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The GENE-3D code, the global stellarator version of the established GENE framework,
has been extended to an electromagnetic gyrokinetic code. This paper outlines the basic
structure of the algorithm, highlighting the treatment of the electromagnetic terms. The
numerical implementation is verified against the radially global GENE code in linear
and nonlinear tokamak simulations, recovering excellent agreement between both codes.
As a first application to stellarator plasmas, linear and nonlinear global simulations
with kinetic electrons of ion temperature gradient (ITG) turbulence in Wendelstein
7-X were performed, showing a decrease of ITG activity through the introduction of
electromagnetic effects via a finite plasma-β. The upgrade makes it possible to study a
large variety of new physical scenarios, including kinetic electron and electromagnetic
effects, reducing the gap between gyrokinetic models and physically realistic systems.
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1. Introduction

Wendelstein 7-X (W7-X) is the first stellarator that has been optimised for low
neoclassical transport (Wolf 2008), besides other criteria. As such, it has been shown
(Klinger et al. 2019) that turbulence has become the limiting factor in the confinement for
a broad range of its experiments. In order to understand the inherently nonlinear nature
of plasma turbulence, numerical simulations based on gyrokinetic theory have become
indispensable (Garbet et al. 2010).

Using some of the world’s most powerful supercomputers, it is possible nowadays to
simulate gyrokinetic turbulence in stellarators globally, making it possible to take into
account the full variation of the magnetic field on a flux surface while simultaneously
considering its radial variations as well as temperature and density profiles – all of
which are inherently impossible in flux-tube simulations. As such, studies like those of
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Navarro et al. (2020), Cole et al. (2020), Sánchez et al. (2020) and Wang et al. (2020)
have paved the way in investigating ion temperature gradient (ITG) turbulence globally in
stellarators.

However, while these results already are of high importance, all of them relied on
an adiabatic electron model, where only the ions were treated as a gyrokinetic particle
species. This model fails to address things like trapped electron mode turbulence or
the interaction between trapped electrons and ion turbulence, as well as electromagnetic
effects, something that can become important for high-density operation of fusion devices.

All of these considerations motivated the upgrade of GENE-3D (Maurer et al. 2020),
the extension of the widely established GENE framework (Jenko et al. 2000) for
three-dimensional magnetic field equilibria, to an electromagnetic gyrokinetic code, which
is the focus of this work. In this paper, the underlying model of GENE-3D is presented,
with special emphasis on the treatment of the electromagnetic terms in the gyrokinetic
system of equations. Linear and nonlinear global verification studies using artificially
heavy electrons to save computational cost against GENE are presented, showing
excellent agreement between both codes, verifying the correctness and applicability of
the electromagnetic upgrade. Finally, GENE-3D is used to perform global simulations of
plasmas in W7-X with realistic electron mass and electromagnetic effects, something that,
to the knowledge of the authors, has not been published before. It is found that, for the
particular analytical background profiles used, the introduction of finite plasma-β leads to
a reduction in linear as well as nonlinear ITG strength.

The rest of the paper is structured as follows. The GENE-3D framework is introduced
in § 2, highlighting the gyrokinetic model it uses and the numerical methods to solve the
corresponding set of equations. In § 3, results of verification studies of the code against the
global version of GENE in linear and nonlinear, electromagnetic tokamak simulations are
presented, testing the correctness of the numerical implementation. In § 4, the first global,
nonlinear gyrokinetic simulations of W7-X incorporating kinetic electrons with realistic
mass, as well as electromagnetic effects are discussed. Finally, the main results of this
paper are summarised in § 5 and an outlook for future projects is given.

2. Extending GENE-3D to an electromagnetic code

This section focuses on the algorithmic details of the extension of GENE-3D to include
effects of a perturbed parallel vector potential. First, a brief overview of the gyrokinetic
system of equations is given in § 2.1, followed by details specific to the implementation
in § 2.2. Finally, additional information about the numerics of the code is presented in
Appendix A.

2.1. Gyrokinetic Vlasov–Maxwell system
The GENE-3D code is a Eulerian code that solves the gyrokinetic Vlasov equation,
coupled to Maxwell’s equations (e.g. Brizard & Hahm 2007) on a five-dimensional grid
in phase space, using two velocity dimensions – the velocity parallel to the equilibrium
magnetic field v|| and the magnetic moment μ = mv2

⊥/2B0 – and three spatial dimensions
(x, y, z), representing a field-aligned coordinate system (Beer, Cowley & Hammett 1995).
Furthermore, it employs the so-called ‘δf ’ splitting (e.g. Garbet et al. (2010), and
references therein). In this approach, one assumes that the full gyrocentre distribution
function Fσ of species σ can be split into a stationary background distribution function
F0,σ , describing the plasma at thermal equilibrium, and a time-dependent, first-order
perturbation F1,σ :

Fσ = F0,σ + F1,σ , with ||F1,σ ||/||F0,σ || ∼ O (εδ) � 1, (2.1)
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where εδ is a smallness parameter describing the scale relation between background and
perturbed quantities. The GENE-3D code assumes that the background distribution is
given by a local Maxwellian:

