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EXTENSIONS OF THEOREMS OF
GAGLIARDO AND MARCUS AND MIZEL
TO ORLICZ SPACES

GRAHAME HARDY

In 1958, Gagliardo showed that if u is a locally integrable
function on a domain § satisfying the cone condition, with all

weak derivatives belonging to the Lebesgue space Lp(Q)
(L =p <®) , then u belongs to Lp(Q) also. We extend this

result to Orlicz spaces, and use it to extend a result of Marcus
and Mizel on Nemitsky operators between Sobolev spaces to Orlicz-

Sobolev spaces.

1. Introduction
Let £ be a domain (that is, an open and connected set) in Rn , and
g a function from  x Rm into R . 1In Marcus and Mizel [§], it is shown

that, under suitable assumptions, g determines & mapping from

X=W (Q) x ... x W () into W Q) . This mapping associates
1,q, ) 1.q, 1,p® pPping
with every u = (u N .s U ) € X , a function G € W defined by
1 m 1,p
G o u(x) = g(x, ul(x), cers um(x)) . Two cases are considered separately

in [§]:
(i) p > 1 (Theorem 2.1 of [4] and its consequences); and
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122 Grahame Hardy

(ii) p =1 (Theorem 3.1 of [8] and its consequences).

In both cases, critical use is made of the following theorem, essentially

contained in Gagliardo [5]. (The notations aé and A’ wused below will
‘ 1

be defined fully in the next section. Roughly, A'{Q) is the class of
functions f almost everywhere equal to a function % on § which is
absolutely continuous on almost all line segments parallel to the axes, and

3; f 1is a function almost everywhere equal to 3}73xi . Bx f denotes a
1 7

weak derivative.)

THEOREM 1.1. Let 1 =p <, and suppose Q <is a bounded domain in
R, with the cone property. Then f : @+ R belongs to W, p(Q) if and
only if
(i) feA(Q),

(it) aéif € Lp(Q) , T =1, ..., n .

Moreover, if f € Wy p(Q) , then 3, f = Bx f almost everywhere in 9 ,
i i 7

1 =1, ..., "N .
(Lemma 1.4 in [8] gives a slightly more general form of the above.)

We shall show how the case 1 < p < ® of Theorem 1.1 remains true if

the Lebesgue space Lp(Q) is replaced by an Orlicz space Lp(Q) , where P

now denotes an N-function. We shall then show how this result may be used
to generalise Theorem 2.1 of [§] to a class of Orlicz-Sobolev spaces

containing the original Sobolev spaces.

2. Preliminaries

2.1. ORLICZ SPACES. We shall use the properties of N-functions and
Orlicz spaces as given in Krasnosel'ski¥ and RutickiY [7]. We shall only

need to consider Orlicz spaces defined on bounded domains § C Rn . For

our purposes, it is convenient to use the characterisation of Orlicz spaces

given below.

(i) Let M be an WN-function. Then a measurable function u :  + R

belongs to the Orlicz space LM(Q) if and only if there exists a constant
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k > 0 such that J Mlku(x)]lde < = .
Q

Throughout we shall use the Luxemburg norm, denoted here by "."M(Q) .

With this norm, Holder's inequality takes the form
s . < ~ = -~ -
(ii) JQ uv < 2”u”M(Q)“v”M(Q) , where M denotes the N-function

complementary to M .
For convenience, a few other properties are given below.
(iii) If M 1is an N-function and u € R , then

(a) Mlou) < aM{u) if O

tA

a¢ =1 ; and

(v) Mlou) =z oM(u) if a =21 .

v

(iv) Suppose P, § and Q+ are N-functions, and there exist

complementary WN-functions R and R such that the inequalities
~1
R(u) = PrQ(aad)] ,

> -1, T

Ru) = P[Q" (Buw)] ,
are satisfied for all u 2 uo , where o, B and uo are constants. Then
there exists a constant k& such that

hallp = dlullglol .

