensional NCCW-complexes having
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the endpoint property, then it is an inductive limit of a sequence of non-unital one-
dimensional NCCW-complexes.

Proof From Lemma 4.4 we may assume that the algebra has the local approximation
property with injective maps for the class of non-unital one-dimensional NCCW-
complexes. The statement now follows from [L, 15.2.2].

We refer the reader to [Dix] for facts about continuous fields of C∗-algebras.

Lemma 4.7 Let δ and ε such that 1 > δ > 0 and 1 − δ > ε > 0 be given. Let
{A(t) | t ∈ X} be a continuous field of C∗-algebras over a topological space X with
continuous sectionsΓ, t0 ∈ X, and suppose that y1, . . . , yn ∈ Γ are such that ‖yi(t0)‖ <
2 and

(
y1(t0), . . . , yn(t0)

)
is a δ-representation of a relation r ∈ F(2)

n . Then there

is a neighbourhood V of t0 such that for all s ∈ V ,
(

y1(s), . . . , yn(s)
)

is a (δ + ε)-
representation of r.

Proof Let P be a ∗-polynomial in the generators x1, . . . , xn of F(2)
n such that ‖P−r‖ <

ε/3 in F(2)
n . Since s �→

∥∥P
(

y1(s), . . . , yn(s)
)∥∥ is continuous on X there is some

neighbourhood V of t0 on which it varies by less than ε/3 and on which ‖yi(·)‖ < 2.
If ψs : F(2)

n → A(s) denotes the map induced by xi �→ yi(s), which is well defined for
s ∈ V , then ‖ψs(r)‖ < δ + ε for all s in V .

Lemma 4.8 Let {A(t) | t ∈ X} be a continuous field of C∗-algebras over a topological
space X, and suppose that B ∼= C∗〈x1, . . . , xn | r〉 is a finitely generated C∗-algebra
described by a weakly stable relation r. Let ε > 0, t0 ∈ X and continuous sections
y1, . . . , ym be given. Suppose that there is a ∗-homomorphism ψt0 : B → A(t0) such
that {y1(t0), . . . , ym(t0)} ⊆ε/2 ψt0 (B). Then there is a neighbourhood V of t0 such that
for every s ∈ V there is a ∗-homomorphism ψs : B→ A(s) with {y1(s), . . . , ym(s)} ⊆ε
ψs(B).

Proof Find ∗-polynomials p1, . . . , pm in n variables such that

∥∥ p j

(
ψt0 (x1), . . . , ψt0 (xn)

)
− y j(t0)

∥∥ < 3ε/4

for j = 1, . . . ,m. Find continuous sections z1, . . . , zn such that zi(t0) = ψt0 (xi) for
i = 1, . . . , n. There exists a neighbourhood U of t0 such that for all s ∈ U and for
each j,

∥∥ p j

(
z1(s), . . . , zn(s)

)
− y j(s)

∥∥ < 3ε/4. Choose ε ′ such that if a1, . . . , an,
a ′1, . . . , a

′
n are elements in a C∗-algebra and ‖ai − a ′i ‖ < ε ′ for i = 1, . . . , n, then

for each j, ‖p j(a1, . . . , an) − p j(a ′1, . . . , a
′
n)‖ < ε/4. There exists a δ such that if

(w1, . . . ,wn) is a δ-representation of r in a C∗-algebra, then there exists a represen-
tation (w ′1, . . . ,w

′
n) of r with ‖wi − w ′i ‖ < ε ′ for each i. By Lemma 4.7 above there

exists a neighbourhood W of t0 such that if s ∈ W then
(

z1(s), . . . , zn(s)
)

is a δ-
representation of r. Thus for s ∈ W there exists a representation (zs

1, . . . , z
s
n) of r in

A(s) with ‖zs
i − zi(s)‖ < ε ′ for each i. Define ψs : B → A(s) for each s ∈ U ∩W

by xi �→ zs
i for i = 1, . . . , n. Now it is easy to see that for s ∈ U ∩W we have

{y1(s), . . . , ym(s)} ⊆ε ψs(B).
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Corollary 4.9 Suppose t ∈ Q ∩ (0,∞) \ {1}, ε > 0, and f1, . . . , fn ∈ Cc(R,O2) are
given. Then there exists a neighbourhood U of t, a non-unital one-dimensional NCCW-
complex A with the endpoint property, and, for every s ∈ U , a ∗-homomorphism
ψs : A → O2 �αs R such that {ϕs( f1), . . . , ϕs( fn)} ⊆ε ψs(A), where ϕs denotes the
canonical inclusion of Cc(R,O2) into O2 �αs R.

Proof The corollary is immediate from Lemma 4.8 above and Corollary 3.5.

Theorem 4.10 (The main result for O2) The set of irrational numbers λ for which
O2 �αλ R is an inductive limit of non-unital one-dimensional NCCW-complexes is a
dense set of Baire category 2 in (0,∞).

