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On the Geometry of the Moduli Space of
Real Binary Octics

Kenneth C. K. Chu

Abstract. The moduli space of smooth real binary octics has five connected components. They para-

metrize the real binary octics whose defining equations have 0, . . . , 4 complex-conjugate pairs of roots

respectively. We show that each of these five components has a real hyperbolic structure in the sense

that each is isomorphic as a real-analytic manifold to the quotient of an open dense subset of 5-

dimensional real hyperbolic space RH
5 by the action of an arithmetic subgroup of Isom(RH

5). These

subgroups are commensurable to discrete hyperbolic reflection groups, and the Vinberg diagrams of

the latter are computed.

1 Introduction

A (complex) binary octic refers to a hypersurface of degree eight in the complex pro-

jective line CP
1; in other words, it is the set of roots in CP

1 of a homogeneous poly-

nomial of degree eight in two variables with complex coefficients. One can think of

a binary octic as an 8-point configuration in CP
1, counting multiplicity. A binary

octic is said to be smooth if it is smooth as a hypersurface in CP
1; equivalently, it

is smooth if the eight roots of any of its defining polynomials are pairwise distinct.

The GIT-stable (or more briefly, stable) binary octics are those with at worst triple-

point singularities. A real binary octic is a binary octic that is preserved by complex

conjugation on CP
1.

Using periods of certain branched covers of CP
1, Deligne–Mostow [7], Terada

[16], [15], Matsumoto–Yoshida [12] have described the arithmetic hyperbolic 5-ball

quotient structure of the moduli space Ms of stable complex binary octics. The use

of periods of curves is classical, for instance, in the construction of the moduli space

of elliptic curves and Picard curves [14]. Kondō [11] produced the same description

of Ms using periods of K3 surfaces.

Following the approach of Allcock–Carlson–Toledo in [3] for real cubic surfaces

and [2] for real binary sextics, this article describes how the Deligne–Mostow con-

struction of the moduli space of complex binary octics induces a real hyperbolic

structure on each connected component of the moduli space of smooth real binary

octics. This result is stated as Theorem 6.1. Unlike in [3] and [2], the scalar ring

involved here is the Gaussian integers and the lattice involved is no longer unimod-

ular. These lead to considerable added computational complexities, as well as the

unforeseen semi-direct product structure of one of the monodromy groups.
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2 The Moduli Space of Complex Binary Octics as an Arithmetic
Quotient of CH

5

2.1 The Fibration of Cyclic Covers Branched over Octics and the Hermitian
Structure of the Cohomology of its Fiber

Define

X := {(p, [x0 : x1 : y]) ∈ P × P(1, 1, 2) | y4 − p(x0, x1) = 0},

where P is the space of all binary octic forms and P(1, 1, 2) is the weighted projective

space of weights (1, 1, 2), which is defined as follows:

P(1, 1, 2) := (C
3 − {0})/∼,

where the equivalence relation ∼ is given by: (x0, x1, y) ∼ (x ′
0, x ′

1, y ′) if and only

if there exists λ ∈ C − {0} such that (x ′
0, x ′

1, y ′) = (λx0, λx1, λ
2 y). P(1, 1, 2) is a

projective variety isomorphic to the cone in CP
3 with apex [0 : 0 : 0 : 1] over a

conic plane curve in {[Z0 : Z1 : Z2 : 0] ∈ CP
3} ∼= CP

2. See [10], for example, for

this isomorphism. The cone point of P(1, 1, 2) is [0 : 0 : 1] ∈ P(1, 1, 2) and it is the

unique singular point of P(1, 1, 2). The hypersurface X does not contain this singular

point.

Define the maps

σ : X → X : (p, [x0 : x1 : y]) 7−→ (p, [x0 : x1 : iy]),

Π : X → P : (p, [x0 : x1 : y]) 7−→ p,

π : X → CP
1 : (p, [x0 : x1 : y]) 7−→ [x0 : x1].

Let P0 be the space of smooth binary octic forms (homogeneous binary polynomials

of degree eight). Let X0 := Π
−1(P0). Then for each p ∈ P0, the fiber

Xp := Π
−1(p) = {[x0 : x1 : y] ∈ P(1, 1, 2) | y4 − p(x0, x1) = 0}

is a (smooth) compact Riemann surface. The map σ : X → X induces a cyclic action

on X of order 4. σ preserves every fiber of Π, hence restricts to a cyclic action of

order 4 on each fiber Xp := Π
−1(p), p ∈ P0. The map π : X → CP

1 is well-defined

since [0 : 0 : 1] ∈ P(1, 1, 2) − X. Observe that for each p ∈ P0, the restricted

map π|Xp
: Xp → CP

1 is a cyclic cover of CP
1 of degree 4 branched over the eight

distinct roots of p(x0, x1) in CP
1, and it has exactly eight ramification points, each

with ramification index 4. By the Riemann–Hurwitz theorem, g(Xp) = h1,0(Xp) = 9,

for each p ∈ P0. Thus, X0
Π→ P0 is a fibration whose fiber over each p ∈ P0 is the

compact Riemann surface Xp := Π
−1(p), which has genus 9 and is a cyclic covering

of CP
1 branched over the roots in CP

1 of the polynomial p(x0, x1).

For economy of notation, we denote also by σ the restriction of σ : X → X to the

fiber Xp = Π
−1(p), for any p ∈ P0. Similarly, we denote also by σ the induced map

on the H1(Xp, Z) or H1(Xp, C).
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Lemma 2.1 The map σ : H1(Xp, C) → H1(Xp, C) preserves the Hodge decomposition

H1(X, C) = H1,0(Xp) ⊕ H0,1(Xp), and

H1,0(Xp) = H
1,0
σ=−1(Xp) ⊕ H

1,0
σ=i

(Xp) ⊕ H
1,0
σ=−i

(Xp),

where H
1,0
σ=−1(Xp), H

1,0
σ=i

(Xp), and H
1,0
σ=−i

(Xp) are the (−1)-, (i)-, and (−i)-eigenspaces

of σ : H1,0(Xp) → H1,0(Xp), respectively. Furthermore,

dimC H
1,0
σ=−1(Xp) = 3, dimC H

1,0
σ=i

(Xp) = 5, and dimC H
1,0
σ=−i

(Xp) = 1.

Proof Since Xp

σ
−→ Xp is holomorphic, H1(Xp, C)

σ
−→ H1(Xp, C) preserves the Hodge

decomposition H1(Xp, C) ∼= H1,0(Xp) ⊕ H0,1(Xp). So restriction of σ to H1,0(Xp)

yields a map H1,0(Xp)
σ
−→ H1,0(Xp). Since σ|H1,0(Xp) still satisfies the identity σ4 −1 =

0, and 1 is not an eigenvalue of σ (because H1(CP
1, C) = {0}), it immediately follows

that H1,0(Xp) = H
1,0
σ=−1(Xp) ⊕ H

1,0
σ=i

(Xp) ⊕ H
1,0
σ=−i

(Xp).

To compute the indicated dimensions, it is sufficient to compute it for a polyno-

mial p(x0, x1) whose roots do not include 0 = [0 : 1],∞ = [1 : 0] ∈ CP
1 and such

that p(x0, 1) is a monic polynomial in x0. Such an Xp is isomorphic to the comple-

tion X of the affine plane curve {(x, y) ∈ C
2 | y4 − p(x, 1) = 0}. See [13] for this

completion process.

The Riemann surface X also has an order-four cyclic action, and the induced ac-

tion on the cohomology of X. We denote both these actions also by σ. Straightfor-

ward verifications show that d x
y2 , x d x

y2 , and x2 d x
y2 define holomorphic 1-forms on X

and belong to the (−1)-eigenspace of the cyclic action σ on the cohomology of X.

Similarly, d x
y3 , x d x

y3 , x2 d x
y3 , x3 d x

y3 , x4 d x
y3 define holomorphic 1-forms on X belonging

to the (+i)-eigenspace of σ, and d x
y

defines a holomorphic 1-form on X belonging

to the (−i)-eigenspace of σ. These nine holomorphic 1-forms are linearly inde-

pendent over C, and since dimC H1,0(X) = dimC H1,0(Xp) = 9, we see that their

cohomology classes form a basis for H1,0(X). Consequently, dimC H
1,0
σ=−1(X) = 3,

dimC H
1,0
σ=+i

(X) = 5, and dimC H
1,0
σ=−i

(X) = 1. Since Xp and X are isomorphic as

cyclic branched covers of CP
1, the lemma follows.

Next, for each p ∈ P0, define

Λ(Xp) := H1
σ2=−1(Xp, Z) := {φ ∈ H1(Xp, Z) | σ2(φ) = −φ}.

Then σ|Λ(Xp) satisfies σ2 + 1 = 0. Consequently, if we define multiplication by −i in

Λ(Xp) by

−i · φ := σ(φ),

then Λ(Xp) becomes a Z[i]-module. We need to define the action of σ to be multi-

plication by −i because we want to embed Λ(Xp) into H1
σ=−i

(Xp, C). This is because

the (1, 0)-summand of H1
σ=−i

(Xp, C) is 1-dimensional (see Lemma 2.1 or Proposi-

tion 2.3), which will eventually yield a holomorphic complex period map into com-

plex hyperbolic space; see Section 2.3. If we defined the action of σ to be multipli-

cation by i, then Λ(Xp) would be embedded into H1
σ=i

(Xp, C), whose 1-dimensional
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summand under Hodge decomposition is its (0, 1)-summand. The resulting period

map into complex hyperbolic space would then be anti-holomorphic instead.

Proposition 2.2 With the above Z[i]-module structure, Λ(Xp) becomes a free Z[i]-

module of rank 6.

Proof First, note that Λ(Xp) is torsion-free as a Z-module, being a Z-submodule

of the free Z-module H1(Xp, Z) ∼= Z
18. And, elementary arguments show that, for

any element φ ∈ Λ(Xp), σ(φ) cannot be a Z-multiple of φ. These two observations

together imply that Λ(Xp) is torsion-free over Z[i]. Since Z[i] is a PID, Λ(Xp) is a free

Z[i]-module. Next, note that

rankZ[i] Λ(Xp) =
1

2
· rankZ Λ(Xp) =

1

2
· rankZ H1

σ2=−1(Xp, Z)

=
1

2
· dimC H1

σ2=−1(Xp, C)

=
1

2
· {dimC H

1,0
σ2=−1

(Xp) + dimC H
0,1
σ2=−1

(Xp)}

=
1

2
· 2 · dimC H

1,0
σ2=−1(Xp) = dimC H

1,0
σ=i

(Xp) + dimC H
1,0
σ=−i

(Xp)

= 6,

where Lemma 2.1 was used in the second last equality.

Consider the embedding Λ(Xp) →֒ H1
σ=−i

(Xp, C) induced by

H1
σ2=−1

(Xp, Z) Â Ä // H1
σ2=−1

(Xp) ⊗Z R
Â Ä // H1

σ2=−1
(Xp, R) ⊗R C

∼

// H1
σ2=−1

(Xp, C)

Λ(Xp) ½ z

,,Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

H1
σ=−i

(Xp, C) ⊕ H1
σ=i

(Xp, C)

²²
²²

H1
σ=−i

(Xp, C)

That the above composition Λ(Xp) → H1
σ=−i

(Xp, C) is indeed injective follows from

the fact that if V is a real vector space with a complex structure J, then the projection

map V ⊗R C → V (0,1) : v 7−→ v + i J(v) maps V bijectively onto V (0,1), where V (0,1) is

the (−i)-eigenspace of the C-linear extension of J to V ⊗R C.

Let h ′ : H1
σ=−i

(Xp, C) × H1
σ=−i

(Xp, C) → C be the Hermitian form given by

(α, β)
h ′

7−→ 2i

∫

Xp

α ∧ β.

The above Hermitian form induces a Z[i]-lattice (i.e., a Z[i]-module equipped with a

Z[i]-valued Hermitian form) structure on Λ(Xp), as the following Proposition shows:
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Proposition 2.3

(i) h ′ is positive-definite on H
1,0
σ=−i

(Xp, C) and negative-definite H
0,1
σ=−i

(Xp, C). Con-

sequently,
(

H1
σ=−i

(Xp, C), h ′) is isometric to the standard Lorentzian–Hermitian

space C
1,5

= C
1+,5−.

(ii) Let h be the pullback to Λ(Xp) of the Lorentzian–Hermitian form

h ′ : H1
σ=−i(Xp, C) × H1

σ=−i(Xp, C) → C

by the embedding Λ(Xp) →֒ H1
σ=−i

(Xp, C). Then h is in fact Z[i]-valued on

Λ(Xp) × Λ(Xp), and it is a Z[i]-valued Hermitian form on Λ(Xp) given by the

following formula:

h(ξ, η) = Ω
(
ξ, σ(η)

)
+ iΩ(ξ, η), for any ξ, η ∈ Λ(Xp),

where Ω : H1(Xp, Z) × H1(Xp, Z) → Z is given by

Ω(α, β) := 〈α ∪ β, [Xp]〉.
(iii) The Lorentzian Z[i]-valued Hermitian quadratic form on Λ(Xp) constructed as in

(ii) is abstractly isometric to the following Z[i]-lattice:

Λ :=

(

Z[i]6,

[
−2 1 + i

1 − i −2

]

⊕
[
−2 1 + i

1 − i −2

]

⊕
[

0 1 + i

1 − i 0

])

.

Proof

(i) Let z = x + iy be a local coordinate of the Riemann surface Xp, with real and

imaginary parts x and y, respectively. Then

d z ∧ d z = d(x + i y) ∧ d(x − i y) = −i d x ∧ d y + i d y ∧ d x = −2 i d x ∧ d y.

Hence, 2i d z ∧ d z = 4 d x ∧ d y, which immediately shows that h ′ is positive-

definite on holomorphic 1-forms and negative-definite on antiholomorphic 1-

forms.