If P and R are N-functions, @ =P ¢ E and Q+ =PoR are

N-functions, and it is evident that R, P, @ and Q+ satisfy the
conditions in (iv). For use in §5, we note that it is also possible to
choose P and @ such that P < @ and such that both P and @ satisfy

the A2 condition. For example, we can take P(u) = lulp , p>1, and
Q(u) = [(1+]u])in(a+|u])-]u] 1P .
2.2. THE CONE PROPERTY. (i) DEFINITION. A domain  c Rn is said

to have the cone property if there exists a finite cone C( such that each

point x € € 1is the vertex of a finite cone Cx contained in 2 and

congruent to C .
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The following may be proved (see Adams [1], Theorem 4.8):
(ii) Let © bve a bounded domain in Rn having the cone property.

For each 0 > 0 there exists a finite collection {Q R 92, ey Qm} of

m
open subsets of £ such that = U Qj

, and such that to each .
=1 J

there corresponds a subset Aj of ﬁﬁ having diameter not exceeding o0 ,

and an open parallelepiped Pj with one vertex at 0 , such that
Q.= U (x+P))
J xEAj J

The parallelepipeds E} are determined by € , and not by p .

2.3, THE CLASS A(Q) . Let £ %be a domain in Rn . A(R) denotes

the class of real measurable functions on § such that, for almost every
line T parallel to any coordinate axis, # 1is locally absolutely
continuous on T N  (that is, u is absolutely continuous on each
compact subinterval of T N ). A'(Q) denotes the class of functions u
such that % coincides almost everywhere in . with a function % in

A(Q) . Por u € A4'(Q) , Sé-u , the strong approximate derivative of u
Z

with respect to xi , denotes any member of the equivalence class of

functions measurable on ! which contains aa/axi .
2.4. ORLICZ-SOBOLEV SPACES. (i) We shall use the notation ax u(x)
i

to denote the <th distribution derivative of u : @+ R , for Qc Rn .

If M is an N-function, WlLM(Q) and WlEM(Q) denote the classes of

functions # for which u# and Bx u € LM(Q) and EM(Q) respectively.
Z

(ii) We shall use the norm

n
Il y = Wly) + 2 1B o)
M

The following density theorem holds (see [3]}, Theorem 2.2).
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(iii) If § is a bounded domain in Rn , then Cm(Q) is dense in

wlem) )

3. Extension of Gagliardo's Theorem

The statement of the theorem of Gagliardo (contained in Theorem 1.1),

still holds true if the Lebesgue space LP(Q) is replaced by an Orlicz

space LP(Q) .

THEOREM 3.1. Let Q be a bounded domain in Rn with the cone

property, and let P be an N-function. Then if u € A'(Q) and

Béiu €L (Q), uce LP(Q) also.

P

The proof follows from the sequence of lemmas below.

LEMMA 3.2. Let ¢ be a one-to-one transformation of a domain Q 1in

Rn onto a domain G 1in Rn » having inverse Y . GSuppose ¢ and V¥
have continuous derivatives on @ and G respectively, and let

0 < ¢ = min{1, inf |det &'(x)|} , C = max{1i, sup |det ®'(x)}]|} .
x€Q x€Q

Suppose u : Q + R is measurable, and that the function Au : G+ R is
defined by

Auly) = u(¥(y)) .
Then 1f P is an N-funetion,
c”u”P(Q) = ”Au”P(G) = C”u”P(Q) .

Proof. For X >0, 2.1 (iii) (a) gives

A

J Plu(x)/A1ldz < J ePlu(x)/erldx = J Plu(z)/ex]|det ©'(x)|dx
Q Q Q

I PlAau(y)/erldy ;
G

whence, from 2.1 (iii) (a),
”AM/CHP(G) = ”u"P(Q) 3

which gives the first inequality.
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A similar proof, using 2.1 (iii) (b), gives the second inequality.
LEMMA 3.3. Let & be a non-singular linear transformation of a

domain § cC Rn onto a domain G C Rn . Then if u has weak derivatives

3, wlz) , =1, ..., n, for x€Q, uco o1 has weak derivatives
T

3 Et(é-l(y))] s 12i=n, for y €G.
L

More general versions of the above are well-known; see, for example,
Gilbarg and Trudinger ([6], page 144), or MihaTlov ([9], page 124, para.
5).

