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A THEOREM ON ISOMETRIES AND THE APPLICATION
OF IT TO THE ISOMETRIES OF H?(S) FOR 2 <p < o

FRANK FORELLI

1. Introduction. 1.1. Let X and Y be sets, let A be a bounded positive
measure on X, and let 4 be a bounded positive measure on Y. Furthermore
let M be a subalgebra of L*(\), let p € (0,0 ), and let A be a linear trans-
formation of M into L?(x) such that

14 paw = [15ax
for all f in M.

In § 2 of this paper we will prove the following theorem.

1.2. THEOREM. If (a) p > 2, of (b) (Af )(y) # O for p-almost all y in ¥V
whenever f € M and f # 0, and if (c) A1 = 1, then

A(fg) = AfAg

[afdean = [fear

forall fand g in M and

for all f and g in M.

1.3. If the hypotheses (b) and (c) of Theorem 1.2 hold and if instead of (a)
we have p < 2, then we do not know if the conclusion of Theorem 1.2 holds.
We will denote by U the class of all f in M such that ff = 1. It was proved in
[1] that if M = C[U] and if the hypothesis (c) of Theorem 1.2 holds, then
the conclusion of Theorem 1.2 holds for p in (0, c0). Furthermore it was
proved in [1] that if the hypothesis (c) of Theorem 1.2 holds and if instead
of (a) we have p = 4, then the conclusion of Theorem 1.2 holds.

1.4. Let V be a vector space over G of complex dimension #» with an inner
product. If x and ¥y are in V, then we will denote by (x, y) the inner product
of x and y. We will denote by B the class of all x in V such that {x, x) < 1,
by B the class of all x in V such that {x, x) < 1, and by S the class of all x in V
such that {(x,x) = 1. Thus S may be regarded as the Euclidean sphere of
real dimension 2z — 1. We will denote by ¢ the positive Radon measure on S

which assigns to each open subset of .S its Euclidean volume. We define
a:B X B—C by
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and we define 8: B X B— (0,00) by 8 = (a@)". We recall that if ¢ is a
function which is defined on the Cartesian product E X F of sets E and F
and if (x,y) € E X F, then ¢, and ¢’ are the functions which are defined
on F and E respectively by ¢,(¢) = ¢(x, t) and ¢¥(s) = ¢(s,»). If f € L1(0),
then we define f* : B — C by

) = (1/a(s)) 16

We remark that if f € L'(¢), then f* is of differentiability class C*. If
1 = p = 0, then we will denote by H?(S) the class of all f in L?(¢) such
that f* is holomorphic on B. It follows that H?(S) is a closed subspace of the
Banach space L?(¢), and hence that H?(S) is a Banach space with respect to
the norm of L?(c¢). The definition of H?(S) is motivated by the change of
variables formula with regard to holomorphic homeomorphisms of B that is
expressed in Lemma 3.4. If » = 1, then H?(S) is the familiar Hardy class H?
(if we regard .S as the unit circle in the complex plane).
As an application of Theorem 1.2 we will prove the following theorem.

1.5. THEOREM. If (a) T is a linear isometry of the Banach space H?(S) onto
itself and if (b) 2 < p < 0, then there is a holomorphic homeomorphism Z of B
and a unimodular complex number § such that for every f in H?(S) we have
(1.1) Tf = 6(«®)™?fo Z
where z in B is defined by Z(z) = 0.

1.6. The proof of Theorem 1.5 is in § 3. We remark that if Z is any holo-
morphic homeomorphism of B and if p € [1, ), then the expression (1.1)
defines a linear isometry of H?(S) onto itself. (This follows from Lemma 3.4.
The holomorphic homeomorphisms of B are described in Lemma 3.2.) If
n = 2, if the hypothesis (a) of Theorem 1.5 holds, and if instead of (b) we
have 1 £ p < 2, then we do not know if the conclusion of Theorem 1.5 holds.
Furthermore if » = 2, if p € [1,0), and if p # 2, then it is not known if
there are any linear isometries of H?(S) into itself which are not onto.