F0,σ = FM,σ (x, v||, μ) = n0,σ (x)

(π)3/2vth,σ (x)3
exp

(
−mσ v2

||/2 + μB0(x)

T0,σ (x)

)
. (2.2)

Here, mσ , n0,σ and T0,σ are the mass, equilibrium background density and temperature of
particle species σ at position x, respectively. Furthermore, B0 gives the strength of the
equilibrium magnetic field, v|| and μ denote the velocity parallel to the magnetic field and
the magnetic moment, respectively, and vth,σ = √

2T0,σ (x)/mσ is the thermal velocity of
particle species σ . Under this assumption, the gyrokinetic equation for particle species σ ,
including a perturbation of the parallel vector potential, can be written as

∂F1,σ

∂t
= − [

v||b0 + (
vχ + v∇B + vc

)] · ∇F1,σ + μ

mσ

b0 · ∇B0
∂F1,σ

∂v||

− vχ ·
[
∇ ln(n0,σ ) + ∇ ln(T0,σ )

(
mσ v2

||/2 + μB0

T0,σ

− 3
2

)]
FM,σ

− qσ FM,σ

T0,σ

[
v||b0 + (

vχ + v∇B + vc
)] · ∇G{φ1} − qσ v||

c
FM,σ

T0,σ

∂G{A1,||}
∂t

− (v∇B + vc) ·
[
∇ ln(n0,σ ) + ∇ ln(T0,σ )

(
mσ v2

||/2 + μB0

T0,σ

− 3
2

)]
FM,σ

− vE0 · ∇F1,σ + C[F1,σ ], (2.3)

where χ = φ1 − v||A1,||/c is called the gyrokinetic potential. The operator G{.} defines the
forward-gyroaverage operator

G{u}(X ) = 1
2π

2π∫
0

u(X + r(ϑ)) dϑ, (2.4)

where X denotes the gyrocentre position and r is the gyroradius vector orthogonal to the
local magnetic field. The drift velocities appearing in (2.3) are defined as follows:

vE0 ≡ c
B2

0
B0 × ∇φ0, vχ ≡ c

B2
0
B0 × ∇G{χ},

v∇B ≡ μc
qσ B2

0
B0 × ∇B0, vc ≡ v2

||
Ωσ

(
b0 ×

(
∇ ln(B0) + β

2
∇ ln( p0)

))
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

where Ωσ = (qσ B0)/(mσ c) is the gyrofrequency of species σ , b0 = B0/B0 is the unit
vector in the direction of the equilibrium magnetic field B0, p0 is the equilibrium
thermodynamic pressure, β = 8πp0/B2

0 is the ratio between plasma pressure and magnetic
field strength and c is the speed of light.

At the current stage, GENE-3D uses a linearised Landau–Boltzmann collision operator
for C[F1,σ ]. Furthermore, the interplay between neoclassical and gyrokinetic physics
is represented by the term coupling the curvature and ∇B drifts to the background
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Maxwellian (Oberparleiter et al. 2016), and the effects of a long-wavelength, radial
electric field on the system (Helander & Simakov 2008; Mishchenko & Kleiber 2012)
are represented by the term proportional to vE0 in (2.3). Though they are incorporated in
the main algorithm, these effects are neglected in the simulations presented in this paper
for simplicity.

The system is closed by the gyrokinetic field equations. Poisson’s equation, providing
the electrostatic potential, reads

∇2φ1(x, t) ≈ ∇2
⊥φ1(x, t) = −4π

∑
σ

qσ n1,σ (x, t), (2.6)

where only the spatial derivatives perpendicular to the magnetic field are retained, which is
in accordance with the gyrokinetic ordering. In order to calculate the density perturbation
at the particle position x from the gyrocentre position X , GENE-3D employs a first-order
pull-back transformation (e.g. Brizard & Hahm 2007):

n1,σ (x, t) =
∫

K{F1,σ } −
(

qσ FM,σ

T0,σ

φ1 − K
{

qσ FM,σ

T0,σ

G {φ1}
})

d3v. (2.7)

The operator K{.} denotes the backward-gyroaverage operator, which is defined here as

K{u}(x) = 1
2π

2π∫
0

u(x − r(ϑ)) dϑ. (2.8)

Assuming a quasi-neutral limit (∇2
⊥φ1 ≈ 0), Poisson’s equation can be rewritten as

∑
σ

q2
σ

∫ (
FM,σ

T0,σ

φ1 − K
{

FM,σ

T0,σ

G {φ1}
})

d3v =
∑

σ

qσ

∫
K{F1,σ } d3v. (2.9)

At the current stage, magnetic compressibility, associated with a parallel perturbation of
the magnetic field, is neglected, so that only the parallel vector potential A1,|| is retained in
GENE-3D, which is determined by the parallel component of Ampere’s law:

∇2
⊥ A1,|| = −4π

c

∑
σ

j1,||,σ = −4π

c

∑
σ

∫
v||K{F1,σ } d3v, (2.10)

self-consistently with the gyrokinetic equation and Poisson’s equation.