Lemma 3.3 can also be easily proved directly, using the definition of

a weak derivative and the change of variable formula for integrals.
LEMMA 3.4. Suppose 9 18 a bounded domain in Rn having the cone

property. Let ® and G be as in Lemma 3.3. Then if u € A'(Q) and

Bé u € Ll(Q) , 1l=si=n, uovVeA(G) .
A

Proof. The lemma is an immediate consequence of Lemms 3.3, and the

p =1 case of Theorem 1.1.
We shall use the notation Cz(c) to denote a cube in Rn with side

of length 7 , having centre at ¢ . If ¢ 1is the point
(z/2, 1/2, ..., 1/2) , so that one vertex is at the origin, we shall denote
Cz(c) by C; .
LEMMA 3.5. Let Q be a bounded domain in Rn having the cone
property. Then
m
Q= jgl Qj
where each Qj i8 an open subset of Rn having the property (*) stated
below:

(*) there exists a non-singular linear transformation T} such

that
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where diam Bj <1/8 .

Proof. Let Pj , 1 =4 =k, be the parallelepipeds which occur in
2.2 (ii). Let Tj , 1=<gj =<k, be linear transformations which map Pj

onto €. , and let m. = 7t
1 J Jd

between opposite faces of TTJ. , and let p = min{d s sees dk} .

(01/8\/77) . Let dj be the minimum distance

By 2.2 (ii), we may write

k
Q= U .,
g=1 7
where
Q.= U (a+P.)
J a€A .
J
and diam 4. < p Thus
r.(Q.) = U (a+c.)
7T aera; 1

Each Aj may be enclosed in a translate of T!’j , and Tj (Aj) is a subset

of a cube of side 1/8/n , so that

where diam Bj <1/8 .

. m
LEMMA 3.6. Let Qc Rn » and suppose Q = U Q.. Let P be an
=1

N-function, and let u : Q + R be measurable. Then if "“"p(ﬂ ) <,
1

1<i1<m, Ilullp(m < © glso.

Lemma 3.6 is easily proved from 2.1 (i).

Lemmas 3.4, 3.5 and 3.6 show that it is sufficient to prove Theorem
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3.1 under the assumption that § is of the form

Q U ¢ (e)

c€B 1

where diam B < 1/8 .

LEMMA 3.7. Suppose §Q s a domain in Rn of the form (*), that is,

Q U ¢ (e)

c€B 1

where B C Rn , and diam B < 1/8 . Then Q has the property (**) below:

(**) there exists an open set D of positive measure, where
D < Q, such that if o = (al, cens an) €D and if
x = Lxl, ey xn) is any point of Q, o and x can be

joined by a path consisting of n or less straight line

segments Sl’ Sz, cens Sn » parallel to the axes, joining

the points (al, Oy ones an] to (xl, Opy ooy an) s

(rl, Uys Ggs eees an) to [xl, Ty Ogs woes an), ee. 5 and
@rl, ey xn-l’ an) to (xl, ey xn-l’ xn) respectively,
where each line segment s, lies in Q and has lendth
less than 1 .

Proof. Let Y € B . Since diam B < 1/8 , it follows that

C,(y)e N C(ec) . Let a €C.(y), and let x € Q . Since z belongs
% ceg %

to some cube Cl(G) , where & € B, and o € 01(6) also, 0 and x may

be joined by a path of the form required. Hence we may take D = C%(Y)

Thus we need only prove Theorem 3.1 for domains having the property

(**). We do this in the final lemma.
For QcC Rn , we shall use the notation Q[xi, cees xn] to denote the
set of points [xl, cees xi-l) such that « = (xl, cees xn] €, and
Ql > i to denote the projection of § on the hyperplane
325 nn

.y xi = 0 . DNote that
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[Q(aiﬂ, v, an)] (xl, A xi—l) = Q(xl, ees Ty s Oggs sees an)
LEMMA 3.8. Suppose Q <s a domain in Rn having the property (**)

stated in Lemma 3.7. Suppose u € A'(Q) , and that P <is an N-function.

. , -
Then if Bxiu € LP(Q) s, 1<is=n, uct LP(Q) also.