(ii) Write Z for the embedding Λ(Xp)
Z→֒ H1

σ=−i
(Xp, C). For an arbitrary ξ ∈

Λ(Xp) ⊂ H1
σ2=−1(Xp, C) = H1

σ=i
(Xp, C) ⊕ H1

σ=−i
(Xp, C), write ξ = ξι + ξι,

where ξι ∈ H1
σ=i

(Xp, C) and ξι ∈ H1
σ=−i

(Xp, C). Of course, we then have

Z(ξ) = ξι. Now, note that
∫

Xp

ξι ∧ ξι =

∫

Xp

ξι ∧ ξι =
1

2

∫

Xp

ξι ∧ ξι −
1

2

∫

Xp

ξι ∧ ξι

=
1

2

∫

Xp

ξι ∧ ξι +
1

2

∫

Xp

ξι ∧ ξι −
1

2

∫

Xp

ξι ∧ ξι −
1

2

∫

Xp

ξι ∧ ξι

=
1

2

∫

Xp

(ξι + ξι) ∧ ξι −
1

2

∫

Xp

(ξι + ξι) ∧ ξι

=
1

2

∫

Xp

ξ ∧ ξι −
1

2

∫

Xp

ξ ∧ ξι

=
1

2

∫

Xp

ξ ∧ (ξι − ξι).
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Hence,

h ′(Z(ξ), Z(ξ)
)

= 2i

∫

Xp

ξι ∧ ξι = 2i · 1

2

∫

Xp

ξ ∧ (ξι − ξι) =

∫

Xp

ξ ∧ (iξι − iξι)

=

∫

Xp

ξ ∧
(
σ(ξι) + σ(ξι)

)
=

∫

Xp

ξ ∧ σ(ξ) = Ω
(
ξ, σ(ξ)

)
.

So we now know that the quadratic form Q : Λ(Xp) → C associated with

the Hermitian form Λ(Xp) × Λ(Xp)
h
−→ C is in fact Z-valued and is given by

Q(ξ) = Ω
(
ξ, σ(ξ)

)
. This immediately implies that the real part hsymm( · , · )

of h( · , · ) = hsymm( · , · ) + ihskew( · , · ) is also Z-valued and is given by

hsymm(ξ, η) = Ω
(
ξ, σ(η)

)
.

Next, recall that the real and imaginary parts of a general Hermitian form

H(ξ, η) = F(ξ, η) + iG(ξ, η) are related by: F
(

J(ξ), η
)

= −G(ξ, η), where

J is the pertinent complex structure. See, for example, [5, Section 7.2]. In our

context, σ = − J, since σ is multiplication by −i, and F(ξ, η) = hsymm(ξ, η) =

Ω
(
ξ, σ(η)

)
. Thus, we have −hskew(ξ, η) = −G(ξ, η) = F

(
J(ξ), η

)
=

Ω
(
−σ(ξ), σ(η)

)
= −Ω(ξ, η), which implies

hskew(ξ, η) = Ω(ξ, η).

We may now conclude that h : Λ(Xp) ×Λ(Xp) → C is in fact Z[i]-valued and it

is given by the following formula:

h(ξ, η) = Ω
(
ξ, σ(η)

)
+ iΩ(ξ, η).

(iii) The inner product matrix of the Z[i]-lattice Λ(Xp) with respect to the basis for

Λ(Xp) chosen in Section 6 of [12] (pp. 273–274 thereof) is

B :=











0 0 0 0 0 −1 + i

0 −2 −1 + i 0 0 0

0 −1 − i −2 0 0 0

0 0 0 −2 −1 + i 0

0 0 0 −1 − i −2 0

−1 − i 0 0 0 0 0











This is readily seen to be equivalent over Z[i] to

A :=











−2 1 + i 0 0 0 0

1 − i −2 0 0 0 0

0 0 −2 1 + i 0 0

0 0 1 − i −2 0 0

0 0 0 0 0 1 + i

0 0 0 0 1 − i 0











.
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More precisely, let

M :=











0 0 0 0 1 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 0 0 0 0 i











∈ Z[i]6×6.

Then det(M) = i; hence, M ∈ GL(Z[i], 6). Furthermore, the following equality

holds:

A = Mt BM.

This proves statement (iii).

2.2 The Space of Framed Octic Forms

In this section, we describe the space of framed smooth octic forms and its Fox com-

pletion [8] over the stable octic forms; this Fox completion is called the space of

framed stable octic forms. These spaces of framed octic forms are the domains of the

period maps described in the subsequent sections. The complex ball quotient struc-

ture of Ms arises through these period maps. We omit all proofs, but refer to [1],

which treats the analogous case of the complex cubic surfaces.

Definition 2.4 A framed smooth octic form over p ∈ P0 is a “projective equivalence

class” of an (abstract) isometry of Λ(Xp)
∼
−→ Λ, where two such isometries are said

to be “projectively equivalent” if one is a Z[i]-unit scalar multiple of the other.

Let Λ(X0) be the sheaf over P0 associated with the presheaf

U 7→ H1
σ2=−1

(
Π

−1(U ), Z
)
.

Proposition 2.3 (iii) implies that Λ(X0) is a sheaf over P0 of Z[i]-valued Her-

mitian modules, with stalks isomorphic to the rank-six Z[i]-lattice Λ. Let

PHom
(
Λ(X0),P0 × Λ

)
be the sheaf of projective equivalence classes of sheaf ho-

momorphisms from Λ(X0) to P0 × Λ.

Definition 2.5 The space F0 of framed smooth octic forms over P0 is the subsheaf of

PHom
(
Λ(X0),P0 × Λ

)
consisting of projective equivalence classes of sheaf homo-

morphisms Λ(X0) → P0 × Λ that restrict to an isometry on each stalk.

F0 is a complex manifold and its stalks are the framed smooth octic forms, as

defined in Definition 2.4. F0 can be alternatively described as the Galois covering of

P0 associated with the kernel of the “projectivized monodromy representation”

Pρ : π1(P0, p0) → P Isom
(
Λ(Xp0

)
) ∼= P Isom(Λ),
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which of course derives from the standard monodromy representation

ρ : π1(P0, p0) → Isom
(
Λ(Xp0

)
)
,

where p0 ∈ P0 is an arbitrary but fixed smooth octic. It is clear from this description

of F0 as a Galois covering over a path-connected base space that it is connected.

The monodromy group—and the deck transformation group—ρ
(
π1(P0, p0)

)
⊂

P Isom(Λ) turns out to be all of P Isom(Λ). So, PΓ := P Isom(Λ) acts on F0 as

deck transformations, and PΓ\F0
∼= P0.

Let G := GL(2, C)/〈all eighth roots of unity〉. G acts naturally on P0 (by linear

change of variables). This action extends to a free action on F0 via the induced action

on cohomology (see Sections (2.10) and (3.10) in [1] for the analogous case of cubic

surfaces).

Next, let Ps be the space of all stable binary octic forms and Fs → Ps be the Fox

completion (see [8]) of the covering F0 → P0 over Ps. Fs is a branched covering of

Ps with four-fold branching over ∆
1
s ⊂ Ps, the locus in Ps corresponding to octics

with one double point and no other singularities. Intuitively, Fs coincides with F0

over P0, and, for a singular octic p ∈ ∆
1
s , Fs retains information about the vanishing

cohomology corresponding to the singularities of p. We call Fs the space of framed

stable octic forms.

The actions of G and PΓ on F0 extend naturally to Fs, and it can be shown that

PΓ\Fs
∼= Ps.

2.3 The Complex Period Map and the CH
5 Quotient Structure of Ms

The period map of interest to us is defined as follows:

F0
p→ CH

5
= CH(Λ ⊗Z[i] C)

[

Λ(Xp)
i
−→ Λ

]

7−→ i
(

H
1,0
σ=−i

(Xp)
)
.

Note that PΓ = P Isom(Λ) naturally acts on CH
5

= CH(Λ ⊗Z[i] C). The period

map p is holomorphic because the Hodge filtration varies holomorphically (see, for

example, [1, (2.16)]), invariant under the action of G on F0, and it is equivariant

with respect to the actions of PΓ = P Isom(Λ) on F0 and CH
5.

The period map p extends holomorphically to Fs to a (G y Fs)-invariant and

PΓ-equivariant map, also denoted by p. The map p therefore descends to a map

p : Fs/G → CH
5, which turns out to be an isomorphism of complex manifolds.

Furthermore, p maps F0 bijectively to (CH
5 − H), where

H :=
⋃

{

CH(r⊥) ⊂ CH
5
∣
∣
∣

r is a vector in Λ of

squared norm −2

}

,

restricting also to an isomorphism of complex manifolds F0/G
p

−→ (CH
5 − H).

The results of Deligne–Mostow [7] and Matsumoto–Yoshida [12] show that Ms

and PΓ\CH
5 are isomorphic as complex analytic (quasi-projective) varieties via the
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following series of isomorphisms:

Ms := P(Ps)/P GL(2, C) ∼= Ps/G ∼= (PΓ\Fs)/G ∼= PΓ\(Fs/G) ∼= PΓ\CH
5.

We remark that Ms and PΓ\CH
5 are isomorphic only as complex analytic varieties,

but not as complex analytic orbifolds. That their orbifold structures are distinct can

be seen by the fact that the orbifold points of P(Ps)/P GL(2, C) correspond to oc-

tics with nontrivial authomorphisms, whereas the orbifold points of PΓ\CH
5 corre-

spond to singular octics.

3 The Allcock–Carlson–Toledo Construction of MR

0

As shown in the last section, the moduli space Ms of stable binary octics is isomor-

phic as a complex analytic variety to the ball quotient PΓ\CH
5. We shall show in

Section 3.5 that periods in CH
5 corresponding to real octics lie on a certain collec-

tion of copies of real hyperbolic 5-space RH
5 inside CH

5.

More precisely, complex conjugation κ on CP
1 naturally induces a map on the

space P of complex octic forms by conjugating coefficients (see Definition 3.2), and

real binary octic forms (i.e., those octic forms with only real coefficients) can be

characterized as fixed points of this induced map. This implies that, for a smooth

real binary octic form p, the complex conjugation κ : CP
1 → CP

1 induces an anti-

holomorphic involution κp : Xp → Xp, which in turn induces an involutive anti-

isometry (see Definition 3.10) κ ′
p on H1

σ=−i
(Xp, C), which likewise restricts to an

involutive anti-isometry on Λ(Xp). Any isometry i : Λ(Xp)
∼
−→ Λ will then in-

duce an involutive anti-isometry χκp
on Λ, and χκp

extends to an involutive anti-

isometry on C
1,5

= Λ ⊗Z[i] C. In Section 3.5, we will show that the complex period

i
(

H
1,0
σ=−i

(Xp)
)
∈ CH

5 is a fixed point of the projective class [χκp
] of χκp

, and that

the fixed point set of [χκp
] is isomorphic to real hyperbolic 5-space RH

5. A copy of

RH
5 within CH

5
= CH(Λ ⊗Z[i] C) will be called an integral copy of RH

5 if it is the

fixed point set of the projective class of an involutive anti-isometry Λ.

Thus, the complex periods of real binary octic forms all lie on integral copies of

RH
5 within the period domain CH

5. Consequently, in order to locate all the periods

in CH
5 corresponding to real binary octic forms, we first determine all the involu-

tive anti-isometries of Λ, and subsequently their fixed point sets. However, there

is a slight complication due to the fact that CP
1 admits two PGL(2, C)-conjugacy

classes of antiholomorphic involutions, represented by complex conjugation and the

antipodal map on CP
1 respectively.1 The antipodal map will also induce involutive

anti-isometries on Λ. We will therefore need to separate the two kinds of involutive

anti-isometries of Λ and discard those induced by the antipodal map.

3.1 Complex Conjugation and the Antipodal Map on CP
1 and Their Related Maps

Definition 3.1 Define the maps κ : C
2 → C

2, and α : C
2 → C

2 respectively by

κ(x0, x1) := (x0, x1), and α(x0, x1) := (x1,−x0).

1János Kollár, Real forms, unpublished notes.
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Definition 3.2 Let ν : C
2 → C

2 be either κ or α as in Definition 3.1. We define the

action of ν on the space P of complex binary octic forms as follows:

(ν · p)(x0, x1) := p
(
ν(x0, x1)

)
, for p ∈ P.

Definition 3.3 We define an antilinear anti-involution on a complex vector space

V to be an antilinear map V
ν
−→ V such that ν2

= − idV .

Note that an antilinear anti-involution has order four. We will use this notion in

the proof of Lemma 3.32.

Remark 3.4 The map κ : C
2 → C

2 is an antilinear involution, whereas α : C
2 → C

2

is an antilinear anti-involution. κ : C
2 → C

2 descends to complex conjugation on

CP
1, whereas α : C

2 → C
2 descends to the antipodal map on CP

1. We will also use

κ to denote complex conjugation on CP
1 and α the antipodal map on CP

1. Which

map is intended should be clear from the context.

Definition 3.5 A binary octic form is said to be real (respectively antipodal) if it is

preserved by complex conjugation C
2

κ
−→ C

2 (respectively the antipodal map C
2

α
−→

C
2) via the action as in Definition 3.2. We denote by PR

0 the set of smooth real binary

octic forms, and by P
antip
0 the set of smooth antipodal binary octic forms. We denote

by FR

0 and F
antip
0 the preimages of PR

0 and P
antip
0 , respectively, under the covering map

F0 → P0.

Remark 3.6 There are smooth octics that are preserved by both complex conjuga-

tion and the antipodal map. In other words, PR

0 ∩P
antip
0 6= ∅. We also point out that,

unlike their complex counterparts, FR

0 and F
antip
0 are not connected; in fact, they have

infinitely many connected components. This will become clear in Lemma 3.32.

Notation 3.7 For p ∈ PR

0 , we denote by κp : Xp → Xp the antiholomorphic invo-

lution on Xp induced by complex conjugation CP
1

κ
−→ CP

1. Similarly, for p ∈ P
antip
0 ,

we denote by αp : Xp → Xp the antiholomorphic involution on Xp induced by the

antipodal map CP
1

α
−→ CP

1. Note that, for each octic p ∈ PR

0 ∩ P
antip
0 , both κp and

αp on Xp are defined.

Definition 3.8 Let GL(2, C) ′ be the group of all linear and antilinear automor-

phisms of C
2; note that GL(2, C) ′ = GL(2, C) ⋊ 〈κ〉. Let every linear element

g ∈ GL(2, C) ′ and every antilinear element ν ∈ GL(2, C) ′ act on C
3 respectively

by

g(x0, x1, y) :=
(

g(x0, x1), y
)
, and ν(x0, x1, y) :=

(
ν(x0, x1), y

)
.

We will also consider elements of GL(2, C) ′ as automorphisms of P(1, 1, 2) via the

representation GL(2, C) ′ → Aut ′ P(1, 1, 2) corresponding to the action GL(2, C) ′ y

C
3 above, where Aut ′ P(1, 1, 2) is the automorphism group of P(1, 1, 2) induced by

linear and antilinear automorphisms of C
3.
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Definition 3.9 Let GR be the stabilizer in G of the set PR

0 with respect to the action

G y P0. Similarly, let Gantip be the stabilizer in G of the set P
antip
0 with respect to the

same action G y P0.