Proof From Lemma 4.6 we only have to show that the local approximation property
with respect to the class of non-unital one-dimensional NCCW-complexes with the
endpoint property holds for such a set. Pick a countable dense subset of Cc(R,O2)
and call it G. To conclude that a given O2 �αs R has the local approximation property
it will suffice to show that the elements in ϕs(G) may be approximated. From Corol-
lary 4.9 above, for each finite subset F ⊆ G, ε > 0, and each t ∈ Q∩(0,∞)\{1} there
is a neighbourhood V (t, F, ε) of t , a non-unital one-dimensional NCCW-complex
B(t, F, ε) with the endpoint property and for every s ∈ V (t, F, ε) a ∗-homomorphism
ψ(t, s, F, ε) : B(t, F, ε) → O2 �αs R such that ϕs(F) ⊆ε ψ(t, s, F, ε)B(t, F, ε). Let
G(ε, F) =

⋃
t∈Q∩(0,∞)\{1}V (t, F, ε). Then for every s ∈ G(ε, F), ϕs(F) is approx-

imately contained to within ε by the image of a non-unital one-dimensional NCCW-
complex with the end point property. Observe that G(ε, F) contains a dense open
set. Let εn be a sequence of positive numbers converging to zero and let F(G) denote
the set of finite subsets of G. Then the set G =

⋂
F∈F(G)

⋂
εn

G(εn, F) is contained in
the set of points s in (0,∞) for which O2 �αs R has the local approximation property,
and G clearly contains a dense Gδ set. It follows that G \ Q is a dense set of Baire
category 2.

5 On and Closing Remarks

In this section we shall describe how the results of Sections 2 to 4 generalise to On for
n > 2. As the statements and their proofs closely resemble those for O2, we shall be
brief.

The actions of R on On we are considering depend on n real parametersλ1, . . . , λn.
Omitting the trivial case and rescaling we may assume that λ1 = 1. By [Rie] we
get a continuous field of C∗-algebras over Rn−1 with fibres On �αλ R where λ =
(1, λ2, . . . , λn) is a multi-index. As in the case of O2 we shall analyse the fibres for
which αλ is periodic, that is, when λ1, . . . , λn are all rational numbers. If λ =
(1, λ2, . . . , λn) with λ2, . . . , λn ∈ Q , we may by rescaling the real parameter get
a new action, also to be called αλ, with parameters p1, . . . , pn ∈ Z such that
gcd(p1, . . . , pn) = 1. We may restrict attention to the case in which the p’s are all dis-
tinct. [Bl, Prop. 10.3.2] may be applied to conclude that On �αλ R ∼= Mα̂λ(On �αλ T).
We proceed to analyse On �αλ T in the same way as for the special case of O2, writing
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On as e(Mn∞ ⊗ K �β Z)e etc. We may again display the results of this analysis in
diagrams.

. . . ◦ ◦ ◦

�����������������

����
��

��
�

�� �����������������
α−1

�� ◦ ◦ . . .

. . . ◦ ◦ ◦ ◦ ◦ . . .

Diagram 5

. . . ◦ ◦ ◦ ◦

��
























�����������������

����
��

��
�

��

α−1

�� ◦ . . .

. . . ◦ ◦ ◦ ◦ ◦ . . .

Diagram 6

In these diagrams a dot in the j-th row represents a copy of Mn j and the dots and
thin arrows give a Bratteli diagram for an inductive limit of algebras Mn j⊗C0(Z). The
number of thin downward arrows emanating from each dot is n, the fat arrows, as
before denote partial isometries setting minimal projections in the upper dots equiv-
alent to minimal projections in the lower dots. The finite case is distinguished here by
having all of the thin arrows on the same side of the fat arrow (i.e., all the parameters
of the same sign). By an analysis similar to that carried out in Section 3 for the special
case of O2, one can show that the universal C∗-algebra described by a diagram such
as Diagram 6 above is an AF algebra. Using the observation that if p1, . . . , pn are
natural numbers with greatest common divisor 1 then there some natural number
N such that any k ≥ N may be written as a sum of positive multiples of p1, . . . , pn,
we may again get an inductive system for this algebra in which each minimal direct
summand of the n-th algebra is mapped with non-zero multiplicity into each min-
imal direct summand of the n + 1-st algebra. From this analogues of Theorem 3.1
and Corollary 3.5 follow. The arguments of Section 4 apply unchanged to prove the
following.