2. The proof of Theorem 1.2. 2.1. If w € C and if » € (0,0), then we
will denote by D (w, r) the open disc in C whose center is w and whose radius
is 7. The proof of the following lemma is in [1].

2.2. LEMMA. Let p be a bounded positive measure on X, let v be a bounded
positive measure on Y, let s € (0,00), let f € L*(p), and let g € L*(z). If for
some r in (0, © ) we have

Jit 4o va0 = f11+ zelar

15140 = [t

for all z1n D(0, r), then
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2.3. We will now prove Theorem 1.2. We will break the proof up into several
statements.

23.1.Iff € M and f # 0, then

1) J1acorias aw = [1gr1s ran
for all g in M.

For the purpose of proving statement 2.3.1 we let dp = |f|?d\ and
dr = |Af |Pdu. If g € M and 3 € C, then

J 4 zgPao = [17+ aperan
— 147 + 24 (o)

o e

and hence by Lemma 2.2 we have

flgl”dp = f|A(fg)/Af "dr

which completes the proof of statement 2.3.1.
We remark that the proof of statement 2.3.1 did not use either the fact
that A1 = 1 or the fact that p > 2.

We will denote by M~! the collection of all invertible elements of M.
2.3.2. If f € M1, then

22) J1a7 =agian = [1711elan
for all g in M.

Statement 2.3.2 follows from statement 2.3.1 upon replacing g in the identity
(2.1) by g/f.
2.33. If f € M and g € M, then

f[1 + 2Af " Ag|’dpu = fll + 2f ["*[g|"d\

for all z in D (0, 1/|| f ||w)-

For the purpose of proving statement 2.3.3 we may assume that M is a
closed subalgebra of L*(\). Since 1 4+ zf € M~'if z € D(0, 1/|| f ||»), state-
ment 2.3.3 follows from statement 2.3.2 upon replacing f in the identity (2.2)
by 1 + zf.

We remark that the proof of statement 2.3.3 did not use the fact that p > 2.

234 . If f € M and g € M, then

147 Plagian = [ Pigran.
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Statement 2.3.4 follows from statement 2.3.3 and Lemma 2.2 (with
dp = |g|%d\, dr = |Ag|*dp, and s = p — 2).
It follows from statement 2.3.4 that if f € M, then Af € L*(u).
2.3.5. If a, b, ¢, and d are in M, then
anZBA c;l_c—idp = f abcdd.

Statement 2.3.5 follows from statement 2.3.4 by the method of polarization.
Statement 2.3.5 includes the second assertion of Theorem 1.2. Furthermore
it follows from statement 2.3.5 that if f € M and g € M, then

J1ace) - azagian = o,
which completes the proof of Theorem 1.2.
2.4. We will denote by Z, the class of all positive integers.
2.5. CoroLLARY (of Theorem 1.2). If f € M, then ||Af |le = || f ||
Proof. If k € Z,, then

(f1arpan)™

— ( facrmacra) ™

= (frrrma)™

from which the desired conclusion follows upon letting %k increase to oo.

3. The proof of Theorem 1.5. 3.1. We will denote by U(V) the class of all
unitary transformations of 7, and we will regard SL (2, R) as the class of all
2 X 2 matrices L of the form

a b
L=5 )

where a and b are in C and det(L) = aa — bb = 1. We define v : SL(2, R) X
S X B— Bby
y(L, %,9) = [1/ G, %) + )] — y, x)x) + [y, x) +0)/ &y, %) + @)=
and we define § : U(V) X SL(2,R) X S X B— B by

S(W,L,x,vy) = Wy(L, x,y) = v(L, Wx, Wy).

With regard to the definition of ¥ we remark that if x € Sand if y € V, then
y — (y, x)x is the orthogonal projection of y into V' © Cx. Furthermore we
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remark that 84y, is a holomorphic homeomorphism of B for every triple
(W,L,x) in U(V) X SL(2,R) X S. We recall the following fact of the
theory of functions on B.