Straightforward calculations show that GR
= GL(2, R)/〈±1〉 and

Gantip
=

{

g ∈ GL(2, C)
∣
∣
∣

[
0 1

−1 0

]

· g = ±g ·
[

0 1

−1 0

]}

=

{[
z1 z2

±z2 ∓z1

]

∈ C
2×2

∣
∣
∣ |z1|2 + |z2|2 6= 0

}

.

It is obvious that GR is also the stabilizer in G of the set FR

0 with respect to the action

G y F0; similarly, GR is also the stabilizer in G of the set F
antip
0 with respect to the

action G y F0. The exact roles played by GR and Gantip in constructing the moduli

space of smooth real octics can be seen in Proposition 3.36.

Definition 3.10 An anti-isometry on a Z[i]-lattice (V, 〈 · , · 〉) (or a complex vector

space equipped with a Hermitian inner product) is a bijective antilinear map ν : V →
V such that 〈ν(x), ν(y)〉 = 〈x, y〉, for all x, y ∈ V .

Definition 3.11 Let F ′
0 be the space of all pairs (p, [i]), where p ∈ P0, Λ(Xp)

i
−→ Λ

is either an isometry or an anti-isometry, and [i] is the projective equivalence class

of i. Let every linear element g ∈ GL(2, C) ′ and every antilinear element ν ∈
GL(2, C) ′ act on F ′

0 respectively by

(p, [i]) · g :=
(

p ◦ g, [i ◦ (g∗)−1]
)
, and (p, [i]) · ν :=

(
p ◦ ν, [i ◦ (ν∗)−1]

)
.

Note that, for (x0 : x1 : y) ∈ P(1, 1, 2), we have (x0 : x1 : y) ∈ Xp◦ν ⇐⇒ y4
=

p
(
ν(x0, x1)

)
⇐⇒ (y)4

= p
(
ν(x0, x1)

)
⇐⇒ ν · (x0, x1, y) :=

(
ν(x0, x1), y

)
∈ Xp.

So, ν(Xp◦ν) = Xp. Hence, Λ(Xp)
ν∗

−→ Λ(Xp◦ν) and Λ(Xp◦ν)
(ν∗)−1

−−−−→ Λ(Xp)
i
−→ Λ.

3.2 The Deformation Types of Real and Antipodal Smooth Octics and Forms

There are five distinct deformation types of smooth real binary octics, in the sense

that a real octic, of any fixed deformation type, cannot be deformed to a real octic

of a different type through the space OR

0 = PR

0 /R
∗ of smooth real octics (where

R
∗ := R\{0} acts by scalar multiplication on the real octic forms, as usual). In other

words, OR

0 has five connected components, i.e.,

OR

0 = O
R,0
0 ⊔ O

R,1
0 ⊔ O

R,2
0 ⊔ O

R,3
0 ⊔ O

R,4
0 ,

where O
R,0
0 , . . . ,OR,4

0 parametrize the five types of real binary octics according to

Table 3.1.

On the other hand, every smooth antipodal octic can be deformed to every other

smooth antipodal octic through smooth antipodal octics. In other words, O
antip
0 is

connected and there is only one deformation type of smooth antipodal octics.
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components of OR

0 O
R,0
0 O

R,1
0 O

R,2
0 O

R,3
0 O

R,4
0

# complex conjugate pairs 0 1 2 3 4

# real points 8 6 4 2 0

Table 3.1: Deformation types smooth real binary octics.

Definition 3.12 Let MR

0 denote the moduli space of smooth real binary octics,

i.e., MR

0 := OR

0 / PGL(2, R), and M
R,0
0 ,MR,1

0 , . . . ,MR,4
0 its five connected compo-

nents of MR

0 , parametrizing octics in O
R,0
0 ,OR,1

0 , . . . ,OR,4
0 , respectively. (Therefore,

MR

0 =
⊔4

i=0 M
R,i
0 .) Let M

antip
0 denote the moduli space of smooth antipodal octics,

i.e., M
antip
0 := O

antip
0 / StabPGL(2,C)(O

antip
0 ).

Remark 3.13 We do not claim that the definition for M
antip
0 above is the “correct”

or “natural” notion for the moduli space of smooth antipodal octics. We make this

definition because the method we employ to give a description of each connected

component of MR

0 := OR

0 / PGL(2, R) as a real hyperbolic quotient will simultane-

ously yield, as a byproduct, a similar description for O
antip
0 / StabPGL(2,C)(O

antip
0 ); see

Proposition 3.36.

On the other hand, the quotient O
antip
0 / StabPGL(2,C)(O

antip
0 ) may be regarded in

a sense as the “antipodal counterpart” of OR

0 / PGL(2, R) in light of the fact that

PGL(2, R) = StabPGL(2,C)(O
R

0 ).

As we just observed, it is easy to count the number of connected components of

OR

0 or MR

0 . By contrast, in order to do the same for PR

0 , we need to take into account

the fact that R
∗ has two connected components. Write P

R,i
0 for the preimage of O

R,i
0

under the projection PR

0 → OR

0 = PR

0 /R
∗, i = 0, . . . , 4. Consider a smooth real

binary octic in O
R,i
0 , determined by say the roots of an octic form p(x0, x1) ∈ P

R,i
0 .

Then both p(x0, x1) and −p(x0, x1) descend to the same given octic (8-point config-

uration), but they may or may not belong to the same connected component of P
R,i
0 .

It is now clear that each P
R,i
0 , i = 0, . . . , 4, has either one or two connected compo-

nents, depending on whether or not any (hence every) element p(x0, x1) ∈ P
R,i
0 can

be deformed to its negative −p(x0, x1) within P
R,i
0 . We now prove the following:

Lemma 3.14 P
R,4
0 has two connected components,2 whereas each of P

R,0
0 , P

R,1
0 , P

R,2
0 ,

P
R,3
0 , and P

antip
0 is connected.

Proof If we regard x0 and x1 as real variables, then each pair p(x0, x1),−p(x0, x1) ∈
P

R,4
0 can be regarded as continuous R-valued nowhere vanishing functions of the

real variables x0, x1 of opposite signs. Consequently, any continuous deformation

from p(x0, x1) to −p(x0, x1) through the space of continuous R-valued functions

must pass through one that admits zeroes, thereby passing outside P
R,4
0 , since every

2The author wishes to express his gratitude to Dr. János Kollár for pointing out the author’s earlier
overlooking of this fact in a private communication.
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smooth real binary octic form in P
R,4
0 has no real roots. This proves that P

R,4
0 has two

connected components.

Next, consider the following 1-parameter family of binary polynomials:

q3(x0, x1; θ) := (x0 cos θ − x1 sin θ)(x0 sin θ + x1 cos θ), θ ∈ [0, π/2].

Then q3(x0, x1; 0) = x0x1, whereas q3(x0, x1; π/2) = −x0x1. Let r(x0, x1) be any

smooth real binary sextic form with no real roots. Then

p(x0, x1; θ) := q3(x0, x1; θ)r(x0, x1), θ ∈ [0, π/2],

is a continuous path in P
R,3
0 such that p(x0, x1; 0) = x0x1 · r(x0, x1), while

p(x0, x1; π/2) = −x0x1 · r(x0, x1).

This proves that P
R,3
0 is connected.

Similarly, we may define continuous paths in P
R,i
0 , i = 0, 1, 2, whose endpoints

are negatives of each other by using the following three families in place of q3:

q2(x0, x1; θ2) := (x0 cos θ2 − x1 sin θ2)(x0 sin θ2 + x1 cos θ2)

×
(

x0 cos(θ2 + π/4) − x1 sin(θ2 + π/4)
)

×
(

x0 sin(θ2 + π/4) + x1 cos(θ2 + π/4)
)
,

q1(x0, x1; θ1) :=
2∏

n=0

(
x0 cos(θ1 + nπ/6) − x1 sin(θ1 + nπ/6)

)

×
(

x0 sin(θ1 + nπ/6) + x1 cos(θ1 + nπ/6)
)
,

q0(x0, x1; θ0) :=
3∏

n=0

(
x0 cos(θ0 + nπ/8) − x1 sin(θ0 + nπ/8)

)

×
(

x0 sin(θ0 + nπ/8) + x1 cos(θ0 + nπ/8)
)
,

where θ2 ∈ [0, π/4], θ1 ∈ [0, π/6], θ0 ∈ [0, π/8]. Thus, P
R,0
0 , P

R,1
0 , and P

R,2
0 are con-

nected. Lastly, we conclude that P
antip
0 is also connected by noting that q0(x0, x1; θ0)

is a family of antipodal octic forms (in addition to being real).

In summary, PR

0 has six connected components, i.e.,

PR

0 = P
R,0
0 ⊔ P

R,1
0 ⊔ P

R,2
0 ⊔ P

R,3
0 ⊔ P

R,4+
0 ⊔ P

R,4−
0 ,

where P
R,4+
0 and P

R,4−
0 are the two connected components of P

R,4
0 .
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3.3 Each p ∈ PR

0 ⊔ P
antip
0 Gives Rise to an Involutive Anti-isometry of Λ(Xp)

Let p ∈ PR

0 ∪P
antip
0 , and let νp be κp or αp, whichever is defined on Xp. Then the an-

tiholomorphic involution Xp

νp

−→ Xp induces an antilinear involution on H1(Xp, C)

via

H1(Xp, C)
ν ′

p

−→ H1(Xp, C)

φ 7−→ (νp)∗(φ).

Lemma 3.15

(1) The antilinear map ν ′
p preserves both the Hodge decomposition and the σ-eigenspace

decomposition of H1(Xp, C).

(2) The map ν ′
p restricts to an involutive anti-isometry on H1

σ=−i
(Xp, C), which in turn

restricts to an involutive anti-isometry on the Z[i]-lattice on Λ(Xp).

(3) The usual pullback ν∗
p : H1(Xp, Z) → H1(Xp, Z) induced by νp preserves Λ(Xp) =

H1
σ2=−1(Xp, Z), and the restriction ν ′

p|Λ(Xp) agrees with ν∗
p : Λ(Xp) → Λ(Xp).

Outline of Proof

(1) Since νp is antiholomorphic, the pullback ν∗
p : H1(Xp, C) → H1(Xp, C) switches

Hodge types of C-valued differential forms; similarly, complex conjugation on

C-valued differential forms switches Hodge types. Hence, ν ′
p preserves Hodge

types. To prove that ν ′
p preserves σ-eigenspaces, we first state two facts: that

σ ◦ νp = νp ◦ σ3, and that the action of σ∗ on C-valued differential forms

commutes with complex conjugation of differential forms. Both of these facts

can be verified with straightforward calculations. Using these two facts, another

straightforward calculation will show that ν ′
p preserves the σ-eigenspace decom-

position of H1(Xp, C).

(2) The second statement also follows from a direct computation.

(3) The equality σ ◦ νp = νp ◦ σ3 implies that ν∗
p : H1(Xp, Z) → H1(Xp, Z) pre-

serves Λ(Xp) = H1
σ2=−1(Xp, Z). It is now immediate that ν ′

p|Λ(Xp) agrees with

ν∗
p : Λ(Xp) → Λ(Xp), since complex conjugation on H1(Xp, C) acts identically

on H1(Xp, Z).

Remark 3.16 We will use the notation ν∗
p for ν ′

p|Λ(Xp) to emphasize that the re-

striction ν ′
p|Λ(Xp) is an endomorphism of the submodule Λ(Xp) = H1

σ2=−1(Xp, Z) of

H1(Xp, Z), where complex conjugation on H1(Xp, C) acts identically.

Notation 3.17 We denote by IAI(Λ(Xp)) and IAI(Λ) the sets of all involutive anti-

isometries of Λ(Xp) and Λ, respectively.

Definition 3.18 We define the map π0(FR

0 ) ⊔ π0(F
antip
0 ) → P IAI(Λ)

[
(p, [i])

]
7−→

{

[i ◦ κ∗
p ◦ i−1], if p ∈ PR

0 ,

[i ◦ α∗
p ◦ i−1], if p ∈ P

antip
0 ,

https://doi.org/10.4153/CJM-2011-026-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-026-1


Moduli Space of Real Binary Octics 769

where p ∈ PR

0 ⊔ P
antip
0 , i : Λ(Xp) → Λ is an isometry, [i] stands for the projective

equivalence class of i (see Definition 2.4), and
[

(p, [i])
]

stands for the connected

component of FR

0 or F
antip
0 containing (p, [i]).

Definition 3.19 We also define

π0(PR

0 ) ⊔ π0(P
antip
0 ) → P IAI(Λ)/P Isom(Λ)

[p] 7−→
{

[i ◦ κ∗
p ◦ i−1], if p ∈ PR

0 , where i is any frame over p,

[i ◦ α∗
p ◦ i−1], if p ∈ P

antip
0 , where i is any frame over p.

Remark 3.20 The occurrences of κ∗
p in Definitions 3.18 and 3.19 can be replaced

with κ ′
p, since they agree on Λ(Xp); see Lemma 3.15 and Remark 3.16. Similarly, the

occurrences of α∗
p can be replaced with α ′

p.

The maps in Definitions 3.18 and 3.19 are well-defined because i ◦ κ∗
p ◦ i−1 and

i ◦ α∗
p ◦ i−1 lie in the discrete subset IAI(Λ) of IAI(Λ ⊗Z[i] C) ∼= IAI(C

1,5), and

hence remain constant as p and (p, [i]) vary within each connected component of

PR

0 ⊔ P
antip
0 and FR

0 ⊔ F
antip
0 respectively.

Remark 3.21 Recall that PR

0 ∩ P
antip
0 6= ∅. It may thus appear unmotivated at

this point that we are working with the disjoint unions π0(FR

0 ) ⊔ π0(F
antip
0 ) and

π0(PR

0 ) ⊔ π0(P
antip
0 ) in Definitions 3.18 and 3.19. The significance of working with

the disjoint unions is that, for p ∈ PR

0 ∩ P
antip
0 , we would like to regard p as a real

octic form as distinct from p as an antipodal form. For such a p ∈ PR

0 ∩ P
antip
0 , the

antiholomorphic involutions κp : Xp → Xp and αp : Xp → Xp will induce distinct

P Isom(Λ)-conjugacy classes of involutive anti-isometries of Λ; see Lemma 3.25. This

observation will allow us to single out the antipodal periods and discard them. We

mentioned this briefly in the opening paragraphs of the present section (Section 3),

and this is more precisely elaborated in Remark 3.29.

3.4 Integral Copies of RH
5 in CH

5

It can be readily checked that, for each χ ∈ IAI(Λ), the metric on Λ restricts to a

metric on the Z-module Fix(χ) ∼= Z
6 of signature (1+, 5−). Thus Fix(χ) ⊗Z R ∼=

R
1+,5−, and

RH
(

Fix(χ) ⊗Z R
) ∼= RH

5

∩ ∩
CH(Λ ⊗Z[i] C) ∼= CH

5

Hence, we may make the following definition.