Theorem 5.1 (The main result for On) The set of points (λ2, . . . , λn) in (0,∞)n−1

for which On �αλ R is an inductive limit of non-unital one-dimensional NCCW-
complexes contains a dense Gδ set.
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Remark The diagrammatic representation of the A(p, q)’s allows one to read off
fairly simple expressions for their K-theory. In Section 3 we found that the minimal
direct summands of C∗

(
S(n, L,K)

)
are labelled by the q leftmost dots in the lower

row of the diagram for S(n, L,K), (q > p), and that the minimal projections for these
dots are minimal in there respective summands of C∗

(
S(n, L,K)

)
. Thus the ordered

K0 group of A(p, q) is a direct limit of copies of the simplicial group Zq.
It is easy to see that for any projection in one of the C∗

(
S(n, L,K)

)
’s, A(p, q)

contains an equivalent orthogonal projection. Since A(p, q) is a simple AF algebra
its K0 group is a simple ordered group, so every element is an order unit. We thus
conclude that the scale of K0

(
A(p, q)

)
is the whole positive cone, and that A(p, q) is

stable.
It remains only to determine the multiplicity matrices for the maps Zq → Zq for

some suitably chosen nest of finite dimensional sub-C∗-algebras. We shall describe
recursively a sequence of sub-diagrams of the diagram for A(p, q), and the sub-C∗-
algebras will be those given by the generators represented in these sub-diagrams. The
first sub-diagram, D0, is just S(0, 0, 0). Dn is a sub-diagram of the diagram for A(p, q)
that is contained between the n-th and n + 1-st rows of dots. Dn+1 will be the sub-
diagram contained between the n + 1-st and n + 2-nd rows given as follows. In the
n + 1-st row Dn+1 includes all of the dots included in the bottom row of Dn, and
one more on the left. Dn+1 contains all of the arrows emanating from these dots.
In the n + 2-nd row Dn+1 contains the dots at the feet of any of the arrows, fat or
thin, in Dn+1, and any dot between two such. (Note that in this context it would only
make sense to talk of omitting fat arrows from such a sub-diagram, as the thin ones
represent relations among the generators, not additional generators.) In Diagram 7
the leftmost portion of two successive sub-diagrams for A(1, 2) is shown.

◦

������������������

����
��

��
�

��

. . .

◦Q



�����������������

����
��

��
��

��

◦A

������������������

����
��

��
��

��

◦B

������������������

����
��

��
��

��

◦

������������������

����
��

��
��

��

. . .

◦A ′ ◦B ′ ◦R ◦S ◦ ◦ . . .

Diagram 7

If we denote by An the sub-C∗-algebra of A(p, q) described by Dn, applications of
the relations described in Section 3 imply that An ⊆ An+1 and

⋃
An = A(p, q).

To determine the multiplicity with which a minimal direct summand of An is in-
cluded into a minimal direct summand of An+1, we need only check the rank of a
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minimal projection of the summand of An when cut down by the unit of the sum-
mand of An+1 in question. Even though the An’s are not strictly speaking of the form
C∗
(

S(n, L,K)
)

(they differ only in that they may not have an odd number of dots
in the top row of their corresponding diagram), the analysis of Section 3 may still be
applied. A minimal projection in a given minimal direct summand of An is given by
taking a minimal projection in one of the q leftmost dots in the lower row of Dn, as
we saw in Section 3. For a particular minimal direct summand of An+1 we find the
desired multiplicity by writing one of these projections as a sum of two projections in
dots on the (n+2)-nd row and using the rules given in Lemma 3.3 for determining the
multiplicities with which these dots are included in the minimal direct summands of
An+1. Notice that this implies that the matrix describing the multiplicities depends on
only the leftmost portion of Dn and Dn+1, as illustrated in Diagram 7, and therefore
does not depend on n.

We illustrate this procedure for A(1, 2). The minimal direct summands for an
algebra An are labelled by the dots marked A, B in the diagram, and those for An+1 by
the dots marked A ′, B ′. To get from A to A ′ by going down a thin arrow and along a
polymer there is only one choice: One goes down to dot R, up to dot Q and down to
A ′. To get from dot B to dot A ′ one may go down to R, up to Q and down to A ′, or
down to S, up to A, down to R, up to Q and down to A ′. Thus the summand of An

labelled A includes into the summand of An+1 labelled A ′ with multiplicity one, the
summand of An labelled B includes into the same summand with multiplicity two.
Doing the other two combinations we conclude that

K0

(
A(1, 2)

)
∼= lim
−→

{
Z2,

(
1 2
2 3

)}
.

As this matrix has determinant−1, K0

(
A(1, 2)

)
∼= Z2 as a group. Its positive cone

is the half space lying above the line through the origin with slope (1−
√

5)/2.

Remark Finally, a remark about the diagrams for the infinite case. These are really
not important for the object of this paper, but they do perhaps provide some addi-
tional insight about the conditions on the projectionless/purely infinite dichotomy
found by Kishimoto and Kumjian. Consider Diagram 5. Starting at a given dot in
this diagram, one may, by going first down to the right several times and then down
to the left several times, return by thin arrows to the same column. Thus the fat
arrows going straight down set projections in the dot we started with equivalent to
sub-projections of themselves, when they are written in terms of elements of a lower
row. So in these algebras one can “see” some of the infinite projections.
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