2.2. Electromagnetic model
Although (2.3), (2.9) and (2.10) are an analytically closed system, particular care has to
be taken of the term containing the partial time derivative of A1,|| in (2.3). The approach
used in GENE for a long time was to introduce a new distribution function gσ = F1,σ +
(qσ v||FM,σ A1,||)/(T0,σ c) and solving the corresponding gyrokinetic system for gσ instead
of F1,σ (Görler et al. 2011). However, it was shown in Crandall (2019), that such a scheme
becomes numerically unstable in nonlinear simulations at high plasma-β, although being
stable linearly. In the same publication, an alternative scheme was proposed, similar to
the one presented in Reynders (1993), which has been included in the standard version of
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GENE recently. This scheme is also used in GENE-3D and is presented in the following.
By defining the parallel inductive electric field as

Eind
|| ≡ −1

c
∂A1,||
∂t

, (2.11)

one can rewrite the gyrokinetic equation in the form

∂F1,σ

∂t
= Rσ + qσ v||

FM,σ

T0,σ

G {
Eind

||
}
, (2.12)

where the term Rσ contains all the contributions to the right-hand side of the gyrokinetic
equation (2.3), except the one accounting for the parallel inductive electric field, and reads

Rσ = − [
v||b0 + (v∇B + vc)

] ·
(

∇F1,σ + qσ FM,σ

T0,σ

∇G{φ1}
)

− vχ ·
(

∇F1,σ + qσ FM,σ

T0,σ

∇G{φ1}
)

+ μ

mσ

b0 · ∇B0
∂F1,σ

∂v||

− vχ ·
[
∇ ln(n0,σ ) + ∇ ln(T0,σ )

(
mσ v2

||/2 + μB0

T0,σ

− 3
2

)]
FM,σ

− (v∇B + vc) ·
[
∇ ln(n0,σ ) + ∇ ln(T0,σ )

(
mσ v2

||/2 + μB0

T0,σ

− 3
2

)]
FM,σ

− vE0 · ∇F1,σ + C[F1,σ ]. (2.13)

The next step is to take the partial time derivative of Ampere’s law (2.10) and multiply by
(−1/c):

− 1
c
∇2

⊥
∂A1,||
∂t

= ∇2
⊥Eind

|| = 4π

c2

∑
σ

qσ

∫
v||K

{
∂F1,σ

∂t

}
d3v. (2.14)

Inserting definition (2.12) into (2.14) eliminates the explicit coupling of the equation to
the particle distribution function F1,σ . Therefore, one obtains an equation that treats the
inductive electric field as an independent electromagnetic field:

∇2
⊥Eind

|| − 4π

c2

∑
σ

q2
σ

∫
v2

|| K
{

FM,σ

T0,σ

G {
Eind

||
}}

d3v = 4π

c2

∑
σ

qσ

∫
v||K{Rσ } d3v.

(2.15)

Using (2.9), (2.10), (2.12), (2.13) and (2.15), the evolution of the distribution function
F1,σ can be calculated by treating time as a discrete variable and using a numerical scheme
to solve (2.12) in the above system approximately. For this, GENE-3D provides several
explicit Runge–Kutta schemes, with a fourth-order-accurate Runge–Kutta scheme (RK4)
being the default option.

3. Code verification

Having introduced the major changes performed to the GENE-3D code, the following
subsections focus on comparing its results of global, electromagnetic tokamak simulations
with those obtained from GENE. As the implementation of the electromagnetic terms
in the gyrokinetic equation is independent of the field geometry, these cases provide a
simple scenario for code validation. Benchmarks with other stellarator codes capable of
performing electromagnetic simulations are left for future work.
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3.1. Linear simulations with varying plasma-β
This subsection presents a linear verification study between GENE-3D and GENE over
a large range of plasma pressures. For this, linear growth rates and mode frequencies of
the most unstable mode are calculated varying the plasma-β and are compared with the
results presented in Görler et al. (2016).

The geometry is a tokamak with circular, concentric flux surfaces, with a magnetic field
strength of B0 = 2.0 T on axis, which is called Bref in the following, a major radius of
R0 = 1.67 m, an inverse aspect ratio of a/R0 = 0.36 and a safety factor profile

q(x) = 0.86 − 0.16(x/a) + 2.52(x/a)2. (3.1)

Furthermore, density and temperature profiles are defined according to

A
A(x0)

= exp
[
−κAwA

a
R0

tanh
(

x − x0

wAa

)]
(3.2)

for both electrons and ions, where A = (n, Ti, Te). The corresponding normalised
gradients are

R0

LA
= −R0

∂ ln(A)

