
TPLP 23 (4): 884–899, 2023. c© The Author(s), 2023. Published by Cambridge University Press.

This is an Open Access article, distributed under the terms of the Creative Commons Attribution

licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribu-

tion and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068423000133 First published online 17 July 2023

884

“What if?” in Probabilistic Logic Programming∗†
RAFAEL KIESEL

TU Wien, Vienna, Austria
(e-mail: rafael.kiesel@tuwien.ac.at)

KILIAN RÜCKSCHLOß and FELIX WEITKÄMPER
Ludwig-Maximilians-Universität München, Munich, Germany

(e-mails: kilian.rueckschloss@lmu.de, felix.weitkaemper@lmu.de)

submitted 25 May 2023; accepted 12 June 2023

Abstract

A ProbLog program is a logic program with facts that only hold with a specified probability. In
this contribution, we extend this ProbLog language by the ability to answer “What if” queries.
Intuitively, a ProbLog program defines a distribution by solving a system of equations in terms
of mutually independent predefined Boolean random variables. In the theory of causality, Judea
Pearl proposes a counterfactual reasoning for such systems of equations. Based on Pearl’s cal-
culus, we provide a procedure for processing these counterfactual queries on ProbLog programs,
together with a proof of correctness and a full implementation. Using the latter, we provide
insights into the influence of different parameters on the scalability of inference. Finally, we also
show that our approach is consistent with CP-logic, that is with the causal semantics for logic
programs with annotated with disjunctions.

KEYWORDS: counterfactual reasoning, probabilistic logic programming, ProbLog, LPAD,
causality, FCM-semantics, CP-logic

1 Introduction

Humans show the remarkable skill to reason in terms of counterfactuals. This means we

reason about how events would unfold under different circumstances without actually

experiencing all these different realities. For instance, we make judgments like: “If I had

taken a bus earlier, I would have arrived on time.” without actually experiencing the

alternative reality in which we took the bus earlier. As this capability lies at the basis

of making sense of the past, planning courses of actions, making emotional and social

judgments as well as adapting our behavior, one also wants an artificial intelligence to

reason counterfactually (Hoeck 2015).

Here, we focus on the counterfactual reasoning with the semantics provided by Pearl

(2000). Our aim is to establish this kind of reasoning in the ProbLog language of De Raedt

∗ All authors contributed equally to this work.
† This publication was supported by LMUexcellent, funded by the Federal Ministry of Education and
Research (BMBF) and the Free State of Bavaria under the Excellence Strategy of the Federal Gov-
ernment and the Länder. Additionally, it was supported by FWF project W1255-N23.

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068423000133
https://orcid.org/0000-0002-8866-3452
mailto:rafael.kiesel@tuwien.ac.at
https://orcid.org/0000-0002-7891-6030
https://orcid.org/0000-0002-3895-8279
mailto:kilian.rueckschloss@lmu.de
mailto:felix.weitkaemper@lmu.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068423000133&domain=pdf
https://doi.org/10.1017/S1471068423000133

What if? 885

et al. (2007). To illustrate this issue, we introduce a version of the sprinkler example from

Pearl (2000), Section 1.4.

It is spring or summer, written szn spr sum, with a probability of π1 := 0.5. Consider

a road, which passes along a field with a sprinkler on it. In spring or summer, the sprinkler

is on, written sprinkler, with probability π2 := 0.7. Moreover, it rains, denoted by rain,

with probability π3 := 0.1 in spring or summer and with probability π4 := 0.6 in fall

or winter. If it rains or the sprinkler is on, the pavement of the road gets wet, denoted

by wet. When the pavement is wet, the road is slippery, denoted by slippery. Under

the usual reading of ProbLog programs, one would model the situation above with the

following program P:

0.5::u1. 0.7::u2. 0.1::u3. 0.6::u4.

szn spr sum :- u1. sprinkler :- szn spr sum, u2.

rain :- szn spr sum, u3. rain :- \+szn spr sum, u4.

wet :- rain. wet :- sprinkler. slippery :- wet.

To construct a semantics for the programP, we generate mutually independent Boolean

random variables u1-u4 with π(ui) = πi for all 1 ≤ i ≤ 4. The meaning of the program

P is then given by the following system of equations:

szn spr sum := u1 rain := (szn spr sum ∧ u3) ∨ (¬szn spr sum ∧ u4)

sprinkler := szn spr sum ∧ u2 wet := (rain ∨ sprinkler) slippery := wet (1)

Finally, assume we observe that the sprinkler is on and that the road is slippery. What

is the probability of the road being slippery if the sprinkler were switched off?

Since we observe that the sprinkler is on, we conclude that it is spring or summer. How-

ever, if the sprinkler is off, the only possibility for the road to be slippery is given by rain.

Hence, we obtain a probability of 0.1 for the road to be slippery if the sprinkler were off.

In this work, we automate this kind of reasoning. However, to the best of our knowl-

edge, current probabilistic logic programming systems cannot evaluate counterfactual

queries.While we may ask what the probability of slippery is if we switch the sprinkler

off and observe some evidence, we obtain a zero probability for sprinkler after switching

the sprinkler off, which renders the corresponding conditional probability meaningless.