Definition 3.22 A copy of RH
5 ⊂ CH

5 is said to be integral if it is of the form

RH
(

Fix(χ) ⊗Z R
)

for some χ ∈ IAI(Λ).
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3.5 “Real” Octics Have “Real” Periods; “Antipodal” Octics Have “Antipodal”
Periods

Recall that, for any smooth p ∈ P0,

Λ(Xp) ⊗Z[i] C ∼= H1
σ=−i(Xp, C)

︸ ︷︷ ︸

C1,5=C1+,5−

= H
1,0
σ=−i

(Xp, C)
︸ ︷︷ ︸

(+)

⊕ H
0,1
σ=−i

(Xp, C)
︸ ︷︷ ︸

(−−−−−)

.

On the other hand, consider an ordered pair (p, νp), where either p ∈ PR

0 and

νp = κp, or p ∈ P
antip
0 and νp = αp. Recall that ν ′

p : H1(Xp, C) → H1(Xp, C) pre-

serves both the Hodge decomposition and the σ-eigenspace decomposition. Since

H
1,0
σ=−i

(Xp, C) is complex one-dimensional, H
1,0
σ=−i

(Xp, C) ∈ CH(Λ(Xp) ⊗ C) is fixed

by [ν ′
p|Λ(Xp)] = [ν∗

p ] ∈ P IAI(Λ(Xp)). Hence, for a given framed smooth form

[Λ(Xp)
i
−→ Λ] over p ∈ PR

0 ⊔ P
antip
0 , and a fixed choice of νp (= κp or αp), the

complex period i
(

H
1,0
σ=−i

(Xp, C)
)

∈ CH
5

= CH(Λ ⊗ C) is fixed by the projective

class [χνp
] = [i ◦ ν∗

p ◦ i−1] ∈ P IAI(Λ). It now makes sense to introduce the follow-

ing two definitions:

Definition 3.23 For each [χ] ∈ P IAI(Λ), define RH
5
[χ] to be the fixed point set of

[χ] in CH(Λ ⊗Z[i] C) ∼= CH
5, i.e., RH

5
[χ] := {[v] ∈ CH

5 | [χ]([v]) = [v]}.

Definition 3.24 An element x ∈ CH
5 is called a real period if x ∈ RH

5
[χκp ], for some

p ∈ PR

0 . An element x ∈ CH
5 is called an antipodal period if x ∈ RH

5
[χαp ], for some

p ∈ P
antip
0 .

Let a representative χ ∈ [χ] ∈ P IAI(Λ) be fixed. It is straightforward to see that

we have the equality

RH
5
[χ] = {[v] ∈ CH

5 | ∃v ∈ [v] with χ(v) = v}.

It is also easy to see that given any [v] ∈ RH
5
[χ], the representative v ∈ [v] that is

fixed by the given χ is unique up to real scalar multiples. This gives an identification

between RH
5
[χ] and RH

(
Fix(χ)⊗Z R

) ∼= RH
5. The fixed point set RH

5
[χ] is therefore

an integral copy of RH
5 (hence its notation) and StabP Isom Λ(RH

5
[χ]) is isomorphic to

a subgroup of Isom(RH
5). We see at once that the real and antipodal periods lie on

integral copies of RH
5 within CH

5.

Lemma 3.25 The images of π0(PR

0 ) and π0(P
antip
0 ) under the map in Definition 3.19

are disjoint in P IAI(Λ)/P Isom(Λ).

Proof This follows from the observation that every octic form in PR

0 can deform

within PR

0 to a nodal octic (i.e., a singular octic with one double root and no other

singularities), whereas an octic in P
antip
0 can only deform within P

antip
0 to singular

octics with at least two double points.
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Let p1 ∈ PR

0 , and [χ1] := [i1 ◦ κ∗
p1
◦ i−1

1 ] be its image in P IAI(Λ)/P Isom(Λ),

where i1 is any smooth frame over p1. Note that RH
5
χ1

:= RH
(

Fix(χ1)⊗Z R
)
⊂ CH

5

contains periods of real octics of the same topological type as p1. Now recall that

periods of nodal octics lie on the collection H ⊂ CH
5 of hyperplanes which are

orthogonal complements of vectors in Λ of squared norm −2. (See Section 2.3.) By

the preceding observation, we see that the intersection of H and RH
5
χ1

must contain

some smooth points of H.

On the other hand, let p2 ∈ P
antip
0 , and [χ2] := [i2 ◦ α∗

p2
◦ i−1

2 ] be its image in

P IAI(Λ)/P Isom(Λ), where i2 is any smooth frame over p2. Then

RH
5
χ2

:= RH
(

Fix(χ2) ⊗Z R
)
⊂ CH

5

contains periods of antipodal octics. By the preceding observation again, we see that

the intersection of H and RH
5
χ2

cannot contain any smooth point of H.

Since the two intersection patterns described above are P Isom(Λ)-invariant, we

must have [χ1] 6= [χ2].

By Lemma 3.25, it makes sense to introduce the following:

Definition 3.26 Let P IAI(Λ)R/P Isom(Λ) and P IAI(Λ)antip/P Isom(Λ) be the im-

ages in P IAI(Λ)/P Isom(Λ) of π0(PR

0 ) and π0(P
antip
0 ), respectively, of the map

π0(PR

0 ) ⊔ π0(P
antip
0 ) → P IAI(Λ)/P Isom(Λ),

as in Corollary 3.33.

3.6 The Real Period Map and the Allcock–Carlson–Toledo Construction of MR

0

The G-invariant complex period map p : Fs → CH
5 was an important ingredient

towards constructing the CH
5 quotient structure for the moduli space Ms of stable

complex binary octics. We make use of it again to study the moduli space MR

0 of real

binary octics.

Definition 3.27 The real period map is the map

pR : FR

0 ⊔ F
antip
0 → CH

5 × P IAI(Λ)

defined by

pR(p, [i]) :=

{(
p(p, [i]), [i ◦ κ∗

p ◦ i−1]
)
, if (p, [i]) ∈ FR

0 ,
(

p(p, [i]), [i ◦ α∗
p ◦ i−1]

)
, if (p, [i]) ∈ F

antip
0 .

Remark 3.28 The codomain of the real period map pR can be regarded (see re-

marks following [3, Lemma 2.1] for the analogous result in the case real cubic sur-

faces) as:

D0 :=
⊔

[χ]∈P IAI(Λ)

(RH
5
[χ] − H),
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recalling that H ⊂ CH
5 is the collection of hyperplanes orthogonal to vectors in Λ of

squared norm −2. Recall also that H is precisely the set of periods of singular octics

(see Section 2.3). Hereinafter, we regard D0 as the codomain of pR. We also define

DR

0 :=
⊔

[χ]∈P IAI(Λ)R

(RH
5
[χ] − H)

Remark 3.29 We have observed in previous sections that real and antipodal periods

lie on integral copies of RH
5 within the period domain CH

5. So, we restrict the

domain of the complex period map p : Fs → CH
5 to the collection FR

0 ∪ F
antip
0 of

framed smooth forms over smooth real and antipodal octic forms, and we restrict

the codomain to the collection
⋃

[χ]∈P IAI(Λ)(RH
5
[χ] − H) of integral copies of RH

5

in CH
5. This extracts from the domain and codomain of the complex period map

points that correspond to smooth real and antipodal octics. Furthermore, we keep

track of the “topological type” of a real or antipodal octic form p by working with the

disjoint unions FR

0 ⊔ F
antip
0 and D0 instead. We stress again that, for a smooth octic

p ∈ PR

0 ∩ P
antip
0 , this will differentiate p considered as a real octic from p considered

as an antipodal octic. The reason we want to keep track of this distinction is that we

will next discard F
antip
0 from Domain(pR) = FR

0 ⊔ F
antip
0 ; we will also discard all the

integral copies of RH
5 in D0 = codomain(pR) corresponding to antipodal octics,

obtaining DR

0 , the disjoint union of all integral copies of RH
5 corresponding to real

octics.

We now continue with the key properties of the real period map.

Definition 3.30 We let PΓ = P Isom(Λ) act on CH
5 × P IAI(Λ) as follows: for

[γ] ∈ PΓ, and (x, [χ]) ∈ CH
5 × P IAI(Λ),

[γ] · (x, [χ]) :=
(
γ(x), [γ ◦ χ ◦ γ−1]

)
.

This induces an action of PΓ on

codomain(pR) = D0 =

⊔

[χ]∈P IAI(Λ)

(RH
5
[χ] − H).

Lemma 3.31 The real period map is PΓ-equivariant.

Proof Let [γ] ∈ P Isom(Λ). Let (p, [i]) ∈ FR

0 ⊔ F
antip
0 . Let νp be κp if (p, [i]) ∈ FR

0

and let it be αp if (p, [i]) ∈ F
antip
0 . Then note that

pR
(
γ · (p, [i])

)
= pR

(
(p, [γ ◦ i])

)
=

(
p(p, [γ ◦ i]), [(γ ◦ i) ◦ ν∗

p ◦ (γ ◦ i)−1]
)

=

(

(γ ◦ i)
(

H
1,0
σ=−i

(Xp)
)
, [γ ◦ (i ◦ ν∗

p ◦ i−1) ◦ γ−1]
)

.
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On the other hand,

γ · pR(p, [i]) = γ ·
(

p(p, [i]), [i ◦ ν∗
p ◦ i−1)

)

=

(

γ
(

p(p, [i])
)
, [γ ◦ (i ◦ ν∗

p ◦ i−1) ◦ γ−1]
)

=

(

γ
(

i
(

H
1,0
σ=−i

(Xp)
))

, [γ ◦ (i ◦ ν∗
p ◦ i−1) ◦ γ−1]

)

=

(

(γ ◦ i)
(

H
1,0
σ=−i

(Xp)
)
, [γ ◦ (i ◦ ν∗

p ◦ i−1) ◦ γ−1]
)

.

The two calculations above show pR
(
γ · (p, [i])

)
= γ · pR(p, [i]), for arbitrary

[γ] ∈ P Isom(Λ) and (p, [i]) ∈ FR

0 ⊔F
antip
0 . Thus, pR is indeed PΓ-equivariance.

Lemma 3.32 The real period map is GR-invariant with respect to the action of GR

on FR

0 and it is Gantip-invariant with respect to the action on F
antip
0 . In other words, it

descends to a map, also denoted by pR,

pR : (FR

0 /GR) ⊔ (F
antip
0 /Gantip) →

⊔

[χ]∈P IAI(Λ)

RH
5
[χ].

Furthermore, the real period map pR restricts to a PΓ-equivariant real-analytic diffeo-

morphism as follows:

pR : (FR

0 /GR) ⊔ (F
antip
0 /Gantip) → D0 :=

⊔

[χ]∈P IAI(Λ)

(RH
5
[χ] − H).

Proof Consider first (p, [i]) ∈ FR

0 and g ∈ GR. Then

pR
(

(p, [i]) · g
)

= pR
(

p ◦ g, [i ◦ (g∗)−1]
)

=

(

p
(

p ◦ g, [i ◦ (g∗)−1]
)
, [i ◦ (g∗)−1 ◦ κ∗

p ◦ g∗ ◦ i−1]
)

=

(

p
(

(p, [i]) · g
)
, [i ◦ κ∗

p ◦ i−1]
)

=

(

p
(

(p, [i])
)
, [i ◦ κ∗

p ◦ i−1]
)

= pR
(

(p, [i])
)
,

where the third equality uses the fact that g ∈ GR and κ∗
p commutes, and the fourth

equality uses the G-invariance of the complex period map. This shows that the real

period map pR is indeed GR-invariant with respect to the GR-action on FR

0 . As for

its Gantip-invariance with respect to the Gantip-action on F
antip
0 , simply replace FR

0 ,

GR, κp with F
antip
0 , Gantip, αp, respectively, in the above calculations, noting that each

element in Gantip commutes with α∗
p .
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The PΓ-equivariance of pR follows immediately from Lemma 3.31. Next, observe

that the map pR : (FR

0 /GR) ⊔ (F
antip
0 /Gantip) → D0 locally has rank 5 everywhere

since the complex period map p does. It therefore remains only to prove bijectivity.

We now prove the surjectivity of pR. Let [χ] ∈ P IAI(Λ), and x ∈ RH
5
[χ] −H. The

surjectivity of the complex period map implies that there exists (p, [i]) ∈ F0 such

that p(p, [i]) = x.

Claim 1 There exists an antilinear involution or antilinear anti-involution ν on C
2

such that

• ν · p = p; in other words, p
(
ν(x0, x1)

)
= p(x0, x1),

• ν induces an antiholomorphic map on P(1, 1, 2) which preserves Xp ⊂ P(1, 1, 2),

and

• ν∗ ∈ IAI(Λ(Xp)) coincides with i−1 ◦ χ ◦ i, up to Z[i]-unit scalars.

Recall that the action of ν on P(1, 1, 2) is induced by the following extended action

of ν on C
3:

ν(x0, x1, y) :=
(
ν(x0, x1), y

)
.

A simple calculation shows that, under this action, the preservation of Xp ⊂
P(1, 1, 2) by P(1, 1, 2)

ν
−→ P(1, 1, 2) is an immediate consequence of the property

that p · ν = p.

Granting Claim 1, we see, by Remark 3.4, that for such an antilinear C
2

ν
−→ C

2,

there exists g ∈ GL(2, C) such that either g−1 ◦ ν ◦ g = κ, or g−1 ◦ ν ◦ g = α. In the

case g−1 ◦ ν ◦ g = κ, it follows that

(
κ · (p ◦ g)

)
(x0, x1) = (p ◦ g)

(
κ(x0, x1)

)
= p

(
ν ◦ g(x0, x1)

)

= (ν · p)
(

g(x0, x1)
)

= (p ◦ g)(x0, x1).

Thus, κ · (p ◦ g) = p ◦ g; hence p ◦ g ∈ PR

0 , and

pR
(

(F, [i]) · g
)

=

(

p
(

(F, [i]) · g
)
, [i ◦ (g−1)∗ ◦ κ∗ ◦ g∗ ◦ i−1]

)

=
(

p(F, [i]), [i ◦ (g ◦ κ ◦ g−1)∗ ◦ i−1]
)

= (x, [i ◦ ν∗ ◦ i−1])

= (x, [χ]).