∂x
= κA cosh−2

(
x − x0

wAa

)
, (3.3)

with T(x0) = 2.14 keV, where x0/R0 = 0.5 is the position at which the gradients have
their maximum. The density at position x0 is adjusted to obtain the desired value of
the reference plasma β(x0) = 8πn(x0)T(x0)/B2

ref. The parameters κA and wA set the
amplitude and the width of the gradients, respectively, and are chosen to be κTi =
κTe = 6.96, wTi = wTe = 0.3, κni = κne = 2.23 and wni = wne = 0.3. The box lengths
are chosen to be (Lx, Lv||, Lμ) = (80 ρs, 3 vth,σ , 9 T0,σ (x0)/Bref) and Ly = 21.13 ρs, which
results in resolving multiples of the toroidal mode number n0 = 19. Here, ρs = cs/Ωs
is the ion sound Larmor radius at reference position x0. The simulation is performed
using deuterium as ionic species, as well as electrons that have twice their realistic
mass. The resolution at which GENE-3D converged is (1344 × 16 × 16 × 64 × 32) in
(x, y, z, v||, μ), respectively, and hyperdiffusion was set as ηx = 2.0, ηy = 0.05, ηz =
2.0 and ηv|| = 0.2. As is mentioned in Appendix A, periodic boundary conditions are
employed in the bi-normal direction, whereas zero-valued Dirichlet boundary conditions
are used for the radial domain. In order to avoid numerical instabilities caused by the fixed
boundaries, buffer zones with a Krook damping operator are used at the radial boundaries,
each covering 5 % of the domain.

Figure 1(a) shows the growth rate γ of the dominant linear instability as a function
of β, whereas figure 1(b) shows the frequency ω of the respective mode. The red
lines indicate the results obtained from GENE, whereas blue represents the results of
GENE-3D. Excellent agreement is found for both frequencies and growth rates as the
relative difference between the results of both codes is below 3 % in all cases. In particular,
one can observe the expected stabilisation of the ITG mode by increasing β for both
codes, as the growth rate decreases for β between 0.5 % and 1.4 %, while the frequency
changes only slightly in the same interval. For values of β between 1.4 % and 1.75 % one
can observe a transition of dominant modes from an ITG mode to a kinetic ballooning
mode (KBM), which can be identified by the rapid increase in the mode frequency. The
results for this interval are only shown here for the GENE code, since resolving this
transition requires a much higher resolution than the one that was already used, which
makes it impractical to investigate it with GENE-3D. Increasing β further results in an
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(a) (b)

FIGURE 1. Linear growth rates (a) and mode frequencies (b) of the n0 = 19 mode as a
function of β. Red shows the results obtained from GENE, blue those from GENE-3D.

(a) (b)

(c) (d)

FIGURE 2. Normalised squares of the electrostatic and parallel vector potential for the scenario
using β = 2.5 %. Radial (a) and poloidal (b) structures of the electrostatic potential, and radial
(c) and poloidal (d) structures of the parallel vector potential. The red dashed line shows the
results obtained from GENE, the blue solid line those from GENE-3D.

amplification of the KBM growth rate, while simultaneously causing a moderate decrease
in its frequency, as observed with both codes. Finally, the radial and poloidal structures
of the KBM at β = 2.5 % are compared in figure 2, again showing excellent agreement
between both codes.
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3.2. Nonlinear turbulence at finite plasma-β in a tokamak
While the geometry being used is kept the same, it is beneficial for a nonlinear comparison
to choose a broader profile than the one used in the previous subsection, as there is less
unwanted profile relaxation in a gradient-driven approach with GENE-3D. Therefore, new
plasma profiles of the form

A
A(x0)

=

⎡
⎢⎢⎣

cosh
(

x − x0 + ΔA

wA

)

cosh
(

x − x0 − ΔA

wA

)
⎤
⎥⎥⎦

−(κAwA/2)(a/R0)

(3.4)

are chosen, with x0/R0 = 0.5, κTi = κTe = 6.66, κn = 2.20, wTi = wTe = wn = 0.04 and
ΔTi = ΔTe = Δn = 0.8. Furthermore, the plasma pressure is such that βe(x0) = 0.75 %.
In order to save computational time, the simulations were performed further increasing
the electron-to-ion mass ratio to me/mi = 0.01 and a finite-size parameter ρ∗

s = ρs/Lref =
ρs/R0 = 0.01. The simulation covers the radial domain 0.1 � x/R0 � 0.9, using buffer
zones of 10 % at each side, with normalised box sizes being (Lx, Ly, Lv||, Lμ) =
(80.0 ρs, 111.4 ρs, 3 vth,σ , 9 T0,σ (x0)/Bref) and a resolution of (nx, nky, nz, nv||, nμ) = (160 ×
64 × 24 × 64 × 24) for GENE and (nx, ny, nz, nv||, nμ) = (160 × 256 × 24 × 64 × 24) for
GENE-3D. Finally, heat and particle sources, which are explained in Appendix A, were
added with amplitudes being κH = κP = 0.1 and hyperdiffusion was set as ηx = ηy =
0.05, ηz = 2.0 and ηv|| = 0.2.