To circumvent this problem, we adapt the twin network method of Balke and Pearl

(1994) from causal models to probabilistic logic programming, with a proof of correct-

ness. Notably, this reduces counterfactual reasoning to marginal inference over a modified

program. Hence, we can immediately make use of the established efficient inference en-

gines to accomplish our goal.

We also check that our approach is consistent with the counterfactual reasoning for

logic programs with annotated disjunctions or LPAD-programs (Vennekens et al. 2004),

which was presented by Vennekens et al. (2010). In this way, we fill the gap of showing that

the causal reasoning for LPAD-programs of Vennekens et al. (2009) is indeed consistent

with Pearl’s theory of causality and we establish the expressive equivalence of ProbLog

and LPAD regarding counterfactual reasoning.

Apart from our theoretical contributions, we provide a full implementation by making

use of the aspmc library (Eiter et al. 2021). Additionally, we investigate the scalability

of the two main approaches used for efficient inference, with respect to program size

and structural complexity, as well as the influence of evidence and interventions on

performance.

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

886 R. Kiesel et al.

2 Preliminaries

Here, we recall the theory of counterfactual reasoning from Pearl (2000) before we intro-

duce the ProbLog language of De Raedt et al. (2007) in which we would like to process

counterfactual queries.

2.1 Pearl’s formal theory of counterfactual reasoning

The starting point of a formal theory of counterfactual reasoning is the introduction

of a model that is capable of answering the intended queries. To this aim, we recall

the definition of a functional causal model from Pearl (2000), Sections 1.4.1 and 7

respectively:

Definition 1 (Causal Model)

A functional causal model or causal model M on a set of variables V is a system of

equations, which consists of one equation of the form X := fX(pa(X), error(X)) for each

variable X ∈ V. Here, the parents pa(X) ⊆ V of X form a subset of the set of variables

V, the error term error(X) of X is a tuple of random variables, and fX is a function

defining X in terms of the parents pa(X) and the error term error(X) of X.

Fortunately, causal models do not only support queries about conditional and uncondi-

tional probabilities but also queries about the effect of external interventions. Assume we

are given a subset of variables X := {X1, ..., Xk} ⊆ V together with a vector of possible

values x := (x1, ..., xk) for the variables in X. In order to model the effect of setting the

variables in X to the values specified by x, we simply replace the equations for Xi inM
by Xi := xi for all 1 ≤ i ≤ k.

To guarantee that the causal modelsM andMdo(X:=x) yield well-defined distributions

πM() and πM(|do(X := x)), we explicitly assert that the systems of equations M
and Mdo(X:=x) have a unique solution for every tuple e of possible values for the error

terms error(X), X ∈ V and for every intervention X := x.

Example 1

The system of equations (1) from Section 1 forms a (functional) causal model on

the set of variables V := {szn spr sum, rain, sprinkler, wet, slippery} if we define

error(szn spr sum) := u1, error(sprinkler) := u2 and error(rain) := (u3, u4). To pre-

dict the effect of switching the sprinkler on, we simply replace the equation for sprinkler

by sprinkler := True.

Finally, let E,X ⊆ V be two subset of our set of variables V. Now suppose we observe

the evidence that E = e and ask ourselves what would have been happened if we had

set X := x. Note that in general X = x and E = e contradict each other. In this case,

we talk about a counterfactual query.

Example 2

Reconsider the query π(slippery|slippery, sprinkler, do(¬sprinkler)) in the introduc-

tion, that is in the causal model (1) we observe the sprinkler to be on and the road to be

slippery while asking for the probability of the road to be slippery if the sprinkler were

off. This is a counterfactual query as our evidence {sprinkler, slippery} contradicts our
intervention do(¬sprinkler).

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

What if? 887

To answer this query based on a causal model M on V, we proceed in three steps:

In the abduction step, we adjust the distribution of our error terms by replacing the

distribution πM(error(V)) with the conditional distribution πM(error(V)|E = e) for all

variables V ∈ V. Next, in the action step we intervene in the resulting model according

to X := x. Finally, we are able to compute the desired probabilities πM(|E = e, do(X :=

x)) from the modified model in the prediction step (Pearl 2000, Section 1.4.4). For an

illustration of the treatment of counterfactuals, we refer to the introduction.

To avoid storing the joint distribution πM(error(V)|E = e) for V ∈ V, Balke and

Pearl (1994) developed the twin network method. They first copy the set of variables V

to a set V∗. Further, they build a new causal model MK on the variables V ∪ V∗ by

setting

V :=

{
fX(pa(X), error(X)), if V = X ∈ V

fX(pa(X)∗, error(X)), if V = X∗ ∈ V∗ .

for every V ∈ V ∪ V∗, where pa(X)∗ := {X∗|X ∈ pa(X)}. Further, they intervene

according to X∗ := x to obtain the modelMK,do(X∗:=x). Finally, one expects that

πM(|E = e, do(X := x)) = πMK,do(X∗:=x)(∗|E = e).

In Example 8, we demonstrate the twin network method for the ProbLog program P and

the counterfactual query of the introduction.