Proof. By 2.1 (i), for each 7 , 1 <17 =<n , there exists a ki >0

such that

(i) '[Q P[(n+1)ki33£_iu] <,

Since P 1is an increasing function, (i) still holds if we replace ki by

k=min(k;, ..., k)

Let u € A(R) be such that # = u almost everywhere in § and

Bﬁ/axi = 83"_ u almost everywhere in § , so that
7

(ii) JQ P[(n+1)k (3i1/3x,)] < =

also. Since u € A(R) , there exists a null subset IVo of £ such that

u{a) is finite for all o = (Otl, ceey otn) € Q- IVO . Further, since

P> 0, we may write (ii) in the form

(iii) J dzx
9 ..

i+1° n JQ(&:

. . PR
. +1° ? n)

x P[(n+1)k (302/0x ) (), ..., =

1 , z )]de. ... dr, < w

12 Tie1o 0 By 1 7
for each 7 , 1 <7 <n . (iii) shows that there exists a null subset ITlt

of each £ . such that
1 1

sy

(iv) J
Q(aiﬂ, .. ,an)

x P[(n+l)k[8ﬁ/axi) (= x,, a

1, s 7? 7:"’1,

.y an)]d.rl coodr, <o

provided (ai+l’ ey Otn) € Ql,.. i_Ni . We may then choose a null set

b

Ni < 2 such that (iv) holds for o € £ - Ni . Finally we choose a null
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set Nﬁ such that # is locally absolutely continuous on line segments in

n
U N.J. Let a €D - N,
. 1
1=0

For any x € § , we may connect o to &

2 - Nﬁ parallel to each axis. Put N = Nii v [

where D 1is as in Lemma 3.7.

by straight line segments joining the points

(al, Ay eees an), (xl, Gpy ones an), .

[:cl, PN an), (xl, eers :z:n) R

and since © is absolutely continuous on these line segments,

n 1
u(x) = a(a) + Y I (aa/axi) [acl, cees Ty s By Gy ey an)dt .
a

i=1
Let Ji denote the closed interval with end points ai, xi , and let
|J1:| denote its length. From the convexity of P ,
(v) Plki(x)] = 1/(n+1)P[(n+1)kii(a)] + 1/(n+1)
n
N ~
D G e [ A A F 1 B

For Ol.i # xi , Jensen's inequality shows that

P{U A e ) R ST T T O‘n)]dt]/wq:l}
J.

(2

1A

l/|J1:| IJ. P[|Ji|(n+1)k(3u/3xi) (xl, PPN TETE TN an)]dt

(A

1A

J P[(n+l)k(aﬁ/axi) (:cl, cees Tp g By s et an]]dt
J.
Z

on using 2.1 (iii) (a). Since the case a, =, is trivial, we have
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(vi) PU [(n+1)k(8i’¢/3xi) [x s eees T g t, Qrpys =ooo an)]dt}
J

SJ P[(n+1)k(81'2/8xi) (xl, PN TETE T VI an)]dt

cee s, RN ]
1’ i1 %arr n)

x P[(n+1)k (aﬁ/axi) (=

12 sees

110 s Gy e an)]dt .

Substituting (vi) and (v) and then integrating over  , we obtain

Q(:x:l,. P TR Ty ,un)

x P[(n+1)k(30/0x,) (2, ooy 2 s By 0y e, o )]dE

The first term on the right-hand side of (vii) is less than o , because
is bounded. Moreover, there exists Ki < ® such that

<
d.'x:i, cees dxn < Ki for any [xl, v xi—l} € Qi,...,n s

Q(:cl, ce ’xi-l]

again because € 1is bounded. Now consider the <th term, Ti say,

inside the summation sign in (vii). We may write

7, = JQ dz,, ..., dx, I[Q( Ny )
e LT 10 1 | C e
x P[(n+13k (30/3,) (@), «ovs zy g0 By a0y -en, a )]de

| do,, ..., dz
(x i n

Loeeenm; 1)

A

]
Sy
L)

-y

e |
(g0 )] (oot _y)

x P['_(n+1)k(3{2/3xi] (xl, s By s by, un)]dt
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=K

iJ[ﬂ(

de,, ..., dz;