In the other case, i.e., g−1 ◦ ν ◦ g = α, we similarly have p ◦ g ∈ P
antip
0 , and

pR
(

(F, [i]) · g
)

=

(

p
(

(F, [i]) · g
)
, [i ◦ (g−1)∗ ◦ α∗ ◦ g∗ ◦ i−1]

)

=
(

p(F, [i]), [i ◦ (g ◦ α ◦ g−1)∗ ◦ i−1]
)

= (x, [i ◦ ν∗ ◦ i−1])

= (x, [χ]).
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The above argument therefore shows that Claim 1 implies the surjectivity of pR.

We now prove Claim 1. Apply Lemma A.2 with Y = F ′
0, y = (p, [i]), R = G ′,

and L = PΓ
′. Then l = x = p(y) = p(p, [i]) ∈ CH

5 − H = Y /R, and r =

p ∈ P0 = PΓ
′\F ′

0 = L\Y . Taking φ to be [χ] ∈ (PΓ
′)x = Ll, we therefore get,

by Lemma A.2, φ̂ = Rr = (G ′)p such that φ · (p, [i]) · φ̂ = (p, [i]). Since [χ] is

antilinear, it interchanges the two connected components of F ′
0 (each being a copy

of F0). The preceding equality therefore implies that φ̂ likewise must interchange the

components of F ′
0. Hence, φ̂ ∈ G ′ must be antilinear. Secondly, since [χ] has order

two, so does φ̂, since they are related by the anti-isomorphism PΓ
′
x = Ll → Rr = G ′

p

mentioned in Lemma A.2. Thus, φ̂ ∈ G ′
= GL(2, C) ′/〈eighth roots of unity〉 is

an antilinear involution. Let ν ∈ GL(2, C) ′ be any lifting of φ̂ ∈ G ′. Then ν is

antilinear and ν2 : C
2 → C

2 acts on C
2 as scalar multiplication by an eighth root of

unity. Lemma A.1 implies ν2 must be a real scalar. Thus ν2
= ± idC2 , i.e., ν is either

an antilinear involution, or it is an antilinear anti-involution.

Lastly,

(p, [i]) = φ · (p, [i]) · φ̂ = [χ] · (p, [i]) · φ̂

= (p, [χ ◦ i]) · φ̂ =
(

p ◦ φ̂, [χ ◦ i ◦ (φ̂∗)−1]
)

⇐⇒ p = p · φ̂ = p · ν,

and [i] = [χ ◦ i ◦ (φ̂∗)−1] ⇐⇒ [i−1 ◦ χ ◦ i] = [φ̂∗] = [ν∗]. Thus ν ∈ GL(2, C) ′

is an antilinear involution or antilinear anti-involution with the desired properties as

in Claim 1. This completes the proof of Claim 1 and the surjectivity of pR.

We next prove injectivity of pR. First, for each [χ] ∈ P IAI(Λ), define

FR

0,[χ] := {(p, [i]) ∈ F0 | p ∈ PR

0 , [i ◦ κ∗
p ◦ i−1] = [χ]},

F
antip
0,[χ] := {(p, [i]) ∈ F0 | p ∈ P

antip
0 , [i ◦ α∗

p ◦ i−1] = [χ]}.

Recall that FR

0 and F
antip
0 are the preimages of PR

0 and P
antip
0 respectively under the

covering F0 → P0. Note the following equalities

FR

0 =

⋃

[χ]∈P IAI(Λ)

FR

0,[χ], and F
antip
0 =

⋃

[χ]∈P IAI(Λ)

F
antip
0,[χ].

Suppose pR(p1, [i1]) = pR(p2, [i2]). Recall that the real period map

pR : (FR

0 /GR) ⊔ (F
antip
0 /Gantip) → D0 :=

⊔

[χ]∈P IAI(Λ)

(RH
5
[χ] − H)

is induced from the following GR-invariant and Gantip-invariant map

pR(p, [i]) :=

{(
p(p, [i]), [i ◦ κ∗

p ◦ i−1]
)
, if (p, [i]) ∈ FR

0 ,
(

p(p, [i]), [i ◦ α∗
p ◦ i−1]

)
, if (p, [i]) ∈ F

antip
0 .
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Next, observe that, for p1, p2 ∈ PR

0 , the inequality [χ1] := [i1 ◦ κ∗
p1
◦ i−1

1 ] 6= [i2 ◦
κ∗

p2
◦ i−1

2 ] =: [χ2] would force pR(p1, [i1]) and pR(p2, [i2]) to be unequal. Similarly,

for p1, p2 ∈ P
antip
0 , the inequality [χ1] := [i1 ◦ α∗

p1
◦ i−1

1 ] 6= [i2 ◦ α∗
p2
◦ i−1

2 ] =: [χ2]

would force pR(p1, [i1]) and pR(p2, [i2]) to be unequal. Lemma 3.25 implies that

for p1 ∈ PR

0 and p2 ∈ P
antip
0 , [χ1] := [i1 ◦ κ∗

p1
◦ i−1

1 ] and [i2 ◦ α∗
p2
◦ i−1

2 ] =: [χ2]

will be distinct. Thus, to prove injectivity of pR, it suffices to prove, for each fixed

[χ] ∈ P IAI(Λ), the injectivity of the restriction of pR to FR

0,[χ]/GR when FR

0,[χ] ⊂ FR

0 ,

or to F
antip
0,[χ]/Gantip when F

antip
0,[χ] ⊂ F

antip
0 .

For this, we appeal to Lemma A.3 as follows: Identify F0 = FR

0 ⊔ F
antip
0 with

F ′R
0 /〈κ〉 ⊔ F

′ antip
0 /〈α〉. Let PΓ

′ act on Y = F ′R
0 /〈κ〉 ⊔ F

′ antip
0 /〈α〉 as follows:

γ · (p, [i]) :=







(p, [γ ◦ i]), if p ∈ PR

0 ⊔ P
antip
0 , and γ is linear,

(p · κ, [γ ◦ i ◦ κ∗]), if p ∈ PR

0 , and γ is antilinear,

(p · α, [γ ◦ i ◦ α∗]), if p ∈ P
antip
0 , and γ is antilinear.

Let Y = F0 with F0 regarded as above. Let the group H in the statement of

Lemma A.3 be G := GL(2, C)/〈 all eighth roots of unity 〉. Let φ = [χ] ∈
P IAI(Λ). It is straightforward to show that Y φ

= F0X. Consider first the case

where [χ] is induced by κ. Then Z = GR and it follows from Lemma A.3 that

F
[χ]
0 /GR → F0/G = (CH

5 − H) is injective. For the remaining case where [χ] is

induced by α, we then have Z = Gantip and it follows from Lemma A.3 again that

F
[χ]
0 /Gantip → F0/G = (CH

5 − H) is injective.

Corollary 3.33 The map defined in Definition 3.19

π0(PR

0 ) ⊔ π0(P
antip
0 ) → P IAI(Λ)/P Isom(Λ)

is surjective. Consequently, the cardinality of P IAI(Λ)/P Isom(Λ) is at most seven.

Proof The surjectivity statement follows immediately from the proof of the last

statement of the preceding lemma. The cardinality bound then trivially follows

Lemma 3.14:

|π0(PR

0 )| = 6, and |π0(P
antip
0 )| = 1.

Lemma 3.34 The images of {PR,0
0 }, {PR,1

0 }, {PR,2
0 }, {PR,3

0 }, and {PR,4+
0 ,PR,4−

0 }
(considered as subsets of π0(PR

0 )) under the map

π0(PR

0 ) ⊔ π0(P
antip
0 ) → P IAI(Λ)/P Isom(Λ)

as in Definition 3.19 are pairwise distinct.

Proof Appendix B.1 exhibits five involutive anti-isometries of Λ. In Appendix B.4, it

is shown that their fixed Z-lattices have pairwise distinct Vinberg diagrams. Hence,

they represent five distinct P Isom(Λ)-conjugacy classes in P IAI(Λ)/P Isom(Λ). Ap-

pendices B.5 and B.6 show that all five involutive anti-isometries are induced by real

octics and identify their deformation types.
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Remark 3.35 We stress that Lemma 3.34 does not assert that P
R,4+
0 and P

R,4−
0 in-

duce the same conjugacy class in P IAI(Λ)/P Isom(Λ); they may or may not. How-

ever, this ambiguity does not pose a problem since our goal is just to describe the

five connected components of MR

0 as abstract real hyperbolic quotients: The com-

plex linear change of variables (x0, x1) 7−→
(

exp(iπ/8)x0, exp(iπ/8)x1

)
maps every

p(x0, x1) ∈ P0 to −p(x0, x1). Consequently, even if the induced conjugacy classes in

P IAI(Λ)/P Isom(Λ) of P
R,4+
0 and P

R,4−
0 are different, the respective real hyperbolic

quotients will still be isomorphic.

Proposition 3.36 By further restricting the domain and codomain, and taking the

quotient by PΓ, the (PΓ-equivariant) real period map

pR : (FR

0 /GR) ⊔ (F
antip
0 /Gantip) → D0 :=

⊔

[χ]∈P IAI(Λ)

(RH
5
[χ] − H)

descends to the following real-analytic manifold isomorphism:

MR

0 ⊔ M
antip
0

∼= PΓ\
(

(F
R,0
0 ⊔ F

R,1
0 ⊔ F

R,2
0 ⊔ F

R,3
0 ⊔ F

R,4+
0 /GR) ⊔ (F

antip
0 /Gantip)

)
.

In particular,

MR

0
∼= PΓ\

(
F

R,0
0 ⊔ F

R,1
0 ⊔ F

R,2
0 ⊔ F

R,3
0 ⊔ F

R,4+
0 /GR

)
.

Combining Lemmas 3.32, 3.25, 3.34, and Proposition 3.36, we get the following.

Corollary 3.37 Let χ0, χ1, χ2, χ3 be any representatives of the conjugacy classes in

P IAI(Λ)R/P Isom(Λ) induced by P
R,0
0 , P

R,1
0 , P

R,2
0 , P

R,3
0 , respectively. Let χ4 be any

representative from either the conjugacy class induced by P
R,4+
0 or that induced by P

R,4−
0 .

Then

M
R,i
0

∼= PΓ
R

i \(RH
5
[χi ]

− H), where PΓ
R

i := StabP Isom(Λ)(RH
5
[χi ]

).

Consequently,

MR

0 =

4⊔

i=0

M
R,i
0

∼=
4⊔

i=0

PΓ
R

i \(RH
5
[χi ]

− H).

4 Relationship between StabP Isom Λ(RH
5
[χ]) and P StabIsom Λ(Fix χ)

In this section, we need to work simultaneously with projective equivalence classes of

vectors, isometries and anti-isometries in various Z-lattices and Z[i]-lattices. For the

sake of clarity, we will use slightly more cumbersome notation such as [v]C ∈ CH
5,

[A]G ∈ PG Isom Λ or [A]Z ∈ PZ Isom(Fix χ) to indicate that the projectivization is

done over C, G = Z[i] and Z, respectively.
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4.1 Characterization of StabPG Isom Λ(RH
5
[χ])

Let [χ]G ∈ PG IAI(Λ) be fixed. Then

StabPG Isom Λ(RH
5
[χ]) := {[A]G ∈ PG Isom Λ | [A]G(RH

5
[χ]) ⊆ RH

5
[χ]}.

Furthermore, let a representative χ ∈ [χ]G be fixed. Then for [A]G ∈ PG Isom(Λ),

[A]G ∈ StabPG Isom Λ(RH
5
[χ]) ⇐⇒







For each A ∈ [A]G, the following holds:

for each [v]C ∈ RH
5
[χ] and v ∈ [v]C with

χ(v) = v, ∃ unique β ∈ C
∗ with |β| = 1

and χ
(

A(v)
)

= βA(v).

Remark 4.1 The uniqueness (once the representatives A ∈ [A]G and χ ∈ [χ]G are

fixed) and unimodularity of β above are clear. Since both A and χ preserve primi-

tiveness of lattice vectors, we see that β is in fact a unit Gaussian integer whenever

v ∈ Fix(χ) is primitive in Λ. If v ∈ Fix(χ) is only primitive in the Z-lattice Fix(χ),

but not in Λ, then v = (1 + i)w, for some w primitive in Λ. It can be readily shown

that χ
(

A(v)
)

= βA(v) implies χ
(

A(w)
)

= iβA(w). Λ-primitiveness of w then

again shows that β must be a unit Gaussian integer.

Lemma 4.2 Let χ ∈ IAI(Λ) be given. Let A ∈ Isom(Λ) be such that [A]G ∈
StabPG Isom Λ(RH

5
[χ]). Then there exists a unique β ∈ C

∗ such that χ
(

A(v)
)

= βA(v),

for all v ∈ Fix(χ) ⊗Z R. Furthermore, β is in fact a unit Gaussian integer.

Proof From the preceding remark, we know that for each given v ∈ Fix(χ) ⊗Z R,

there exists a unique unimodular β ∈ C
∗ such that χ

(
A(v)

)
= βA(v). Furthermore,

β is a unit Gaussian integer whenever v is primitive in the Z-lattice Fix(χ). So, it

remains to show only that β is in fact the same for all v ∈ Fix(χ) ⊗Z R. For this, let

b1, . . . , b6 be a Z-basis for Fix(χ), and let r1, . . . , r6 ∈ R be six arbitrary real numbers.

Set v = r1b1 + · · ·+ r6b6. Then v ∈ Fix(χ)⊗Z R, and v is fixed by the extension of χ to

Fix(χ) ⊗Z R, which we also denote by χ. Note that there exist unit Gaussian integers

β1, . . . , β6 ∈ Z[i] such that χ
(

A(bk)
)

= βkA(bk), unique for each k = 1, . . . , 6. Also,

there exists unique unimodular β ∈ C
∗ such that χ

(
A(v)

)
= βA(v). Now, recall that

Fix(χ) ⊗Z R is a maximal totally real subspace of C
1,5. In particular, b1, . . . , b6 are

linearly independent over C. Now, on the one hand,

χ(Av) = βAv = βA
( 6∑

k=1

rkbk

)

=

6∑

k=1

rkβA(bk).

On the other hand,

χ(Av) = χ

(

A
( 6∑

k=1

rkbk

))

=

6∑

k=1

rkχ
(

A(bk)
)

=

6∑

k=1

rkβkA(bk).
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A(Fix χ) −A(Fix χ) iA(Fix χ) −iA(Fix χ)

Fix(χ) Fix(χ) Fix(−χ) Fix(−χ)

Fix(−χ) Fix(−χ) Fix(χ) Fix(χ)

Fix(iχ) Fix(iχ) Fix(−iχ) Fix(−iχ)

Fix(−iχ) Fix(−iχ) Fix(iχ) Fix(iχ)

Table 4.1: Recall that A(Fix χ) = Fix(βχ), where β is one the following four unit Gaussian

integers. This table summarizes how β determines −A(Fix χ), iA(Fix χ), and −iA(Fix χ).