2.2 The ProbLog language

We proceed by recalling the ProbLog language from De Raedt et al. (2007). As the

semantics of non-ground ProbLog programs is usually defined by grounding, we will

restrict ourselves to the propositional case, that is we construct our programs from a

propositional alphabet P:

Definition 2 (propositional alphabet)

A propositional alphabetP is a finite set of propositions together with a subset E(P) ⊆ P

of external propositions. Further, we call I(P) = P\E(P) the set of internal propositions.

Example 3

To build the ProbLog program P in Section 1, we need the alphabet P consisting of the

internal propositions I(P) := {szn spr sum, sprinkler, rain, wet, slippery} and the

external propositions E(P) := {u1, u2, u3, u4}.
From propositional alphabets, we build literals, clauses, and random facts, where ran-

dom facts are used to specify the probabilities in our model. To proceed, let us fix a

propositional alphabet P.

Definition 3 (Literal, Clause, and Random Fact)

A literal l is an expression p or ¬p for a proposition p ∈ P. We call l a positive literal if it

is of the form p and a negative literal if it is of the form ¬p. A clause LC is an expression

of the form h ← b1, ..., bn, where head(LC) := h ∈ I(P) is an internal proposition

and where body(LC) := {b1, ..., bn} is a finite set of literals. A random fact RF is an

expression of the form π(RF) :: u(RF), where u(RF) ∈ E(P) is an external proposition

and where π(RF) ∈ [0, 1] is the probability of u(RF).

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

888 R. Kiesel et al.

Example 4

In Example 3, we have that szn spr sum is a positive literal, whereas ¬szn spr sum is a

negative literal. Further, rain← ¬szn spr sum, u4 is a clause and 0.6 :: u4 is a random

fact.

Next, we give the definition of logic programs and ProbLog programs:

Definition 4 (Logic Program and ProbLog Program)

A logic program is a finite set of clauses. Further, a ProbLog program P is given by a

logic program LP(P) and a set Facts(P), which consists of a unique random fact for

every external proposition. We call LP(P) the underlying logic program of P.

To reflect the closed world assumption, we omit random facts of the form 0 :: u in the

set Facts(P).

Example 5

The program P from the introduction is a ProbLog program. We obtain the correspond-

ing underlying logic program LP(P) by erasing all random facts of the form :: ui from P.

For a set of propositions, Q ⊆ P a Q-structure is a function M : Q →
{True, False}, p �→ pM. Whether a formula φ is satisfied by a Q-structureM, written

M |= φ, is defined as usual in propositional logic. As the semantics of a logic program

P with stratified negation, we take the assignment E �→ M(E ,P) that relates each E-

structure E with the minimal modelM(E ,P) of the program P ∪ E .

3 Counterfactual reasoning: Intervening and observing simultaneously

We return to the objective of this paper, establishing Pearl’s treatment of counterfactual

queries in ProbLog. As a first step, we introduce a new semantics for ProbLog programs

in terms of causal models.

Definition 5 (FCM-semantics)

For a ProbLog program P, the functional causal model semantics or FCM-semantics is

the system of equations that is given by

FCM(P) :=

⎧⎪⎪⎨
⎪⎪⎩p

FCM :=
∨

LC∈LP(P)
head(LC)=p

⎛
⎜⎜⎝ ∧

l∈body(LC)
l internal literal

lFCM ∧
∧

u(RF)∈body(LC)
RF∈Facts(P)

u(RF)FCM

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

p∈I(P)

,

where u(RF)FCM are mutually independent Boolean random variables for every random

fact RF ∈ Facts(P) that are distributed according to π
[
u(RF)FCM

]
= π(RF). Here, an

empty disjunction evaluates to False and an empty conjunction evaluates to True.

Further, we say that P has unique supported models if FCM(P) is a causal model, that

is if it possesses a unique solution for every E-structure E and every possible intervention

X := x. In this case, the superscript FCM indicates that the expressions are interpreted

according to the FCM-semantics as random variables rather than predicate symbols. It

will be omitted if the context is clear. For a Problog program P with unique supported

models, the causal model FCM(P) determines a unique joint distribution πFCM
P on P.

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

What if? 889

Finally, for a P-formula φ we define the probability to be true by

πFCM
P (φ) :=

∑
M P-structure

M|=φ

πFCM
P (M) =

∑
E E-structure
M(E,P)|=φ

πFCM
P (E).

Example 6

As intended in the introduction, the causal model (1) yields the FCM-semantics of the

program P. Now let us calculate the probability πFCM
P (sprinkler) that the sprinkler is

on.

πFCM
P (sprinkler) =

∑
M P-structure
M|=sprinkler

πFCM
P (M) =

∑
E E-structure

M(E,P)|=sprinker

πFCM
P (E) =

= π(u1, u2, u3, u4) + π(u1, u2,¬u3, u4) + π(u1, u2, u3,¬u4)

+ π(u1, u2,¬u3,¬u4)
ui mutually
independent

=

= 0.5 · 0.7 · 0.1 · 0.6 + 0.5 · 0.7 · 0.9 · 0.6 + 0.5 · 0.7 · 0.1 · 0.4 + 0.5 · 0.7 · 0.9 · 0.4 = 0.35

As desired, we obtain that the FCM-semantics consistently generalizes the distribution

semantics of Poole (1993) and Sato (1995).