In order to compare the results of the two nonlinear simulations, the heat fluxes Qσ

for species σ are considered in the following. The heat flux itself can be split into an
electrostatic and an electromagnetic component, Qσ = Qes,σ + Qem,σ , which are defined
as

Qes,σ

QGB
= mσ c

2B2
0

∫
v2 Fparticle

1,σ (x, v, t)B0 × ∇G {φ1} d3v (3.5)

and
Qem,σ

QGB
= −mσ

2c

∫
v2 Fparticle

1,σ (x, v, t)v||∇A1,|| × b0 d3v, (3.6)

respectively, with
QGB = nref Tref cs(ρ

∗
s )

2. (3.7)

Here, Fparticle
1,σ is the perturbed distribution function of species σ , evaluated at particle

position.
Figure 3 shows the volume-averaged time traces of the ion and electron heat flux

contributions. The fluxes are time-averaged over the interval t ∈ [100, 345]R0/cs, which
roughly contains the same number of burst, as follows. The time traces are divided in
disjoint intervals each approximately three autocorrelation times long. An average over
each one of them is performed, the result of which is then used to compute an ensemble
mean and variance of the heat flux. The results are presented in table 1. Both simulations
are in good agreement with each other, as the relative difference between their respective
ensemble mean values is below 10 % for all components.

The radial profiles of the heat flux contributions, averaged over a flux surface and
in time, shown in figure 4, recover reasonable agreement between both codes as
well. Here GENE and GENE-3D produce similar heat flux profiles, where ion and
electron contributions are comparable in their magnitude. For both particle species, the
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(a) (b)

(c) (d)

FIGURE 3. Time traces of the volume-averaged electron and ion heat fluxes. Yellow and green
lines indicate average over the given time interval for GENE and GENE-3D, respectively.
Electrostatic heat flux of ions (a) and electrons (b), and electromagnetic heat flux of ions (c)
and electrons (d).

Heat flux [QGB] GENE GENE-3D

Qes,ions 76. ± 7 75 ± 11
Qes,electrons 60 ± 5 55 ± 6
Qem,ions −1.07 ± 0.13 −1.13 ± 0.15
Qem,electrons −1.70 ± 0.32 −1.65 ± 0.33

TABLE 1. Time-averaged heat flux contributions of GENE and GENE-3D.

fluxes are dominated by the electrostatic contribution, peaking around x/R0 = 0.6. At
this position, GENE calculates heat fluxes of Qes,ions = 103.24 QGB and Qes,electrons =
80.09 QGB, whereas GENE-3D gives Qes,ions = 104.72 QGB and Qes,electrons = 75.41 QGB.
Both results differ by less than 6 %, giving additional confidence in the numerical
implementation of GENE-3D. Finally, the spectra of the electrostatic heat fluxes at x/R0 =
0.6 are compared in figure 5. There are some small deviations between the heat flux spectra
of both codes at the smallest scale, which is the result of the different representations of
the bi-normal coordinate. Nevertheless, there is excellent agreement of the spectra in the
wavenumber interval where most of the transport is located. Therefore, overall the linear
as well as nonlinear verification studies of GENE-3D can be considered successful.

4. Electromagnetic effects on ITG turbulence in W7-X

Motivated by the successful verification in axisymmetric scenarios, electromagnetic
simulations of W7-X are presented in this section. As the aim is to address the effect of
finite plasma-β on ITG turbulence (Snyder & Hammett 2001) in W7-X, kinetic electron
simulations in the electrostatic limit of βe(x0) = 10−4 and electromagnetic simulations
with βe(x0) = 0.5 % were performed.
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(a) (b)

(c) (d)

FIGURE 4. Radial profiles of heat flux contributions. Electrostatic heat flux of ions (a) and
electrons (b), and electromagnetic heat flux of ions (c) and electrons (d).

FIGURE 5. The ky spectra of the electrostatic heat fluxes, evaluated at x/R0 = 0.6.

The profiles shown in figure 6 were used for all simulations discussed in this section.
The variation of plasma-β was achieved by varying the reference density nref. The specific
choice of profiles localises turbulence in the centre of the plasma volume, such that
one does not need to simulate the entire radial domain, with significant computational
savings. The profiles are chosen to destabilise ITG modes by setting ηi = Ln/LTi > 1 and
ηe = Ln/LTe = 1. The specific form of the profiles is given by (3.4), with the defining
parameters set to κTi = 4.0, κTe = 1.0, wTi = wTe = 0.04, ΔTi = ΔTe = 0.17, κn = 1.0,
wn = 0.04 and Δn = 0.17. For both cases, the standard configuration of W7-X was used,
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(a) (b)

FIGURE 6. (a) Initial density and temperature profiles. (b) Initial density and temperature
gradient profiles.

where the specific geometries were generated with GVEC (Hindenlang et al. 2019) to
be consistent with the background profiles and the prescribed plasma pressures. The
reference temperature is T(x0) = 4.0 keV with x0/a = 0.5. The plasma is a hydrogen
plasma with realistic electron mass. Together with the reference values of Bref = 2.28 T
and Lref = a = 0.52 m this corresponds to a finite-size parameter ρ∗

s = ρs/a = 1/184.
Furthermore, the radial domain 0.25 � x/a � 0.75 was considered, using buffer zones
covering 10 % of each side of the radial domain. Finally, it should be mentioned that the
following simulations exploit the five-fold symmetry of W7-X by only considering one
fifth of the toroidal domain.