For example, the entry Fix(−χ) in the third row and second column says that if β = −1

(equivalently, A(Fix χ) = Fix(−χ)), then −A(Fix χ) = Fix(−χ).

Hence,
6∑

k=1

rkβA(bk) = χ(Av) =

6∑

k=1

rkβkA(bk),

which implies

rk(β − βk) = 0, for k = 1, . . . , 6, and for arbitrary r1, . . . , r6 ∈ R.

This implies that β1 = · · · = β6 = β and completes the proof.

Proposition 4.3 Suppose χ ∈ IAI(Λ) is an involutive anti-isometry, and let

[χ]G ∈ PG IAI(Λ) be a representative of χ ∈ [χ]G. Then, for each [A]G ∈
StabPG Isom Λ(RH

5
[χ]), exactly one of the following holds:

either ∃A ∈ [A]G, unique up to sign, such that A
(

Fix(χ)
)
⊆ Fix(χ),

or ∃A ∈ [A]G, unique up to sign, such that A
(

Fix(χ)
)
⊆ Fix(iχ).

Proof We already know that, for an arbitrary representative A ∈ [A]G, we have

A(Fix χ) = Fix(βχ), where β is one of the four unit Gaussian integers. The proposi-

tion thus trivially follows from observing what the other associates of A are doing to

Fix(χ), as shown in Table 4.1.

For explicitness, we verify the entry in the third row and the second column of

Table 4.1. So, suppose A(Fix χ) = Fix(−χ). We verify that we then indeed have

−A(Fix χ) = Fix(−χ). Let v ∈ Fix χ, i.e., χ(v) = v. Hence, −χ
(
−A(v)

)
=

(−1)(−χ)(Av) = −A(v), where the second equality follows immediately from the

assumption that A(Fix χ) = Fix(−χ). In other words, A(Fix χ) = Fix(−χ) implies

that −A(Fix χ) ⊆ Fix(−χ), hence −A(Fix χ) = Fix(−χ), as required.

Remark 4.4 Note that if A(Fix χ) = Fix(χ), then A also preserves each of Fix(iχ),

Fix(−χ), Fix(−iχ). On the other hand, if A(Fix χ) = Fix(iχ), then A maps Fix(iχ)

to Fix(−χ), Fix(−χ) to Fix(−iχ), and Fix(−iχ) to Fix(χ). Hence, we have the fol-

lowing.
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Proposition 4.5 Let χ ∈ [χ]G be fixed. Then the stabilizer StabPG Isom Λ(RH
5
[χ]) can

be characterized as follows:

StabPG Isom Λ(RH
5
[χ]) = PZ StabIsom Λ (Fix(χ) ∪ Fix(iχ) ∪ Fix(−χ) ∪ Fix(−iχ)) .

We seek an even more algebraically transparent expression for StabPG Isom Λ(RH
5
[χ])

in terms of PZ StabIsom Λ(Fix χ).

Definition 4.6 [A]G ∈ StabPG Isom Λ(RH
5
[χ]) is said to be of type I if there exists

A ∈ [A]G ∈ PG Isom Λ such that A(Fix χ) ⊂ Fix(χ), and it is said to be of type II if

there exists A ∈ [A]G ∈ PG Isom Λ such that A(Fix χ) ⊂ Fix(iχ).

Remark 4.7 Note that [A]G ∈ StabPG Isom Λ(RH
5
[χ]) is either of type I or type II by

Proposition 4.3. Some simple calculations will furthermore show the following:

Lemma 4.8

(i) If two elements in StabPG Isom Λ(RH
5
[χ]) are of the same type, then their composition

is an element of type I.

(ii) If two elements in StabPG Isom Λ(RH
5
[χ]) are of different types, then their composition

in either order is of type II.

(iii) Taking inverses in StabPG Isom Λ(RH
5
[χ]) preserves types.

It is already clear that either

StabPG Isom Λ(RH
5
[χ]) = PZ StabIsom Λ(Fix χ), or

StabPG Isom Λ(RH
5
[χ])

PZ StabIsom Λ(Fix χ)
∼= Z/2Z.

We will next show, under the further assumption that PZ StabIsom Λ(Fix χ) is a reflec-

tion group, that the following short exact sequence

1 → PZ StabIsom Λ(Fix χ) → StabPG Isom Λ(RH
5
[χ]) → Z/2Z → 1

is split (Proposition 4.11). We start with the following general result.

Proposition 4.9 Let G be a discrete subgroup of Isom(RH
n). Suppose that H is a

normal subgroup of G which is generated by reflections. (H need not be the full reflection

subgroup of G.) Fix a fundamental domain P of H, and let K := {g ∈ G | g · P = P}.

Then G = H ⋊ K, where the action of K on H is, as usual, by conjugation.

Proof Since every non-identity element of H maps P to a translate of P, we see that

H ∩ K = {1}. So, H ⋊ K ⊆ G. It remains to prove the reverse inclusion, which is

equivalent to the set equality G = HK. We now make the following statement.

Claim Every element of G preserves the union of the mirrors of the reflections in H.

Consequently, every element of G preserves the complement of this union of mirrors;

in particular, it maps every fundamental domain of H to a fundamental domain of H.
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Proof of Claim Let g ∈ G and Rx ∈ H be the reflection in the space-like vector

x ∈ R
1,n. Then g ◦ Rx ◦ g−1

= Rg(x) is the reflection in g(x) ∈ R
1,n, and g maps

the mirror of Rx to that of Rg(x). It therefore remains only to prove that Rg(x) is an

element of H, but this is immediate by the hypothesis that H is normal in G. The

claim is proved.

Now, let g ∈ G. By the preceding claim, g maps P to a translate of P by some

element h ∈ H, i.e., g · P = h · P; hence (h−1g) · P = P. Thus, g = hk, where

k := h−1g ∈ K ⊂ G. This completes the proof of this Proposition.

Remark 4.10 K in Proposition 4.9 is a subgroup of the symmetry group of the

fundamental domain P. K may be trivial even if the symmetry group of P is not.

Obviously, if K is trivial, then G = H.

Recall that PZ StabIsom Λ(Fix χ) is a normal subgroup of StabPG Isom Λ(RH
5
[χ]) of

index two or one, depending on whether or not there are elements of type II. Using

Proposition 4.9, we now obtain the following expression for StabPG Isom Λ(RH
5
[χ]) in

terms of PZ StabIsom Λ(Fix χ):

Proposition 4.11 Suppose PZ StabIsom Λ(Fix χ) is generated by reflections. Then ex-

actly one of the following holds:

• StabPG Isom Λ(RH
5
[χ]) has no elements of type II, in which case,

StabPG Isom Λ(RH
5
[χ]) = PZ StabIsom Λ(Fix χ),

• StabPG Isom Λ(RH
5
[χ]) contains elements of type II, in which case, the fundamental do-

main of the group action PZ StabIsom Λ(Fix χ) y RH
5 admits a (Z/2Z)-symmetry,

and via its norm-preserving action on the roots of PZ StabIsom Λ(Fix χ), this (Z/2Z)-

symmetry induces an order-two element [T] ∈ StabPG Isom Λ(RH
5
[χ]) of type II such

that

StabPG Isom Λ(RH
5
[χ]) = PZ StabIsom Λ(Fix χ) ⋊ 〈[T]〉

∼= PZ StabIsom Λ(Fix χ) ⋊ (Z/2Z).

Remark 4.12 Any representative T ∈ Isom(Λ) of the type II and order-two element

[T] ∈ StabPG Isom Λ(RH
5
[χ]) maps Fix(χ) to Fix(iχ), rather than back to Fix(χ) itself.

T induces an action on RH
5
[χ]

∼= RH
(

Fix(χ)⊗Z R
)

by identifying RH
(

Fix(iχ)⊗Z R
)

with RH
(

Fix(χ) ⊗Z R
)

via scalar multiplication by (1 − i)/
√

2; more explicitly,

RH
(

Fix(iχ) ⊗Z R
)

→ RH
(

Fix(χ) ⊗Z R
)

[w] 7−→
[

1−i√
2

w
]

.

This identification is canonical due to the following observation:

iχ(w) = w ⇐⇒
( 1 + i√

2

)( 1 + i√
2

)

χ(w) = w ⇐⇒ χ
( 1 − i√

2
w

)

=

( 1 − i√
2

)

w.

We emphasize that while T preserves the R-span of Fix(χ) via the above canonical

induced action, it fails to preserve the Z-lattice Fix(χ) itself due to the occurrence of

the 1/
√

2 factor above.
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4.2 A Sufficient Condition for the Nonexistence of Isometries of Type II

Note that PZ StabIsom Λ(Fix χ) is merely the subgroup of the isometry group

PZ Isom(Fix χ) of the abstract Z-lattice Fix(χ) consisting of elements that extend to

an action on the whole Z[i]-lattice Λ. In the case where PZ StabIsom Λ(Fix χ) is a re-

flection group and StabPG Isom Λ(RH
5
[χ]) contains type II elements, we see that we have

the following commutative diagram:

PZ StabIsom Λ(Fix χ)
Â Ä //

_Ä

²²

PZ StabIsom Λ(Fix χ) ⋊ 〈[T]〉 = StabPG Isom Λ(RH
5
[χ])

_Ä

²²

PZ Isom(Fix χ)
Â Ä // PZ Isom(Fix χ) ⋊ 〈[T]〉

where [T] ∈ StabPG Isom Λ(RH
5
[χ]) is an element of type II and order two. Proposi-

tion 4.9 therefore implies the following:

Corollary 4.13 Suppose PZ Isom(Fix χ) is generated by reflections, and suppose one

of the following conditions holds:

• The fundamental domain of PZ Isom(Fix χ) admits no (Z/2Z)-symmetries.
• It admits (Z/2Z)-symmetries, but none of them induces an order-two element of

StabPG Isom Λ(RH
5
[χ]) of type II.

Then StabPG Isom Λ(RH
5
[χ]) in fact has no elements of type II, and

StabPG Isom Λ(RH
5
[χ]) = PZ StabIsom Λ(Fix χ).

Remark 4.14 In the author’s thesis [4], StabPG Isom Λ(RH
5
[χ]) was mistakenly identi-

fied with PZ StabIsom Λ(Fix χ), which need not be the case in general, as we saw in this

section. The main results stated there are nonetheless correct, since for the specific

cases therein (i.e., χ = χ0, χ1, χ2, χ4), the above equality indeed holds.

5 Distinguishing the Deformation Types

In this section, we describe a strategy to identify the deformation types of the real

octics that give rise to the involutive anti-isometries of Λ.

5.1 The Isomorphism O
(
Λ/(1 + i)Λ, q

) ∼= S8

Let h be the Z[i]-valued inner product of Λ and Q be the associated Z-valued

quadratic form. Q is “even-valued,” and 1
2
Q is thus a well-defined Z-valued func-

tion on Λ. On the other hand, Z[i]/(1 + i)Z[i] ∼= F2, as rings (hence as fields), where

F2 denotes the field with two elements. V := Λ/(1 + i)Λ is a six-dimensional F2-

vector space. The F2-valued function q on V defined by x
q

7−→ 1
2
Q(x) mod(1 + i) is

an F2-valued quadratic form on V . It turns out that the orthogonal group O(V, q) is

isomorphic to S8, the symmetric group on eight objects.
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We will not give complete proofs of the above assertions but refer the reader to

[4] and [6]. However, we give an intuitive description of the isomorphism between

O(V, q) and S8.

Since dimF2
(V ) = 6, we immediately see that the cardinality of V is 26

= 64. Let

P8 := {1, . . . , 8}. It turns out that, as a set, V is in one-to-one correspondence with

W := {even-cardinality subsets of P8}/{B ∼ complement of B in P8}.

Each element of W can be considered as a pair of even-cardinality subsets of P8, where

the two subsets in each such pair are complements of each other. The cardinality of W

is also 64. The F2-valued quadratic form on V corresponds to the F2-valued function

on W given by:

W → F2

s 7−→ 1

2
(cardinality of s) mod 2.

Furthermore, elements of O(V, q) correspond to maps from P8 to itself which pre-

serve the cardinality of every even-cardinality subset of P8. Such a map is just a

permutation of P8, namely, an element of the symmetric group S8. It turns out (see

[6]) that this map O(V, q) → S8 is an isomorphism of groups. We denote its inverse

by Φ : S8 → O(V, q).

5.2 Two Invariants of Involutions in S8 Which Can Distinguish Cycle Structures

In this section, we introduce two integer invariants for the conjugacy classes in S8

which can be used to distinguish these classes by their cycle structures. These invari-

ants are explained in the following paragraphs and their values are shown in the third

and fourth columns in Table 5.2. We then explain how these invariants will be used

to distinguish the deformation types of real binary octics by their induced involutive

anti-isometries.

Recall that the eight distinct roots of a smooth real binary octic are preserved as a

set by complex conjugation κ on CP
1. The collection P8 of roots comprises a number

2n ∈ {0, 2, 4, 6, 8} of real points (lying on RP
1

= R ∪ {∞} ⊆ CP
1) together with

a number (8 − 2n)/2 of complex conjugate pairs. The number 2n determines the

deformation type of a real binary octic.

On the other hand, note that when κ is restricted to the collection P8 of the eight

distinct roots of a real binary octic, it becomes an order-two permutation on P8.

Table 5.1 shows the one-to-one correspondence between the deformation types of

octics and the cycle structures of κ|P8
.

Of course the cycle structure of κ|P8
determines a conjugacy class in S8. Now we

make the following observations:

• κ induces an involutive antiholomorphic diffeomorphism κ : Xp → Xp on the 4-

sheeted cyclic cover Xp → CP
1 branched over the roots of a smooth real binary

octic form p. κ in turn induces an involutive anti-isometry on the Z[i]-lattice

Λ(Xp) ∼= Λ.
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Type

of octic
2n cycle structure of κ|P8

0 8 (1)(2)(3)(4)(5)(6)(7)(8)

1 6 (1)(2)(3)(4)(5)(6)(78)

2 4 (1)(2)(3)(4)(56)(78)

3 2 (1)(2)(34)(56)(78)

4 0 (12)(34)(56)(78)

Table 5.1

• (V, q) :=
(
Λ/(1 + i)Λ, q

)
is an orthogonal space over Z[i]/(1 + i) ∼= F2 such that

O(V, q) ∼= S8.
• The above “abstract” isomorphism O(V, q) ∼= S8 is geometrically realized by the

permutation of the eight ramification points of the branched cover of X → CP
1.