Theorem 1 (Rückschloß and Weitkämper 2022)

Let P be a ProbLog program with unique supported models. The FCM-semantics de-

fines a joint distribution πFCM
P on P, which coincides with the distribution semantics

πdist
P .�

As intended, our new semantics transfers the query types of functional causal models to

the framework of ProbLog. Let P be a ProbLog program with unique supported models.

First, we discuss the treatment of external interventions.

Let φ be a P-formula and let X ⊆ I(P) be a subset of internal propositions to-

gether with a truth value assignment x. Assume we would like to calculate the probabil-

ity πFCM
P (φ|do(X := x)) of φ being true after setting the random variables in XFCM to

the truth values specified by x. In this case, the Definition 1 and Definition 5 yield the

following algorithm:

Procedure 1 (Treatment of External Interventions)

We build a modified program Pdo(X:=x) by erasing for every proposition h ∈ X each

clause LC ∈ LP(P) with head(LC) = h and adding the fact h← to LP(P) if hx = True.

Finally, we query the program Pdo(X:=x) for the probability of φ to obtain the desired

probability πFCM
P (φ|do(X := x)).

From the construction of the program Pdo(X:=x) in Procedure 1, we derive the following

classification of programs with unique supported models.

Proposition 2 (Characterization of Programs with Unique Supported Models)

A ProbLog program P has unique supported models if and only if for every E-

structure E and for every truth value assignment x on a subset of internal propositions

X ⊆ I(P) there exists a unique model M
(
E ,LP

(
Pdo(X:=x)

))
of the logic program

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

890 R. Kiesel et al.

LP
(
Pdo(X:=x)

)
∪ E . In particular, the program P has unique supported model if its

underlying logic program LP(P) is acyclic. �

Example 7

As the underlying logic program of the ProbLog program P in the introduction is acyclic,

we obtain from Proposition 2 that it is a ProbLog program with unique supported models

that is its FCM-semantics is well-defined.

However, we do not only want to either observe or intervene. We also want to observe

and intervene simultaneously.

Let E ⊆ I(P) be another subset of internal propositions together with a truth value

assignment e. Now suppose we observe the evidence EFCM = e and we ask ourselves

what is the probability πFCM
P (φ|E = e, do(X := x)) of the formula φ to hold if we had

set XFCM := x. Note that again we explicitly allow e and x to contradict each other.

The twin network method of Balke and Pearl (1994) yields the following procedure to

answer those queries in ProbLog:

Procedure 2 (Treatment of Counterfactuals)

First, we define two propositional alphabets Pe to handle the evidence and Pi to han-

dle the interventions. In particular, we set E(Pe) = E(Pi) = E(P) and I(Pe/i) :={
pe/i : p ∈ I(P)

}
with I(Pe) ∩ I(Pi) = ∅. In this way, we obtain maps e/i : P →

Pe/i, p �→
{
pe/i, p ∈ I(P)

p, else
that easily generalize to literals, clauses, programs, etc.

Further, we define the counterfactual semantics of P by PK := Pe ∪ Pi. Next, we

intervene in PK according to do(Xi := x) and obtain the program PK,do(Xi:=x) of

Procedure 1. Finally, we obtain the desired probability πFCM
P (φ|E = e, do(X := x)) by

querying the program PK,do(Xi:=x) for the conditional probability π(φi|Ee = e).

Example 8

Consider the program P of Example 5 and assume we observe that the sprin-

kler is on and that it is slippery. To calculate the probability π(slippery|sprinkler,
slippery,do(¬sprinkler)) that it is slippery if the sprinkler was off, we need to process

the query π(slipperyi|slipperye, sprinklere) on the following program PK,do(¬sprinkleri).

0.5::u1. 0.7::u2. 0.1::u3. 0.6::u4.

szn spr sum e :- u1. sprinkler e :- szn spr sum e, u2.

rain e :- szn spr sum e, u3. rain e :- \+szn spr sum e, u4.

wet e :- rain e. wet e :- sprinkler e. slippery e :- wet e.

szn spr sum i :- u1.

rain i :- szn spr sum i, u3. rain i :- \+szn spr sum i, u4.

wet i :- rain i. wet i :- sprinkler i. slippery i :- wet i.

Note that we use the string to refer to the superscript e/i.

In the Appendix, we prove the following result, stating that a ProbLog program P

yields the same answers to counterfactual queries, denoted πFCM
P (|), as the causal model

FCM(P), denoted πFCM(P)(|).

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

What if? 891

Theorem 3 (Correctness of our Treatment of Counterfactuals)

Our treatment of counterfactual queries in Procedure 2 is correct that is in the situa-

tion of Procedure 2 we obtain that πFCM
P (φ|E = e, do(X := x)) = πFCM(P)(φ|E = e,

do(X := x)).

4 Relation to CP-logic

Vennekens et al. (2009) establish CP-logic as a causal semantics for the LPAD-programs

of Vennekens et al. (2004). Further, recall Riguzzi (2020), Section 2.4 to see that each

LPAD-program P can be translated to a ProbLog program Prob(P) such that the dis-

tribution semantics is preserved. Analogously, we can read each ProbLog program P as

an LPAD-Program LPAD(P) with the same distribution semantics as P.