3.2. LEMMA. If Z is a holomorphic homeomorphism of B, then there is a triple
(W, L,x)im U(V) X SL(2,R) X S such that

Z(y) =6(W,L,x,y)
for all y in B.

3.3. The following lemma (which is well-known) follows from Lemma 3.2.

3.4. LEMMA. If Z is a holomorphic homeomorphism of B, then
ffo Zdo = f 87%dq
for every f in L(a).

3.5. The following lemma is due to R. Schneider [2] who stated it and proved
it in terms of the Hardy spaces of torii. His proof applies as well to H?(S).

3.6. LEMMA. If p € [1,0], #f g € H?(S) and g % 0, if b € L®(v), and if
gh* € H?(S) for all k in Z., then b € H*(S).

3.7. We will now prove Theorem 1.5. For this purpose we recall that if
g € H?(S) and g # 0, then g(y) # 0 for ¢ almost all y in S. We let ¢ = T1,
du = |a|’de, and define 4 : H?(S) — L?(u) by Af = Tf/a. Since H*(S) is
a subalgebra of L”(¢), it follows from Theorem 1.2 and Corollary 2.5 that if
f and g are in H*(S), then Af € L”(s) and A (fg) = AfAg. 1t follows from
this and Lemma 3.6 that if f € H*(S), then Af € H*(S) since a(4Af)* =
ad(f*) = T(f*) and T(f*) € H?(S) for all k in Z,. Thus if 4 is restricted
to H*(S), then 4 is an algebra homomorphism of H*(S) into H*(S). Further-
more we have ||4f |l = || f || for all f in H(S).

We define x : S X V— C by x(x,y) = {x, v), we let F be an orthonormal
basis of V, and we define Z : B — V by

Z) = 2 14X @)y

ver
It follows that if (x,y) € B X V, then (Z(x),y) = (4Ax?)*(x). Hence Z
(which is holomorphic) maps B into itself, and (Ax¥)f = (x¥)f o Z for all
yin V. Thusif gisin thering C[x? : v € V], then (Tg)t = af(4g)* = a?g? 0 Z,
from which it follows that if f € H?(S), then
@.1) (T = d*ft o Z

since C[x¥ : y € V] is dense in H?(S).
We now consider 7. It follows that there is a function b in H?(S) and a
holomorphic transformation W of B into itself such that if f € H?(S), then

(3.2) (T-Y)f = bHft o W.
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From (3.1) and (3.2) it follows that if f € H?(S), then ffoWoZ = ft =
ftoZ oW, and hence Z is a holomorphic homeomorphism of B (whose
inverse is W). Thus (by Lemma 3.2) Z is defined on B as well as on B, Z maps .S
onto itself, and we have

(3.3) Tf =afoZ
for all f in H?(S).
We will now prove that for o-almost all x in S we have
(3.4) la@)[? = B(x, 2)
where z = W(0). If f € H?(S), then by (3.3) and Lemma 3.4 we have

J1s1erac = [170wo zplapds

= [1rowras = 155

From this and Theorem 1.2 it follows that if f and g are in G[x? : y € V], then

Jielaras = [jasias,

from which it follows by the Stone-Weierstrass theorem that (3.4) holds for
o-almost all x in S. We will denote by 4 (S) the class of all f in C(S) such that
ft is holomorphic on B. With regard to the proof of (3.4) we remark that if
n = 2, then {|f|:f € A(S)} isnotdensein {|f]|:f € C(S)}.

We let § = a/[(@?)?"”]. Then 66 = 1, § € H*(S), and if f € H?(S), then
Tf = 0(a?)™?fo Z. Thus if f = T'1, then f € H*(S) and 6 = (¢*)*?f0 Z,
and hence 6 is a constant. This completes the proof of Theorem 1.5.
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