TS LR ’an):]i,.. .
g

CICTRRRR | | NI

x P[(n+1)k(8ii/3x7:) (xl, Ey Oppys vees an]]dt s
where we have used the fact that '[:Q(ai_._l, s 0 )2y ooy my ) = 8 af
@rl, cens xi-l) € Qi,...,n - Bﬂqi+l’ cees n)]i,...,n . From (iv),

Ti <o 1 =4%Z =n, so that we have shown that there exists k > 0 such

that J Plku(zx)ldx < « , whence IIuHP(Q) <ew by 2.1 (i).
Q

4. Two theorems on Orlicz-Sobolev spaces

The following two theorems will be needed in §5. For the
corresponding results in Sobolev spaces, see Lemmas 1.5 and 1.6 in Marcus

and Mizel [§]. We shall use the following notation.

(i) If @ 4is a domain in Rn , Qv denotes the translate of § by
the vector v € Rn ; and for Q' c Rn , Q' a= @ means that ' is a
compact subset of £ . 9Q denotes the boundary of § .

(ii) For h >0, e; » 1 =72 =n , the standard basis for Rn , and

x € Rn ,

qu(x) = (u(x+hei)-u(x))/h .

THEOREM 4.1. Suppose that § <is a bounded domain in Rn s that '
18 an open set such that Q' azQ , and that P 1is an N-function. Then

if 0 <h < dist(Q', Q) , and if u € wlgp(n) ,

Proof. For u € Cl(Q) ,

Giu

= o, ull .
ppr) % P&
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. 1
GZu(x)l = Jo |(3/3xi)u(x+heit)|

and so for A > 0 , an application of Jensen's inequality gives

1A

IQ, Jl P((8/0=,)ulwrhe, t) /A)dtdz

J P[qu(x)/k]db
Qr 0

1
j dt J P((3/3,)u(w+he ,2) /") dz
0 Qr

1
J dt P((3/03z Ju(x)/\)dx
0 Q!

-heit

1
s[ dtJ P((3/8z;Ju(x)/A)dz
0 Q

) P((3/3z Ju(x)/A)dz .

Taking the infinium of all X > 0 such that the right-hand side is less

than or equal to 1 gives
7
o5

By 2.4 (iii) for any u € W;EP(Q) » there exists a sequence u  of P Q)

- = uau/axiuP(Q) .

functions such that u, > u in Wle(Q) . Replacing u by u, in the
last inequality and letting #n * ® gives the result.
THEOREM 4.2. Suppose that Q 1is a domain in Rn , and u € LP(Q) S

where P 1is an N-function. Then if there exists a number C such that

”Giu” =C
hollpeary

for every open Q' ac @ and |h| sufficiently small, 39, u € Lp(Q) and
i

HaxiuHP(Q) =C.

We omit the proof, as it is almost identical to that for the Lebesgue

L spaces, as given in, say, Agmon [2] and Friedmann [4].

P
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5. A theorem on Nemitsky operators

We now have all the material necessary to extend Theorem 2.1 in Marcus
and Mizel [8] from Lebesgue to Orlicz spaces. For convenience, we shall
repeat some of the definitions from [§8]. As before, £ is a domain in
Rn .

DEFINITIONS AND NOTATION 5.1. A function g : Q % Rm + R is said to

be a generalised locally absolutely continuous Caratheodory function if

(i) there exists a null subset Ng of § such that if
r €Q ~ Ng ,

(a) g(x, *) is continuous in each variable separately in
Rm ,
(v) for every line T parallel to one of the axes in

Rm , glx, ')|T is locally absolutely continuous;

(ii) for every fixed ¢t € Rm , glet) € A1(Q) .
If "continuous in each variable separately" in (a) is replaced by

"continuous", the above then defines a locally absolutely continuous

Caratheodory function,
An operator G on vector valued functions u = (ul, ey th
measurable on § , defined by
Gu(z) = gz, u(x)) = (g ° u)(x)
is called a Nemitsky operator.