As CP-logic yields a causal semantics, it allows us to answer queries about the effect

of external interventions. More generally, Vennekens et al. (2010) even introduce a coun-

terfactual reasoning on the basis of CP-logic. However, to our knowledge this treatment

of counterfactuals is neither implemented nor shown to be consistent with the formal

theory of causality in Pearl (2000).

Further, it is a priori unclear whether the expressive equivalence of LPAD and ProbLog

programs persists for counterfactual queries. In the Appendix, we compare the treatment

of counterfactuals under CP-logic and under the FCM-semantics. This yields the following

results.

Theorem 4 (Consistency with CP-Logic – Part 1)

Let P be a propositional LPAD-program such that every selection yields a logic pro-

gram with unique supported models. Further, let X and E be subsets of propositions

with truth value assignments, given by the vectors x and e, respectively. Finally, we

fix a formula φ and denote by π
CP/FCM
Prob(P)/P(φ|E = e, do(X := x)) the probability that

φ is true, given that we observe E = e while we had set X := x under CP-logic and

the FCM-semantics respectively. In this case, we obtain πCP
P (φ|E = e, do(X := x)) =

πFCM
Prob(P)(φ|E = e, do(X := x)).

Theorem 5 (Consistency with CP-Logic – Part 2)

If we reconsider the situation of Theorem 4 and assume that P is a ProbLog program with

unique supported models, we obtain πCP
LPAD(P)(φ|E = e, do(X := x)) = πFCM

P (φ|E =

e, do(X := x)).

Remark 1

We can also apply Procedure 2 to programs with stratified negation. In this case, the

proofs of Theorems 4 and 5 do not need to be modified in order to yield the same

statement. However, recalling Definition 1, we see that there is no theory of counterfactual

reasoning for those programs. Hence, to us it is not clear how to interpret the results of

Procedure 2 for programs that do not possess unique supported models.

In Theorems 4 and 5, we show that under the translations Prob() and LPAD() CP-

logic for LPAD-programs is equivalent to our FCM-semantics, which itself by Theorem

3 is consistent with the formal theory of Pearl’s causality. In this way, we fill the gap

by showing that the causal reasoning provided for CP-logic is actually correct. Further,

Theorems 4 and 5 show that the translations Prob() and LPAD() of Riguzzi (2020),

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

892 R. Kiesel et al.

Section 2.4 do not only respect the distribution semantics but also are equivalent for

more general causal queries.

5 Practical evaluation

We have seen that we can solve counterfactual queries by performing marginal inference

over a rewritten probabilistic logic program with evidence. Most of the existing solvers

for marginal inference, including ProbLog (Fierens et al. 2015), aspmc (Eiter et al. 2021),

and PITA (Riguzzi and Swift 2011), can handle probabilistic queries with evidence in

one way or another. Therefore, our theoretical results also immediately enable the use of

these tools for efficient evaluation in practice.

Knowledge Compilation for Evaluation The currently most successful strategies for

marginal inference make use of Knowledge Compilation (KC). They compile the log-

ical theory underlying a probabilistic logic program into a so-called tractable circuit

representation, such as binary decision diagrams (BDD), sentential decision diagrams

(SDD) (Darwiche 2011) or smooth deterministic decomposable negation normal forms

(sd-DNNF). While the resulting circuits may be much larger (up to exponentially in the

worst case) than the original program, they come with the benefit that marginal infer-

ence for the original program is possible in polynomial time in their size (Darwiche and

Marquis 2002).

When using KC, we can perform compilation either bottom-up or top-down. In bottom-

up KC, we compile SDDs representing the truth of internal atoms in terms of only the

truth of the external atoms. After combining the SDDs for the queries with the SDDs

for the evidence, we can perform marginal inference on the results (Fierens et al. 2015).

For top-down KC, we introduce auxiliary variables for internal atoms, translate the

program into a CNF, and compile an sd-DNNF for the whole theory. Again, we can

perform marginal inference on the result (Eiter et al. 2021).

Implementation As the basis of our implementation, we make use of the solver library

aspmc. It supports parsing, conversion to CNF and top-down KC including a KC-version

of sharpSAT
1 based on the work of Korhonen and Järvisalo (2021). Additionally, we

added (i) the program transformation that introduces the duplicate atoms for the evi-

dence part and the query part, and (ii) allowed for counterfactual queries based on it.

Furthermore, to obtain empirical results for bottom-up KC, we use PySDD,2 which is

a python wrapper around the SDD library of Choi and Darwiche (2013). This is also the

library that ProbLog uses for bottom-up KC to SDDs.

6 Empirical evaluation

Here, we consider the scaling of evaluating counterfactual queries by using our translation

to marginal inference. This can depend on (i) the number of atoms and rules in the

1 github.com/raki123/sharpsat-td.
2 github.com/wannesm/PySDD.

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://github.com/raki123/sharpsat-td/
https://github.com/wannesm/PySDD
https://doi.org/10.1017/S1471068423000133

What if? 893

program, (ii) the complexity of the program structure, and (iii) the number and type of

interventions and evidence.

We investigate the influence of these parameters on both the bottom-up and top-

down KC. Although top-down KC as in aspmc can be faster (Eiter et al. 2021) on usual

marginal queries, results for bottom-up KC are relevant nevertheless since it is heavily

used in ProbLog and PITA.