Linear simulations were performed to compare the growth rates of both scenarios.
Since GENE-3D does not use a Fourier representation of the bi-normal direction,
all modes are coupled and an initial value calculation will always only resolve the
fastest growing mode present in the system. To overcome this issue, one can lower
the bi-normal resolution to a point where said mode is no longer resolved, while still
properly resolving the magnetic field geometry. While this method is not able to resolve
local minima in the linear growth rate spectrum, it serves as a tool to calculate the
maximum growth rate present in the system. An alternative is to use a numerical
filter to single out the desired mode, as is done, for example, in the EUTERPE code.
This is currently not implemented in GENE-3D, but it was shown in Sánchez et al.
(2021) that both methods are valid approaches. Three simulations were performed for
each case, using a resolution of (120 × 128 × 64 × 24) points in (x, z, v||, μ), with
box lengths of size (Lx, Ly, Lv||, Lμ) = (92.22 ρs, 100.64 ρs, 4.2 vth,σ , 17.7 T0,σ (x0)/Bref)
and hyperdiffusion parameters ηx = ηy = 0.05, ηz = 2.0 and ηv|| = 0.2. The bi-normal
resolution was set to (48, 75, 240), respectively, to resolve different linear modes. The
corresponding growth rates are shown in figure 7, indicating a clear decrease induced by
electromagnetic effects. The precise numerical values are listed in table 2, together with
the ratio between the ion and electron heat fluxes, which is used later for comparison
with the nonlinear results. One observes a reduction of the growth rates of approximately
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FIGURE 7. Linear growth rates as a function of the bi-normal wavenumber of both
electrostatic and electromagnetic cases.

kyρs γmax [cs/a] Qes,e/Qes,i kyρs γmax [cs/a] Qes,e/Qes,i

0.5 0.155 0.13 0.5 0.116 0.15
0.62 0.176 0.15 0.81 0.155 0.19
1.37 0.231 0.17 1.37 0.179 0.22

(a) Electrostatic case (b) Electromagnetic
(βe(x0/a = 0.5) = 0.5 %) case

TABLE 2. Linear results of electrostatic and electromagnetic W7-X simulations.

20–25 %, with the maximum growth rate being decreased from 0.231cs/a to 0.179cs/a. For
completeness, the radial and poloidal mode structures of the fastest-growing modes of both
scenarios are compared in figure 8. Here one can observe that all fields peak radially close
to x/a = 0.6, with only a slight shift between the electrostatic and the electromagnetic
cases. Furthermore, while the electrostatic potential is highly localised around z = 0 in
both cases, the parallel vector potential of the electromagnetic simulation extends over the
entire poloidal domain.

The stabilising properties of electromagnetic effects that were shown linearly can also
be found in nonlinear simulations. For this, two simulations with the same parameters as
for the linear cases were performed, except the resolution in y, which was set to ny = 120.
The cost of each simulation was around 700 000 CPU hours on the Intel Xeon Gold 6148
processors of the MPCDF cluster Cobra.

Figure 9 shows the volume-averaged time traces of the heat fluxes of both electrostatic
and electromagnetic simulations. After approximately 200 time units, at which saturation
is achieved, the electromagnetic case shows lower levels of turbulent heat fluxes than
the electrostatic one. These differences in transport do not arise from nonlinear profile
relaxation, but reflect the reduction of the linear growth rates, as can be seen in figure 10.
In order to retain the background profiles, heat and particle sources of κH = κP = 0.03
were used for both simulations, resulting in nearly identical profiles for both cases, with
only minor deviations from the initial ones.

In order to elaborate further on the quantitative differences in transport between both
scenarios, one can compare the radial profiles of the total electrostatic and electromagnetic
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(a) (b)

(c) (d)

FIGURE 8. Normalised squares of the electrostatic and parallel vector potential of the
fastest-growing modes for the electrostatic and electromagnetic scenarios. Radial (a) and
poloidal (b) structures of the electrostatic potential, and radial (c) and poloidal (d) structures of
the parallel vector potential. The orange lines show the structures of the electrostatic simulation,
whereas the blue lines correspond to those of the electromagnetic set-up.

FIGURE 9. Time traces of the volume-averaged heat fluxes; the dashed black line indicates the
beginning of the time interval used for averaging.

heat fluxes, as shown in figure 11(a). One can easily see that the total electrostatic heat flux
dominates the electromagnetic component with a peak value of 11.99QGB, in comparison
with the maximum electromagnetic heat flux of 0.36QGB. The electrostatic heat flux itself
can again be split into contributions coming from the ions and the electrons and can then
be compared individually. Figure 11(b) shows the radial profiles of the electrostatic heat
fluxes of both scenarios, averaged over a flux surface and in time. The profiles are all
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FIGURE 10. Time average of the background density and temperature profiles.