This fact is an immediate consequence of the fact that the monodromy group

PΓ = P Isom(Λ) is generated by transposing pairs of roots by “continuous half

turns”. See [12].
• An involutive anti-isometry of Λ descends to an involutive isometry of (V, q)

(because complex conjugation on Z[i] descends to the identity on Z[i]/(1 + i)Z[i]
∼= F2).

The above observations show the following: Given χ ∈ IAI(Λ), we can determine

the deformation type of the real binary octic that gives rise to χ in the first place by

determining the element (or conjugacy class) in S8
∼= O(V, q) that χ descends to. In

order to do this, it is sufficient to examine two invariants:

Lemma 5.1 Let Φ : S8 → O(V, q) be the isomorphism (unique up to conjugacy)

constructed earlier. Then the invariants dimF2
Fix

(
Φ(τi)

)
and the number of norm-

one vectors in Fix
(
Φ(τi)

)
of the various cycle structures are as shown in Table 5.2.

Outline of Proof Let P8 = {1, 2, . . . , 8}. Recall that norm-one vectors in V corre-

spond to cardinality-two subsets of P8. The computations for all the cases are simi-

lar; we show only those for τ6: The number of even-cardinality subsets of P8 fixed by

Type cycle structure of κ|P8
dimF2

Fix
(
Φ(τi)

) number of norm-one

vectors in Fix
`

Φ(τi)
´

0 τ8 = (1)(2)(3)(4)(5)(6)(7)(8) 6 28

1 τ6 = (1)(2)(3)(4)(5)(6)(78) 5 16

2 τ4 = (1)(2)(3)(4)(56)(78) 4 8

3 τ2 = (1)(2)(34)(56)(78) 3 4

4 τ0 = (12)(34)(56)(78) 4 4

Table 5.2
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τ6 = (1)(2)(3)(4)(5)(6)(78) is given by

2 ×
(

6

0

)

+

(
6

2

)

+

(
6

4

)

+

(
6

6

)

= 2 × (1 + 15 + 15 + 1) = 2 × 32.

Hence, dimF2
Fix

(
Φ(τ6)

)
= log2

(
2 × 32

2

)

= log2(25) = 5, and







the number of

norm-one

vectors

in Fix
`

Φ(τ6)
´







=







the number of

cardinality-two

subsets

preserved by τ6







= 1 +





the number of all

cardinality-two

subsets of {1, . . . , 6}





= 1 +

(
6

2

)

= 16.

Remark 5.2 The antipodal map CP
1

α
−→ CP

1 permutes the roots of a smooth an-

tipodal octic in the same way as complex conjugation CP
1

κ
−→ CP

1 does the roots of

a smooth real octic of type 4 (i.e., the roots are four complex conjugate pairs). The

cycle structure for both is (12)(34)(56)(78). Hence, Lemma 5.1 is insufficient to dis-

tinguish an antipodal octic from a real octic of type 4. To achieve this, we will need

the idea of the proof of Lemma 3.25 instead. See section B.6.

6 The Main Theorem

Theorem 6.1

(i) Under the real period map as in Proposition 3.36, the moduli space M
R,i
0 of smooth

real binary octics of type i = 0, . . . , 4 is isomorphic as a real-analytic manifold to

PΓ
R

i \(RH
5
[χi ]

− H),

where χ0, χ1, χ2, χ3, χ4 ∈ IAI(Λ) are defined as in equation (B.1), and PΓ
R

i :=

StabP Isom Λ(RH
5
[χi ]

), where

(6.1) StabP Isom Λ(RH
5
[χi ]

) ∼=
{

P StabIsom Λ(Fix χi), i = 0, 1, 2, 4

P StabIsom Λ(Fix χi) ⋊ (Z/2Z), i = 3

(ii) For each i = 0, . . . , 4, P StabIsom Λ(Fix χi) is isomorphic to the following subgroup

of P Isom(Li):

P
(
{M ∈ Isom(Li) | Bi · M · B−1

i ∈ Z[i]6×6}
)
,

where Li is a Z-lattice given in Appendix B.3, and Bi ∈ Z[i]6×6 is given in Ap-

pendix B.2. Each P StabIsom Λ(Fix χi), i = 0, . . . , 4, is thus an arithmetic sub-

group of Isom(RH
5). Hence, each has finite co-volume and is isomorphic to a

finite-index subgroup of P Isom(Li). In particular, each P StabIsom Λ(Fix χi) is

commensurable with P Isom(Li).
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(iii) Each P Isom(Li), i = 0, . . . , 4, is a discrete reflection subgroup of Isom(RH
5)

with Vinberg diagram given as in Appendix B.4.

Proof First, we prove statement (iii). Each P Isom(Li) is a discrete subgroup of

Isom(RH
5) since each Li is a Z-lattice of signature (+,−,−,−,−). Standard com-

putations (see [17]) show that the Vinberg algorithm terminates after finitely many

iterations for each of P Isom(Li). See Appendix B.4 for the results of these computa-

tions and the Vinberg diagrams of the fundamental domains in RH
5 of P Isom(Li),

i = 0, . . . , 4. The termination after finitely many iterations of the Vinberg algo-

rithm implies that the reflection subgroup of each of P Isom(Li) has finite index in

P Isom(Li), and that P Isom(Li) is a semidirect product of its reflection subgroup

with a subgroup of the symmetry group of its fundamental domain; see [17]. The

fact that each of the Vinberg diagrams has no symmetries (taking norms of roots

into account) implies that each P Isom(Li) in fact equals its own reflection subgroup;

hence, each P Isom(Li) is a discrete reflection subgroup of Isom(RH
5). This proves

statement (iii).

Next, we establish statement (ii). It is straightforward to verify that χ0, χ1, χ2,

χ3, and χ4 are involutive anti-isometries of Λ. Obviously, for χ = χ0, . . . , χ4,

P StabIsom Λ(Fix χ) is the subgroup of P Isom(Fix χ) consisting of elements that ex-

tend back to isometries of the full Z[i]-lattice Λ. Since Fix(χi) ∼= Li as Z-lattices, we

see that, for i = 0, . . . , 4,

P StabIsom Λ(Fix χi) ∼= P
(
{M ∈ Isom(Li) | Bi · M · B−1

i ∈ Z[i]6×6}
)
,

where each Bi is given in Appendix B.2. Since P StabIsom Λ(Fix χi) is defined by alge-

braic equations with coefficients in Z[i], it is an arithmetic subgroup of Isom(RH
5).

Each therefore has finite co-volume and is isomorphic to a finite-index subgroup

of P Isom(Li). In particularly, each P StabIsom Λ(Fix χi) is commensurable with

P Isom(Li). This proves statement (ii).

Lastly, we prove statement (i). Let φ0, . . . , φ4 be the induced maps on V =

Λ/(1 + i)Λ of χ0, . . . , χ4, respectively. Then φ0, . . . , φ4 ∈ O(V, q) ∼= S8. By the

surjectivity statement in Corollary 3.33, we know that each of χ0, . . . , χ4 must be

induced by either real binary octics or antipodal ones. The values of dimF2

(
Fix(φi)

)

and the numbers of norm-one vectors in Fix(φi), i = 0, . . . , 4, are tabulated in Ta-

ble B.1. Comparison between Table 5.1 and Table B.1 now shows that χ0, χ1, χ2,

χ3 are induced by smooth real octics of types 0, 1, 2, and 3, respectively. The same

comparison also shows that χ4 is induced either by real binary octics of type 4 or

by antipodal octics. However, one of the nodes in the Vinberg diagram of the Z-

lattice Fix(χ4) is of the form (1 + i)w, where w is a primitive vector in Λ of squared

norm −2. The orthogonal complement of w in CH
5 is thus one of the constituent hy-

perplanes in the hyperplane arrangement H (see Section 2.3). This shows that octics

parametrized by RH
5
[χ4] can deform to singular octics with exactly one node. This

in turn shows that χ4 is induced by real binary octics since smooth antipodal octics

cannot deform to singular octics with just one node. Comparison of the last rows of

Table 5.1 and Table B.1 now shows that χ4 is induced by real binary octics of type 4.

(See also Appendix B.6.) Corollary 3.37 now implies that the real period map gives
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the following isomorphism of real-analytic manifolds:

M
R,i
0

∼= PΓ
R

i \(RH
5
[χi ]

− H),

where PΓ
R

i := StabP Isom Λ(RH
5
[χi ]

), for i = 0, . . . , 4.

We now prove the formula (6.1). Since, for each i = 0, . . . , 4, P StabIsom Λ(Fix χi)

is a subgroup of the reflection group P Isom(Li), P StabIsom Λ(Fix χi) is itself a reflec-

tion group. Hence, Proposition 4.11 applies for each i = 0, . . . , 4, and we have

StabP Isom Λ(RH
5
[χi ]

) ∼= P StabIsom Λ(Fix χi) ⋊ (Z/2Z) or P StabIsom Λ(Fix χi),

according to whether StabP Isom Λ(RH
5
[χi ]

) contains elements of type II. Since the Vin-

berg diagram of P Isom(L0), P Isom(L1) and P Isom(L4) have no (Z/2)-symmetries,

Corollary 4.13 immediately implies that

StabP Isom Λ(RH
5
[χi ]

) ∼= P StabIsom Λ(Fix χi), for i = 0, 1, 4.

The computations in Appendix B.7 show that StabP Isom Λ(RH
5
[χ2]) contains no

elements of type II, whereas the computations in Appendix B.8 show that

StabP Isom Λ(RH
5
[χ3]) does contain elements of type II. Consequently,

StabP Isom Λ(RH
5
[χi ]

) ∼=
{

P StabIsom Λ(Fix χi), i = 2,

P StabIsom Λ(Fix χi) ⋊ (Z/2Z), i = 3.

This completes the proof of (6.1) as well as that of the theorem.

A Technical Lemmas

Lemma A.1 Let φ : C
n → C

n be an antilinear map such that φ2 acts on C
n by multi-

plication of some scalar α ∈ C. Then α in fact must be real.

Proof Note that φ2
= α · idCn implies that trace(φ2) = n · α. So, it suffices to prove

that trace(φ2) is real. Since φ is antilinear, there exists some A ∈ C
n×n such that

φ(v) = A · v, for all v ∈ C
n. Hence φ2(v) = A · A · v and trace(φ2) = trace(A · A).

Now, recall that for any two complex square matrices C, D of the same dimensions,

we have trace(C · D) = trace(D ·C). Thus,

trace(A · A) = trace(A · A) = trace(A · A) = trace(A · A) =⇒ trace(A · A) ∈ R.

This completes the proof of the lemma.
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Lemma A.2 Let Y be a set, L a group with a free left action on Y and R a group

with a free right action on Y such that the two actions commute. Let y ∈ Y , and

l := y · R ∈ Y /R and r := L · y ∈ L\Y . Then for every element φ ∈ L preserving

l, there exists a unique element φ̂ ∈ R such that φ · y · φ̂ = y. Furthermore, the map

Ll → Rr : φ 7−→ φ̂ is an anti-isomorphism of the two stabilizer groups.

Proof Immediate.

Lemma A.3 Let H be a group acting freely on a set Y , φ be a permutation on Y

normalizing H, and Z the centralizer of φ in H (considering both φ and H as contained

in the symmetric group on Y ). Denote the set of fixed points of φ by Y φ. Then the natural

map Y φ/Z
Ψ

−→ Y /H is injective.

Proof Let y1, y2 ∈ Y φ be such that Ψ(Z · y1) = Ψ(Z · y2). We want to show Z · y1 =

Z · y2, i.e., there exists some z ∈ Z such that z · y1 = y2. Now, since Ψ(Z · y1) = H · y1

and Ψ(Z · y2) = H · y2, the hypothesis Ψ(Z · y1) = Ψ(Z · y2) is equivalent to

H · y1 = H · y2, i.e., there exists some g ∈ H such that g · y1 = y2. We claim that

in fact g ∈ Z, which will complete the proof. For the claim, note that y1, y2 ∈ Y φ

implies the following:

(g−1 ◦ φ−1 ◦ g ◦ φ)(y1) = (g−1 ◦ φ−1 ◦ g)(y1) = (g−1 ◦ φ−1)(y2) = g−1(y2) = y1.

Since φ normalizes H, φ−1 ◦ g ◦ φ is an element of H; hence, so is g−1 ◦ φ−1 ◦ g ◦ φ.

Freeness of the action of H on X now implies that g−1◦φ−1◦g◦φ = idY ; equivalently,

g ◦ φ = φ ◦ g, i.e., g ∈ Z.

B Computational Results used in the Proof of Theorem 6.1

In this appendix, we collect and elaborate the computational arguments used in the

proof of Theorem 6.1.

We define five involutive anti-isometries of Λ in B.1. We show that they are in-

duced by the five deformation types of real binary octics by determining the cycle

structures of their induced maps in O
(
Λ/(1 + i)Λ, q

) ∼= S8 in B.5 and B.6. We give

explicit descriptions of StabP Isom Λ(RH
5
[χ]), i = 0, . . . , 4, in B.4, B.7, and B.8.
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B.1 The Five Involutive Anti-isometries

Define the map χ2 : Λ → Λ by

χ2











z1

z2

z3

z4

z5

z6











:=











z2

z1

z4

z3

−iz5

z6











.

Then χ2 ∈ IAI(Λ). Next, define

A0 :=













0 −i 0 0 0 0

1 0 0 0 0 0

0 0 0 −i 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1













, A1 :=













1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 −i 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1













,

A2 :=













1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1













, A3 :=













1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 −i i 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 i −1 − i 1 1













,

A4 :=















0 −i 0 0 i 0

1 0 0 0 0 0

0 0 0 −i i 0

0 0 1 0 0 0

0 0 0 0 1 0

i −1 − i i −1 − i 2 1















.

Consider A0, . . . , A4, as Z[i]-linear endomorphisms on Λ, via v 7→ Ai · v. Define

(B.1) χ0 := A0◦χ2, χ1 := A1◦χ2, χ2 := A2◦χ2 = χ2, χ3 := A3◦χ2, χ4 := A4◦χ2.

It is straightforward to verify that A0, . . . , A4 ∈ Isom(Λ), and χ0, . . . , χ4 ∈ IAI(Λ).

As the notation suggests, χ0, . . . , χ4 shall correspond to real binary octics of types
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0, . . . , 4 respectively, as will be shown in this appendix. Appealing to the theory de-

veloped in the preceding sections, we now present a series of straightforward com-

putational results which will establish this correspondence (see also Proof of Theo-

rem 6.1). We will omit the details of these computations due to their routine but

tedious nature.