Furthermore, it is a priori not clear that the performance of these approaches on

usual instances of marginal inference translates to the marginal queries obtained by our

translation. Namely, they exhibit a lot of symmetries as we essentially duplicate the

program as a first step of the translation. Thus, the scaling of both approaches and a

comparison thereof is of interest.

6.1 Questions and hypotheses

The first question we consider addresses the scalability of the bottom-up and top-down

approaches in terms of the size of the program and the complexity of the program struc-

ture.

Q1. Size and Structure: What size and complexity of counterfactual query instances

can be solved with bottom-up or top-down compilation?

Here, we expect similar scaling as for marginal inference, since evaluating one query

is equivalent to performing marginal inference once. While we duplicate the atoms that

occur in the instance, thus increasing the hardness, we can also make use of the evidence,

which can decrease the hardness, since we can discard models that do not satisfy the

evidence.

Since top-down compilation outperformed bottom-up compilation on marginal infer-

ence instances in related work (Eiter et al. 2021), we expect that the top-down approach

scales better than the bottom-up approach.

Second, we are interested in the influence that the number of intervention and evidence

atoms has, in addition to whether it is a positive or negative intervention/evidence atom.

Q2. Evidence and Interventions: How does the number and type of evidence and

intervention atoms influence the performance?

We expect that evidence and interventions can lead to simplifications for the program.

However, it is not clear whether this is the case in general, whether it only depends on

the number of evidence/intervention atoms, and whether there is a difference between

negative and positive evidence/intervention atoms.

6.2 Setup

We describe how we aim to answer the questions posed in the previous subsection.

Benchmark Instances As instances, we consider acyclic-directed graphs G with distin-

guished start and goal nodes s and g. Here, we use the following probabilistic logic

program to model the probability of reaching a vertex in G:

r(s). 0.1::trap(Y) :- p(X,Y). r(Y) :- p(X,Y).

1/d(X)::p(X, s 1(X)); ... ; 1/d(X)::p(X, s d(X)):- r(X), \+ trap(X).

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

894 R. Kiesel et al.

Here, d(X) refers to the number of outgoing arcs of X in G, and s 1(X), ..., s d(X)

refer to its direct descendants. We obtain the final program by replacing the variables

X,Y with constants corresponding to the vertices of G.

This program models that we reach (denoted by r(.)) the starting vertex s and, at

each vertex v that we reach, decide uniformly at random which outgoing arc we include

in our path (denoted by p(.,.)). If we include the arc (v, w), then we reach the vertex w.

However, we only include an outgoing arc, if we do not get trapped (denoted by trap(.))

at v.

This allows us to pose counterfactual queries regarding the probability of reaching the

goal vertex g by computing

πFCM
P (r(g)|(¬)r(v1), ..., (¬)r(vn), do((¬)r(v′1)), ..., do((¬)r(v′m)))

for some positive or negative evidence of reaching v1, . . . , vn and some positive or negative

interventions on reaching v′1, . . . , v
′
m.

In order to obtain instances of varying sizes and difficulties, we generated acyclic

digraphs with a controlled size and treewidth. Broadly speaking, treewidth has been

identified as an important parameter related to the hardness of marginal inference (Eiter

et al. 2021; Korhonen and Järvisalo 2021) since it bounds the structural hardness of

programs, by giving a limit on the dependencies between atoms.

Using two parameters n, k ∈ N, we generated programs of size linear in n and k and

treewidth min(k, n) as follows. We first generated a random tree of size n using network.

As a tree, it has treewidth 1. To obtain treewidth min(k, n), we added k vertices with

incoming arcs from each of the n original vertices in the tree.3 Finally, we added one

vertex as the goal vertex, with incoming arcs from each of the k vertices. At the start,

we use the root of the tree.

Benchmark Platform All our solvers ran on a cluster consisting of 12 nodes. Each node

of the cluster is equipped with two Intel Xeon E5-2650 CPUs, where each of these 12

physical cores runs at 2.2 GHz clock speed and has access to 256 GB shared RAM. Results

are gathered on Ubuntu 16.04.1 LTS powered on Kernel 4.4.0-139 with hyperthreading

disabled using version 3.7.6 of Python3.

Compared Configurations We compare the two different configurations of our solver

WhatIf (version 1.0.0, published at github.com/raki123/counterfactuals), namely

bottom-up compilation with PySDD and top-down compilation with sharpSAT. Only

the compilation and the following evaluation step differ between the two configurations,

the rest stays unchanged.

Comparisons For both questions, we ran both configurations of our solver using a mem-

ory limit of 8GB and a time limit of 1800 s. If either limit was reached, we assigned the

instance a time of 1800 s.

Q1. Size and Structure For the comparison of scalability with respect to size and

structure, we generated one instance for each combination of n = 20, 30, . . . , 230 and

3 Observe that every vertex in the graph has at least degree min(n, k), which is known to imply treewidth
≥ min(n, k).

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://github.com/raki123/counterfactuals
https://doi.org/10.1017/S1471068423000133

What if? 895

(a) (b)

Fig. 1. Results for Q1.

k = 1, 2, . . . , 25. We then randomly chose an evidence literal from the internal literals

(¬) r(v). If possible, we further chose another such evidence literal consistent with the

previous evidence. For the interventions, we chose two internal literals (¬) r(v) uniformly

at random.