(a) (b)

FIGURE 11. Time average of the radial heat flux profiles. (a) Electrostatic and electromagnetic
heat fluxes and (b) electrostatic ion and electron heat fluxes.

peaking approximately at x/a = 0.46. Both ions and electrons undergo a reduction of
their turbulent heat fluxes through electromagnetic effects by approximately 25 %, with the
peak ion heat flux being reduced from 13.70QGB to 10.34QGB and the electron flux from
2.25QGB to 1.65QGB. One should mention, however, that the aforementioned reduction is
observed in gyro-Bohm units only, as the increase in the plasma-β is created by a 50-fold
increase in the reference plasma density. This stabilisation is in line with the decrease in
linear growth rates shown in table 2. One can further compare the relative magnitudes
of ion and electron heat fluxes for both cases to see that they share a common ratio of
approximately Qes,e/Qes,i = 0.15. This is again similar to what was found in the linear
simulations, although there seem to be slight deviations, especially for larger ky in the
electromagnetic simulation.

To understand this, one has to take into account that not all modes contribute equally
to turbulence, but that it is rather the low-ky modes that enter most, in particular for
ITG turbulence, as was already shown, for example, in Navarro et al. (2020). To confirm
this, the bi-normal wave spectra of the electrostatic heat fluxes at x/a = 0.46 are shown
in figure 12. All the heat fluxes peak around kyρs ∼ 0.3, which is below the smallest ky
that was resolved linearly, with only minor contributions from kyρs ∼ 1 and beyond.
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FIGURE 12. Wavenumber spectra of ionic and electronic electrostatic heat fluxes, evaluated at
x/a = 0.46.

Overall, both linear and nonlinear simulations show a consistent reduction of ITG
activity through electromagnetic effects for the given plasma-β. Nevertheless, increasing
β will eventually result in the excitation of KBM turbulence, similar to the transition
shown in § 3.1, which highlights the importance of electromagnetic effects for future
investigations.

5. Conclusion

The present paper focuses on the upgrade of the GENE-3D code to capture
electromagnetic effects by retaining a perturbation in the parallel vector potential. The
main extension to the numerical scheme of GENE-3D with respect to Maurer et al. (2020)
was the introduction of an additional field equation to compute the time derivative on the
right-hand side of the gyrokinetic equation. Both linear and nonlinear verification studies
show excellent agreement with the well-established tokamak code GENE, proving the
correct implementation and viability of the electromagnetic upgrade.

The code was then applied to W7-X with the goal of addressing electromagnetic
stabilisation of ITG turbulence. To this end, a set of analytical density and temperature
profiles was considered in the standard configuration of W7-X. Linear and nonlinear
simulations have been performed comparing the results between an electromagnetic
case with βe(x/a) = 0.5 % and a case in the electrostatic limit. Electromagnetic effects
cause a reduction by 25 % of the linear growth rates, which in turn results in a similar
reduction of the saturated nonlinear fluxes. While these results were obtained under
simplifying assumptions, e.g. using analytical profiles and artificial reference parameters,
they demonstrate that GENE-3D is able to perform electromagnetic simulations and that
finite-β stabilisation can be important for stellarators as well.

In order to approach such applications without these constraints, realistic simulations
of W7-X discharges are planned for the future. Furthermore, it will be of great interest to
study electromagnetic instabilities in medium- to high-plasma-β regimes in stellarators.
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Appendix A. Additional numerical details

This appendix briefly mentions some additional numerical details of GENE-3D, a
detailed discussion of which can be found in Maurer et al. (2020).

Phase-space variables are discretised in order to solve the gyrokinetic system
numerically. For this, the velocity space parallel to the magnetic field lines is partitioned on
an equidistant grid with zero Dirichlet boundaries, whereas the grid in the direction of the
magnetic moment is distributed using a Gauss quadrature scheme with Gauss–Legendre
weights and knots (Abramowitz & Stegun 1965). For the spatial discretisation, the three
field-aligned coordinates

x = ρtor

y = σBp Cy α

z = σBp θ∗

⎫⎪⎬
⎪⎭ (A 1)

are introduced. Here, ρtor = √
Φtor/Φedge is used as a radial coordinate, where Φtor is the

toroidal flux and Φedge its value at the last closed flux surface. The bi-normal coordinate
y is based on the field line label α = q(x)θ∗ − ϕ at a fixed flux surface, where q(x) is
the safety factor, θ∗ is the poloidal PEST angle (Li, Breizman & Zheng 2016), ϕ is the
geometrical toroidal angle and the constant Cy is defined as Cy = x0/|q0|, where q0 is the
safety factor at the reference point x0. Lastly, the parallel coordinate z describes the position
along a magnetic field line. In addition, the sign of the poloidal magnetic field σBp ensures
that the parallel direction is always in the direction of the magnetic field. The magnetic
field, as well as other geometric coefficients, such as the safety factor profile and metric
coefficients, are provided via an interface by the Galerkin Variational Equilibrium Code
(GVEC), an ideal magnetohydrodynamics equilibrium solver which follows the ideas of
the well-established VMEC code (Hirshman & Whitson 1983; Hirshman & Betancourt
1991).