B.2 Z-bases for the Fixed Lattices of χ0, . . . , χ4

The column vectors of the following matrices form respectively Z-bases for the fixed

Z-lattices of the anti-involutions χ0, . . . , χ4:

B0 :=













0 0 0 1 − i 0 0

0 1 0 1 0 0

0 0 1 − i 0 0 0

−1 0 1 0 1 1

1 − i 0 0 0 −1 + i 0

1 0 0 0 0 −1













,

B1 :=













0 1 0 0 0 1 − i

0 1 0 0 0 1 + i

0 0 1 − i 0 0 0

−1 0 1 1 1 0

1 − i 0 0 0 −1 + i 0

1 0 0 −1 0 0













,

B2 :=













0 1 0 0 1 − i 0

0 1 0 0 1 + i 0

−1 0 1 1 0 1 − i

−1 0 1 1 0 1 + i

1 − i 0 −1 + i 0 0 0

1 0 0 −1 0 1













,

B3 :=













0 0 1 1 − i 0 0

0 0 1 1 + i 0 0

i i 0 0 1 − i 1 − i

0 0 0 0 2 0

1 − i 1 − i 0 0 0 0

1 0 0 0 0 −1 − i













,
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B4 :=













1 − i 0 0 i 0 0

2 2 −1 0 0 2

0 1 − i 0 i 0 0

0 0 1 0 0 0

0 0 0 1 − i 0 0

0 0 0 0 1 i













.

B.3 The Induced Integral Quadratic Forms on Fix(χ0), . . . , Fix(χ4)

These are determined by inner product matrices of B0, . . . , B4, which are given re-

spectively by

L0 := diag(+2,−2,−2,−2,−2,−2), L1 := diag(+2,−2,−2,−2,−2,−4),

L2 := diag(+2,−2,−2,−2,−4,−4), L3 := diag(+2,−2,−2,−4,−4,−4),

L4 :=











−4 −4 2 0 0 −4

−4 −12 6 0 0 −8

2 6 −4 0 0 4

0 0 0 −4 2 −2

0 0 0 2 0 0

−4 −8 4 −2 0 −8











.

B.4 The Vinberg Diagrams

The Vinberg diagrams [17] of the reflection subgroups of the (integral) isometry

groups P Isom(L0), . . . , P Isom(L4) are shown in Figure B.1. In these diagrams, the

following convention is used: No bond between two nodes means the two corre-

sponding hyperplanes meet orthogonally; a single bond means they meet with inte-

rior angle π/3; a double bond means the interior angle is π/4; a bond marked with∞
means the two hyperplanes are parallel; a dotted bond means they are ultraparallel.

The number of subdivisions within each node is minus one-half of the squared

norm of the corresponding root. Equivalently, the squared norm of a root is equal

to −2 times the number of subdivisions in its corresponding node in the Vinberg

diagram. For example, consider the Vinberg diagram of L2. The node r4 has four

subdivisions, which indicates that the corresponding root has norm −8 = −2 × 4.

Similarly, the roots corresponding to r1, r2, r3, r5, r6, and r7 have norms −4, −4, −2,

−4, −4, and −4, respectively.

The labeling of the nodes of the diagrams for L2 and L3 will be used in Sections B.7

and B.8. The common labeling of these two sets of nodes is for economy of nota-

tion; the two sets otherwise have no relation to each other. Each of these five Vin-

berg diagrams has no symmetries, when norms of roots are taken into account. This

implies that each of P Isom(L0), . . . , P Isom(L4) is a discrete reflection subgroup of

Isom(RH
5). Hence, Corollary 4.13 applies to each of them.

Ignoring norms of roots, only the Vinberg diagrams of P Isom(L2) and P Isom(L3)
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L0

i i i i i

i

L1

i i i i i i

i

∞

L4 i i i i i i

L2 i i i i i i i
r1r2r3 r6 r4 r5r7

L3

i

i i

i

i

i i

i

r2

r1

r6 r3

r4

r5

r7 r8

¡
¡¡

¡
¡¡
∞

@
@@

@
@@
∞

Figure B.1

dimF2

(
Fix(·)

) number of norm-one

vectors in Fix(·)

φ0 6 28

φ1 5 16

φ2 4 8

φ3 3 4

φ4 4 4

Table B.1

have a (Z/2Z)-symmetry, which implies (by Corollary 4.13) that

StabP Isom Λ(RH
5
[χ]) = P StabIsom Λ(Fix χ), for χ = χ0, χ1, χ4.

B.5 The Invariants of the Induced Isometries on V = Λ/(1 + i)Λ

Let φ0, . . . , φ4 ∈ O(V, q) be the involutive isometries on V = Λ/(1 + i)Λ induced

by χ0, . . . , χ4 respectively. Then straightforward computations show that the two

invariants mentioned in Lemma 5.1 of φ0, . . . , φ4 are as tabulated in Table B.1.

We show the explicit verification for φ2. Now,

φ2 ∈ O(V, q) = O
(
Λ/(1 + i)Λ, q

)
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is induced by χ2 ∈ IAI(Λ), and χ2 is defined by

χ2











z1

z2

z3

z4

z5

z6











=











z2

z1

z4

z3

−iz5

z6











.

Next, observe that the endomorphism ξ 7−→ i · ξ on Z[i] descends to the identity

map on F2 = Z[i]/(1 + i)Z[i], since i = 1 + i · (1 + i) ≡ 1 mod(1 + i). Similarly,

the endomorphism ξ 7−→ −ξ on Z[i] also descends to the identity map on F2, since

−(m+in) = (m+in)−2·(m+in) = (m+in)−(1+i)(1−i)(m+in) ≡ m+in mod(1+i).

As a result, complex conjugation on Z[i] descends to the identity map on F2 as well,

since m + in = m − in ≡ m + in mod(1 + i). Hence, φ2 is explicitly given by

φ2











ξ1

ξ2

ξ3

ξ4

ξ5

ξ6











=











ξ2

ξ1

ξ4

ξ3

ξ5

ξ6











Consequently, the vectors

v1 =











1

1

0

0

0

0











, v2 =











0

0

1

1

0

0











, v3 =











0

0

0

0

1

0











, v4 =











0

0

0

0

0

1











∈ V

form a basis for Fix(φ2), and we see that

dimF2
Fix(φ2) = 4.

Next, we count the norm-one vectors in Fix(φ2): Since v1, v2, v3, v4 form a basis

for Fix(φ2), we see that Fix(φ2) contains exactly 16 vectors and the general form of a

vector in Fix(φ2) is c1v1 +c2v2 +c3v3 +c4v4, where c1, . . . , c4 ∈ F2. The norm q(v) ∈ F2

of a vector v ∈ V = Λ/(1+ i)Λ is defined in Section 5.1 and can be readily calculated.

The sixteen vectors in Fix(φ2) and their norms are tabulated in Table B.2, from which

it is immediate that Fix(φ2) contains exactly eight vectors of norm one.

Remark B.1 Comparing Table 5.2 with Table B.1, we may conclude that χ0, χ1,

χ2, and χ3 correspond to real binary octics of types 0, 1, 2, and 3 respectively. By

Remark 5.2, it is furthermore clear that χ4 is induced by either real binary octics of

type 4 or antipodal binary octics. We show that χ4 is in fact induced by real binary

octics in Section B.6.
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c1 c2 c3 c4 v = c1v1 + c2v2 + c3v3 + c4v4 q(v)

0 0 0 0 (000000)T 0

0 0 0 1 (000001)T 0

0 0 1 0 (000010)T 0

0 0 1 1 (000011)T 1

0 1 0 0 (001100)T 1

0 1 0 1 (001101)T 1

0 1 1 0 (001110)T 1

0 1 1 1 (001111)T 0

1 0 0 0 (110000)T 1

1 0 0 1 (110001)T 1

1 0 1 0 (110010)T 1

1 0 1 1 (110011)T 0

1 1 0 0 (111100)T 0

1 1 0 1 (111101)T 0

1 1 1 0 (111110)T 0

1 1 1 1 (111111)T 1

Table B.2: All sixteen vectors in Fix(φ2) and their norms. The superscript T denotes transpo-

sition.

B.6 χ4 is Induced by Real Binary Octics of Type 4

We can determine that χ4 is induced by real binary octics of type 4 (rather than by

antipodal binary octics) by the following observations:

• Recall that the collection H of discriminant hyperplanes in CH
5 consists of or-

thogonal complements of vectors in Λ of squared norm −2, and that the smooth

points of H correspond to nodal binary octics, i.e., singular binary octics with one

double point and no other singularities.
• One of the roots of L4 is of the form (1 + i)w, where w is a primitive vector in Λ

of squared norm −2. The fundamental domain of P Isom(L4) therefore has one

discriminant wall, and octics parametrized by RH
5
[χ4] can deform to nodal ones.

• Antipodal octics can only deform to octics which are more singular than the nodal

ones. (See the proof of Lemma 3.25.)

It is now clear that χ4 is induced by real binary octics of type 4.

Remark B.2 As already mentioned in subsection B.4, we have

StabP Isom Λ(RH[χ]) = P StabIsom Λ(Fix χ), for χ = χ0, χ1, χ4.

It remains to determine, for χ = χ2, χ3, whether StabP Isom Λ(RH
5
[χ]) is equal to

P StabIsom Λ(Fix χ), or is isomorphic to P StabIsom Λ(Fix χ) ⋊ (Z/2Z).
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B.7 Comparing StabP Isom Λ(RH[χ2]) and P StabIsom Λ(Fix χ2)

Recall that the Vinberg diagram for P Isom(Fix χ2) is

i i i i i i i
r1r2r3 r6 r4 r5r7

where the roots r1, r2, . . . , r7 are labeled according to order of appearance in the

Vinberg Algorithm. The above diagram has only one symmetry (ignoring norms

of roots): it is the (Z/2Z)-symmetry determined by exchanging the following 1-

dimensional subspaces:

R · r1 ←→ R · r1, R · r2 ←→ R · r6, R · r3 ←→ R · r4, R · r5 ←→ R · r7.

Recall also that the natural identification map (induced by projectivizing over C)

from Fix(iχ2)⊗Z R back to Fix(χ2)⊗Z R is given by scalar multiplication by 1−i. Tak-

ing all the above observations into account, we see that the group StabP Isom Λ(RH
5
[χ2])

admits elements of type II if and only if the following conditions define an element

T ∈ Isom(Λ) such that [T] is a type II element of StabP Isom Λ(RH
5
[χ2]):

(1 − i)T(r1) = ±
√

2r1,(B.2)

(1 − i)T(r2) = ±
√

2r6, (1 − i)T(r6) = ±
√

2r2,(B.3)

(1 − i)T(r3) = ± 1√
2

r4, (1 − i)T(r4) = ±2
√

2r3,(B.4)

(1 − i)T(r5) = ±
√

2r7, (1 − i)T(r7) = ±
√

2r5,(B.5)

where the signs of the right-hand-sides must be either all positive or all negative.

Either case leads to a contradiction, which shows that StabP Isom Λ(RH
5
[χ2]) has no

type II elements. We derive the contradiction for only the first case, the other case

being completely analogous. We now make the following:

Claim There exists no such T ∈ Isom(Λ).

When expressed in the “standard” basis of Λ, the roots r1, . . . , r7 are given, respec-

tively from left to right, by the column vectors of the following matrix:











−1 0 0 −1 + i 0 1 2 − i

−1 0 0 −1 − i 0 1 2 + i

1 0 −1 1 − i −1 + i 1 −1

1 0 −1 1 + i −1 − i 1 −1

−1 + i 1 − i 0 0 0 0 1 − i

0 −1 1 0 0 0 1











.

Note that r7 = r2 + 2r3 − r4 − r5 + r6. Hence, condition (B.5) implies

√
2r5 = (1 − i)T(r7) = (1 − i)T(r2 + 2r3 − r4 − r5 + r6)

=
√

2r6 +
√

2r4 − 2
√

2r3 −
√

2r7 +
√

2r2,
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which yields this alternative expression for r7: r7 = r2 − 2r3 + r4 − r5 + r6. Comparing

with the original expression for r7 in terms of r2, . . . , r6, we see that

r2 + 2r3 − r4 − r5 + r6 = r7 = r2 − 2r3 + r4 − r5 + r6 =⇒ 2r3 = r4,

which is a contradiction, since r3 and r4 are linearly independent over Z[i], in par-

ticular, over Z. The claim is proved. By Corollary 4.13, we may now conclude

that StabP Isom Λ(RH
5
[χ2]) has no elements of type II, and StabP Isom Λ(RH

5
[χ2]) =

P StabIsom Λ(Fix χ2).

B.8 Comparing StabP Isom Λ(RH[χ3]) and P StabIsom Λ(Fix χ3)

Recall the Vinberg diagram in this case from Figure B.1. Again, the roots r1, r2, . . . , r8

are labeled according to order of appearance in the Vinberg Algorithm. In terms of

the “standard” basis for Λ, these roots are given, respectively from left to right, by the

column vectors of the following matrix:













1 −1 −1 + i 0 0 1 − i 1 1 − i

1 −1 −1 − i 0 0 1 + i 1 1 + i

−i 0 1 − i 0 −1 + i 2i 2i 2

0 0 2 −2 0 0 0 2

−1 + i 0 0 0 0 2 − 2i 2 − 2i 2 − 2i

0 0 0 −1 − i 1 + i 1 1 1 − i













.

The only symmetry (ignoring norms of roots) here is the (Z/2Z)-symmetry deter-

mined by exchanging the following 1-dimensional subspaces:

R · r1 ←→ R · r4, R · r2 ←→ R · r5, R · r3 ←→ R · r6, R · r7 ←→ R · r8.

Therefore, StabP Isom Λ(RH[χ3]) has elements of type II if and only if the follow-

ing conditions define an element T ∈ Isom(Λ) such that [T] is an element of

StabP Isom Λ(RH[χ3]) of type II:

(1 − i)T(r1) = r4, (1 − i)T(r2) = r5, (1 − i)T(r3) = r6, (1 − i)T(r7) = r8,

(1 − i)T(r4) = 2r1, (1 − i)T(r5) = 2r2, (1 − i)T(r6) = 2r3, (1 − i)T(r8) = 2r7.

Straightforward calculations now show that the above (overdetermined) set of con-

ditions indeed defines such a T ∈ Isom(Λ) and we conclude that

StabP Isom Λ(RH[χ3]) = P StabIsom Λ(Fix χ3) ⋊ 〈[T]〉 ∼= P StabIsom Λ(Fix χ3) ⋊ (Z/2Z).
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[15] Toshiaki Terada, Fonctions hypergéométriques F1 et fonctions automorphes. I. J. Math. Soc. Japan
35(1983), 451–475. doi:10.2969/jmsj/03530451
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