Q2. Evidence and Interventions For Q2, we chose a medium size (n = 100) and medium

structural hardness (k = 15) and generated different combinations of evidence and in-

terventions randomly on the same instance. Here, for each e, i ∈ {−5, . . . , 0, . . . , 5} we

consistently chose |e| evidence atoms that were positive, if e > 0, and negative, otherwise.

Analogously, we chose |i| positive/negative intervention atoms.

6.3 Results and discussion

We discuss the results (also available at github.com/raki123/counterfactuals/tree/final

results) of the two experimental evaluations.

Q1. Size & Structure The scalability results for size and structure are shown in Figure 1.

In Figure 1b, we see the overall comparison of bottom-up and top-down compilation.

Here, we see that top-down compilation using sharpSAT solves significantly more in-

stances than bottom-up compilation with PySDD. This aligns with similar results for

usual marginal inference (Eiter et al. 2021). Thus, it seems like top-down compilation

scales better overall.

In Figure 1a, we see that the average runtime depends on both the size and the width

for either KC approach. This is especially visible in the subplots on top (resp. right) of

the main plot containing the average runtime depending on the size (resp. width). While

there is still a lot of variation in the main plots between patches of similar widths and

sizes, the increase in the average runtime with respect to both width and size is rather

smooth.

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://github.com/raki123/counterfactuals/tree/final_results
https://doi.org/10.1017/S1471068423000133

896 R. Kiesel et al.

Fig. 2. Two plots showing the runtime using bottom-up (right) and top-down (left)
compilation with varying evidence and intervention. The x -axis denotes the signed number of

interventions, that is, −n corresponds to n negative interventions and n corresponds to
n positive interventions. The y-axis denotes the signed number of evidence atoms using

analogous logic. For each square in the main plots, the color of the square denotes the runtime
of the instance with those parameters. The extra plot on the top (resp. right side) denotes the
average for the number and type of evidences (resp. interventions) over all interventions (resp.

evidences).

As expected, given the number of instances solved overall, top-down KC scales better to

larger instances than bottom-up KC with respect to both size and structure. Interestingly

however, for bottom-up KC the width seems to be of higher importance than for top-

down KC. This can be observed especially in the average plots on top and to the right

of the main plot again, where the change with respect to width is much more rapid for

bottom-up KC than for top-down KC. For bottom-up KC, the average runtime goes from

∼500 s to ∼1800 s within the range of widths between 1 and 16, whereas for top-down KC

it stays below ∼1500 s until width 28. For the change with respect to size on the other

hand, both bottom-up and top-down KC change rather slowly, although the runtime for

bottom-up KC is generally higher.

Q2. Number & Type of Evidence/Intervention The results for the effect of the number

and types of evidence and intervention atoms are shown in Figure 2.

Here, for both bottom-up and top-down KC, we see that most instances are either

solvable rather easily (i.e. within 500 s) or not solvable within the time limit of 1800 s.

Furthermore, in both cases negative interventions, that is, interventions that make an

atom false, have a tendency to decrease the runtime, whereas positive interventions, that

is, interventions that make an atom true, can even increase the runtime compared to a

complete lack of interventions.

However, in contrast to the results for Q1, we observe significantly different behavior

for bottom-up and top-down KC. While positive evidence can vastly decrease the runtime

for top-down compilation such that queries can be evaluated within 200 s, even in the

presence of positive interventions, there is no observable difference between negative and

positive evidence for bottom-up KC. Additionally, top-down KC seems to have a much

easier time exploiting evidence and interventions to decrease the runtime.

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

What if? 897

We suspect that the differences stem from the fact that top-down KC can make use

of the restricted search space caused by evidence and negative interventions much better

than bottom-up compilation. Especially for evidence, this makes sense: additional evi-

dence atoms in bottom-up compilation lead to more SDDs that need to be compiled;

however, they are only effectively used to restrict the search space when they are con-

joined with the SDD for the query in the last step. On the other hand, top-down KC

can simplify the given propositional theory before compilation, which can lead to a much

smaller theory to start with and thus a much lower runtime.

The question why only negative interventions seem to lead to a decreased runtime for

either strategy and why the effect of positive evidence is much stronger than that of

negative evidence for top-down KC is harder to explain.

On the specific benchmark instances that we consider, negative interventions only

remove rules, since all rule bodies mention r(x) positively. On the other hand, positive

interventions only remove the rules that entail them, but make the rules that depend on

them easier to apply.

As for the stronger effect of positive evidence, it may be that there are fewer situations

in which we derive an atom than there are situations in which we do not derive it. This

would in turn mean that the restriction that an atom was true is stronger and can lead

to more simplification. This seems reasonable on our benchmark instances, since there

are many more paths through the generated networks that avoid a given vertex, than

there are paths that use it.

Overall, this suggests that evidence is beneficial for the performance of top-down KC.

Presumably, the performance benefit is less tied to the number and type of evidence

atoms itself and more tied to the strength of the restriction caused by the evidence. For

bottom-up KC, evidence seems to have more of a negative effect, if any.