The spatial grids in GENE-3D themselves are rectangular, equidistant meshes, which
makes it particularly easy to calculate spatial derivatives using a fourth-order-accurate
central-difference scheme. The boundaries in the radial direction have zero-valued
Dirichlet conditions. The bi-normal coordinate is treated periodically, whereas the
well-established twist-and-shift boundary condition (Beer et al. 1995) is used at the
boundaries along a magnetic field line.

In order to avoid unphysical high-wavenumber modes that arise due to the
central-difference approximations, one can introduce numerical hyperdiffusion terms to
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the right-hand side of the gyrokinetic equation to dampen these modes. The hyperdiffusion
terms in the x, y, z and v|| directions are all fourth-order-accurate terms with second-order
stencils, meaning that they are of the form

Hui = ηu
−F1,σ (ui−2) + F1,σ (ui−1) − 6F1,σ (ui) + 4F1,σ (ui+1) − F1,σ (ui−2)

16�u
, (A 2)

where u represents any of the previously mentioned coordinates and the damping
parameter ηu can be set for each coordinate individually as input by the user.

By applying radial Dirichlet boundary conditions to the distribution functions, density
and temperature profiles are fixed at the boundaries of the radial domain, which can cause
strong turbulence and numerical instabilities at the boundaries. To avoid this, it is advisable
to employ a Krook damping operator of the form

Kx = −ν(x)F1,σ (A 3)

to the right-hand side of (2.12), where the damping factor ν(x) is implemented as
a fourth-order polynomial with compact support within a buffer region at the radial
boundaries, typically 5 %–10 % at each side of the domain (Gï£¡ï£¡rler et al. 2011). As
GENE-3D uses a gradient-driven approach (Görler et al. 2011; Rath et al. 2016; Lanti et al.
2018) so far, numerical particle and heat sources have to be introduced to the gyrokinetic
equation (2.12) in order to maintain the density and temperature profiles. The sources are
of the form

SP,σ = −κP

〈
FM,σ (X , |v|||, μ)

〉
FS∑

σ

〈∫
FM,σ (X , |v|||, μ) d3v

〉
FS

∑
σ

〈∫ 〈
F1,σ (X , |v|||, μ)

〉
FS d3v

〉
FS

(A 4)

in the case of the particle source and

SH,σ =−κH

⎡
⎢⎢⎣〈

F1,σ (X , |v|||, μ)
〉
FS −

〈∫ 〈
F1,σ (X , |v|||, μ)

〉
FS d3v

〉
FS〈∫ 〈

FM,σ (X , |v|||, μ)
〉
FS d3v

〉
FS

〈
FM,σ (X , |v|||, μ)

〉
FS

⎤
⎥⎥⎦

(A 5)
for the heat source. Here,

〈.〉FS = ∂

∂V

∫
V

. dV ′ (A 6)

denotes the flux-surface average (D’haeseleer et al. 2012) and

F1,σ (X , |v|||, μ) = F1,σ (X , v||, μ) + F1,σ (X ,−v||, μ)

2
. (A 7)

The symmetrisation of the distribution function with respect to v|| in (A5) ensures the
conservation of parallel momentum and the terms proportional to 〈∫ . . . 〉FS/〈

∫
. . . 〉FS

avoids the unwanted numerical injection of particles (McMillan et al. 2008).
The coefficients κP and κH are specified by the user and should be chosen to be around
5 %–10 % of the maximum linear growth rate of the system (Lapillonne et al. 2010).
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The nonlinear term in (2.13), coupling vχ to F1,σ and φ1, can be written in the form

− vχ ·
(

∇F1,σ + qσ FM,σ

T0,σ

∇G{φ1}
)

= c
B0

(b0 × ∇G{χ}) ·
(

∇F1,σ + qσ FM,σ

T0,σ

∇G{φ1}
)

= c
B0

[
b0 · (∇F1,σ × ∇G{χ}) + qσ FM,σ

T0,σ

b0 · (∇G{φ1} × ∇G{χ})
]

= c
B0

[{
F1,σ ,G{χ}}x,y + qσ FM,σ

T0,σ

{G{φ1},G{χ}}x,y

]
, (A 8)

where the two-dimensional Poisson brackets for functions A and B have been defined here
as

{A, B}x,y = ∂A
∂x

∂B
∂y

− ∂B
∂x

∂A
∂y

. (A 9)

An Arakawa scheme (Arakawa 1997) is used to evaluate the Poisson brackets in (A8)
numerically, as it ensures the conservation of free energy in nonlinear simulations (Bañón
Navarro et al. 2011).

Finally, in order to perform the gyroaverages efficiently, the distribution functions
as well as the electromagnetic fields are discretised using a finite-element method
in the directions perpendicular to the magnetic field, currently employing bicubic
piecewise polynomials. Doing so, together with the finite-difference approximations of
the derivatives, allows one to transform the field equations (2.9), (2.10) and (2.15) into a
set of sparse, linear systems. This makes it possible to use the PETSc library (Balay et al.
1997, 2019) in order to solve the equations for the electromagnetic fields. While providing
an extensive set of iterative solvers already, PETSc can also serve as an interface to direct
solvers such as MUMPS (Amestoy et al. 2001, 2006) or SuperLU_(Li & Demmel 2003).
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