Given u = (ul, cens um) Q> Rm , and N-functions @ .y @, we

1* m

shall use the notation

u € wlz,é(n)

to mean that u, € WlLQ Q)Y , 1 =2 =m.
z

THEOREM 5.2. Let Q be a bounded domain in Rn having the cone

property, and let g be a generalised locally absolutely continuous
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Caratheodory function in § x Rm . Let P, Q, and Q_é , 1 =i =m,
N-functions having the following properties:

(7) P and Qi , 1 =42 m, satisfy the A2 condition;

1A

(i) P<Qi, 1 =1 =m;

(i11) there exist complementary N-functions R, and I;’,L such

that the inequalities
-1
R, (u) = P [q; (au)]

and

1A

oot o]

are satisfied for u 2 U s where o> Bi’ U s

R.(u)
i

1 =24 =m, are constants.

Suppose a, b, as bk are functions such that

»J

I. for every fivxed t € Rm R

la:x':,g(x, t)| =alx) + b(t) almost everywhere in Q, i =1, ..., n;
P

II. the inequality
m

|ag(z, t)/atkl Eak(x) + Yy by

2z ,j(tj)’ k=1, ..., m,
J=

holds at every point (x, t) € (n-zvg) x R at which the
derivative exists in the classical sense.
Furthermore, a, b, a, and bk,j have the properties (iv)-(viii)
listed below:

(iv) 0Sa €L,(Q);
(v) b 1is non-negative and separately continuous in R

(vi) 0=a GLQIQ(Q)’ 1=k =m;

https://doi.org/10.1017/50004972700006948 Published online by Cambridge University Press

>


https://doi.org/10.1017/S0004972700006948

136 Grahame Hardy

(vit) 0 = bk P i8 an extended real valued Borel function
on R, k,j=1, ...,m;
(viii) b

loc _
K,k € L1 (RY, k=1, ..., m.

Let u = (ul, cens um) € WlLé(Q) , and suppose that
(iz) b o u € LP(Q) 5

ou. € L+ ), k, =1, ..., m, k#3,

(x) bk,j g 2

(xi) [bk,k ° uk]Bxiuk €L,(R) , k=1, ...,m,

=1, ., 1,
where the product is to be interpreted as zero whenever Bx u, =0.
i

Then v =g o u belongs to WlLP(Q) .

Proof. We first observe that, using Theorem 3.1, we can obtain the

following version of Lemma 1.4 in (8]:

(i) Let P 7be an N-function, and let £ be a bounded domain in Rn

1

having the cone property. Then a function f : @ +* R belongs to W L (R)

ol
if and only if
(a) fear(q),

(v) aéif € LP(Q) s T =1, ..., .

Moreover, if f € WlLP(Q) , aé f= Sx f almost everywhere in Q ,
i b

T =1, ..., n .

Using the above instead of Lemma 1.4 in [8], the proof of Corollary
1.3 in (8] yields

(ii) Let g : R+ R ©bve a locally absolutely continuous function and

let € be a bounded domain in Rn having the cone property. Suppose

u € Wl l(ﬂ) ,and let v =g u . Then vV € hJLP(Q) if and only if
bl
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. ' ! =
(*) v, = [g' o u]Bxiu € LP(Q) , =1, ..., n,

the product being interpreted as zero wherever Bx u=0. Moreover, if
i
(*) holds, v, = 3x v almost everywhere in  , <=1, ..., n .
7
If we now repeat the proof of Theorem 2.1 in [8], using Theorem 5.2
(Z), Theorem 5.2 (i¢Z), 2.1 (iv), Theorem 4.1 and Theorem 4.2 instead of

Lemma 1.4, Corollary 1.3, Huw”p < ”u”q Hw”q, (for suitable u and w ),
i i

Lemma 1.5, and Lemma 1.6 of [8] respectively, we obtain Theorem 5.2 above.

5.3. A PARTICULAR CASE. Suppose we choose p > 1 , 9 ZP » and qé

such that
l/qé + 1/qk =1/p, 1 =k=m,
and let
P(u) = |ulF,
9
Q) = lu] ©,
toy g%
Qk(u) hd 'ul s
9%
Rk(u) = [p/qk)lul /p s
and
- qz
Rw) = (o/qg) lul */P .

Then P, Qk, QZ, Rk and ﬁk satisfy conditions (Z), (i7) and (i4%)

in Theorem 5.2. It follows that Theorem 5.2 contains Theorem 2.1 in [§] as

a special case.
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(1

[(21

[3]

£4]

[5]

£é]

71 .

£4]

£91

Grahame Hardy
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