While in our investigation interventions caused a positive or negative effect depending

on whether they were negative or positive respectively, it is likely that in general their

effect depends less on whether they are positive or negative. Instead, we assume that

interventions that decrease the number of rules that can be applied are beneficial for

performance, whereas those that make additional rules applicable (by removing an atom

from the body) can degrade the performance.

7 Conclusion

The main result in this contribution is the treatment of counterfactual queries for

ProbLog programs with unique supported models given by Procedure 2 together with the

proof of its correctness in Theorem 3. We also provide an implementation of Procedure 2

that allows us to investigate the scalability of counterfactual reasoning in Section 6. This

investigation reveals that typical approaches for marginal inference can scale to programs

of moderate sizes, especially if they are not too complicated structurally. Additionally,

we see that evidence typically makes inference easier but only for top-down KC, whereas

interventions can make inference easier for both approaches but interestingly also lead

to harder problems. Finally, Theorems 4 and 5 show that our approach to counterfactual

reasoning is consistent with CP-logic for LPAD-programs. Note that this consistency re-

sult is valid for arbitrary programs with stratified negation. However, there is no theory

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

898 R. Kiesel et al.

for counterfactual reasoning in these programs. In our opinion, interpreting the results

of Procedure 2 for more general programs yields an interesting direction for future work.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068423000133.

References

Balke, A. and Pearl, J. 1994. Probabilistic evaluation of counterfactual queries. In Proceed-
ings of the Twelfth AAAI National Conference on Artificial Intelligence (AAAI 1994). AAAI
Press, 230–237.

Choi, A. and Darwiche, A. 2013. Dynamic minimization of sentential decision diagrams. In
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013).
AAAI Press.

Darwiche, A. 2011. SDD: A new canonical representation of propositional knowledge bases.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI
2011). IJCAI/AAAI, 819–826.

Darwiche, A. and Marquis, P. 2002. A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264.

De Raedt, L., Kimmig, A. and Toivonen, H. 2007. ProbLog: A probabilistic Prolog and its
application in link discovery. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI 2007), vol. 7. AAAI Press, 2462–2467.

Eiter, T., Hecher, M. and Kiesel, R. 2021. Treewidth-aware cycle breaking for algebraic
answer set counting. In Proceedings of the 18th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2021). IJCAI Organization, 269–279.

Fierens, D., den Broeck, G. V., Renkens, J., Shterionov, D. S., Gutmann, B., Thon, I.,
Janssens, G. and De Raedt, L. 2015. Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory and Practice of Logic Programming 15, 3, 358–401.

Hoeck, N. V. 2015. Cognitive neuroscience of human counterfactual reasoning. Frontiers in
Human Neuroscience 9. doi: 10.3389/fnhum.2015.00420

Korhonen, T. and Järvisalo, M. 2021. Integrating tree decompositions into decision heuris-
tics of propositional model counters (short paper). In 27th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2021). LIPIcs, vol. 210. Schloss Dagstuhl,
8:1–8:11.

Pearl, J. 2000. Causality, 2nd ed. Cambridge University Press, Cambridge, UK.

Poole, D. 1993. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence
64, 81–129.

Riguzzi, F. 2020. Foundations of Probabilistic Logic Programming: Languages, Semantics, In-
ference and Learning. River Publishers.

Riguzzi, F. and Swift, T. 2011. The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. Theory and Practice of Logic Programming 11, 4–5, 433–449.

Rückschloß, K. and Weitkämper, F. 2022. Exploiting the full power of Pearl’s causality
in probabilistic logic programming. In Proceedings of the International Conference on Logic
Programming 2022 Workshops (ICLP 2022). CEUR Workshop Proceedings, vol. 3193. CEUR-
WS.org.

Sato, T. 1995. A statistical learning method for logic programs with distribution semantics. In
Logic Programming, Proceedings of the Twelfth International Conference on Logic Program-
ming. MIT Press, 715–729.

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

http://doi.org/10.1017/S1471068423000133
http://doi.org/10.1017/S1471068423000133
http://doi.org/10.3389/fnhum.2015.00420
https://doi.org/10.1017/S1471068423000133

What if? 899

Vennekens, J., Bruynooghe, M. and Denecker, M. 2010. Embracing events in causal
modelling: Interventions and counterfactuals in CP-logic. In Logics in Artificial Intelligence.
Springer Berlin Heidelberg, Berlin, Heidelberg, 313–325.

Vennekens, J., Denecker, M. and Bruynooghe, M. 2009. CP-logic: A language of causal
probabilistic events and its relation to logic programming. Theory and Practice of Logic Pro-
gramming 9, 3, 245–308.

Vennekens, J., Verbaeten, S. and Bruynooghe, M. 2004. Logic programs with annotated
disjunctions. In Logic Programming. Springer, 431–445.

https://doi.org/10.1017/S1471068423000133 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000133

	Introduction
	Preliminaries
	Pearl's formal theory of counterfactual reasoning
	The ProbLog language

	Counterfactual reasoning: Intervening and observing simultaneously
	Relation to CP-logic
	Practical evaluation
	Empirical evaluation
	Questions and hypotheses
	Setup
	Results and discussion

	Conclusion
	References

