
Bull. Aust. Math. Soc. 81 (2010), 85–95
doi:10.1017/S0004972709000628

LOWER SEMICONTINUITY OF PARAMETRIC
GENERALIZED WEAK VECTOR EQUILIBRIUM

PROBLEMS

SHENG-JIE LI, HUI-MIN LIU and CHUN-RONG CHEN ˛

(Received 3 March 2009)

Abstract

In this paper, using a scalarization method, we obtain sufficient conditions for the lower semicontinuity
and continuity of the solution mapping to a parametric generalized weak vector equilibrium problem with
set-valued mappings.
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1. Introduction

It is well known that the vector equilibrium problem provides a unified model of
several problems, such as the vector optimization problem, the vector variational
inequality problem, the vector complementarity problem and the vector saddle point
problem. In the last two decades, a great deal of research has been devoted to finding
the existence of solutions to vector equilibrium problems in various versions; see, for
example, [5, 10, 21] and the references therein.

Among many desirable properties of the solution sets to vector equilibrium
problems, the stability analysis is of considerable interest. Recently, the
semicontinuity, especially the lower semicontinuity, of the solution mappings to
parametric vector variational inequalities and parametric vector equilibrium problems
has been intensively studied in the literature; example include [1, 2, 6–8, 11–13, 15–
20]. Among those papers, we observe that the scalarization technique is one efficient
approach to deal with the lower semicontinuity and continuity of solution mappings to
parametric vector variational inequalities and parametric vector equilibrium problems.
In [8], by using a scalarization method, Cheng and Zhu first obtained a result on
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the lower semicontinuity of the solution mapping to a finite-dimensional parametric
weak vector variational inequality. By virtue of a density result and scalarization
technique, Gong and Yao [12] first discussed the lower semicontinuity of the set
of efficient solutions to a parametric vector equilibrium problem with vector-valued
mappings. By using the ideas of Cheng and Zhu [8], Gong [11] studied the
continuity of the solution mapping to a parametric weak vector equilibrium problem
with vector-valued mappings. Very recently, based on a scalarization representation
of the solution mapping and a property involving the union of a family of lower
semicontinuous set-valued mappings, Chen et al. [7] have established the lower
semicontinuity and continuity of the solution mapping to a parametric generalized
vector equilibrium problem involving set-valued mappings, and the results obtained
include the corresponding versions in [8, 11] as special cases.

Motivated by the work reported in [7, 8, 11], in this paper, we mainly discuss the
lower semicontinuity of the solution mapping to a parametric generalized weak vector
equilibrium problem (PGWVEP) involving set-valued mappings. By using the ideas
of Chen et al. [7], we analyze the problem (PGWVEP) with a scalarization method and
derive sufficient conditions for the lower semicontinuity and continuity of the solution
mapping to (PGWVEP). Our conclusions are new and also include the corresponding
results in [8, 11] as special cases.

The rest of the paper is organized as follows. In Section 2, we present the problem
(PGWVEP), and recall some concepts of semicontinuity and their some properties. In
Section 3, we discuss the existence, the lower semicontinuity and continuity of the
solution mapping to (PGWVEP), and give examples to illustrate our results.

2. Preliminaries

Throughout this paper, let X and Y be real Hausdorff topological vector spaces,
and let Z be a real topological space. Assume that C is a pointed closed convex cone
in Y with its interior int C 6= ∅. Let Y ∗ be the topological dual space of Y and let
C∗ := { f ∈ Y ∗ | f (y)≥ 0, for all y ∈ C} be the dual cone of C .

Suppose that A is a nonempty subset of X and F : A × A→ 2Y
\ {∅} is a set-valued

mapping. We consider the following generalized weak vector equilibrium problem
(GWVEP) of finding x ∈ A such that

F(x, y) ∩ (Y \ −int C) 6= ∅ ∀y ∈ A.

Note that the existence of solutions to this problem has been investigated in [22]
and the references therein.

When the set A and the mapping F are perturbed by a parameter µ which varies
over a set 3 of Z , we consider the following (PGWVEP) of finding x ∈ A(µ) such
that

F(x, y, µ) ∩ (Y \ −int C) 6= ∅ ∀y ∈ A(µ),

where A :3→ 2X
\ {∅} is a set-valued mapping, F : B × B ×3⊂ X × X × Z→

2Y
\ {∅} is a set-valued mapping with A(3)=

⋃
µ∈3 A(µ)⊂ B.
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For each µ ∈3, let Sw(µ) denote the solution set of (PGWVEP), namely,

Sw(µ)= {x ∈ A(µ) | F(x, y, µ) ∩ (Y \ −int C) 6= ∅, ∀y ∈ A(µ)}.

In this paper, by applying a scalarization method used in [7], we discuss the lower
semicontinuity and continuity of Sw(·) as a set-valued mapping from the set3 into X .

Suppose that 3 and � are Hausdorff topological spaces and G :3→ 2� is a set-
valued mapping with nonempty values.

DEFINITION 2.1 (Aubin and Ekeland [3]).

(i) G is lower semicontinuous (l.s.c.) at λ̄ ∈3 if for any open set Q ⊂� with
G(λ̄) ∩ Q 6= ∅, there exists a neighborhood N (λ̄) of λ̄ such that G(λ) ∩ Q 6= ∅,
for all λ ∈ N (λ̄).

(ii) G is upper semicontinuous (u.s.c.) at λ̄ if for any open set Q ⊂� with
G(λ̄)⊂ Q, there exists a neighborhood N (λ̄) of λ̄ such that G(λ)⊂ Q, for all
λ ∈ N (λ̄).

(iii) G is closed at λ̄ if for each net (λα, xα) ∈ graph(G) := {(λ, x) | λ ∈3, x ∈
G(λ)} with (λα, xα)→ (λ̄, x̄), it yields (λ̄, x̄) ∈ graph(G).

We say that G is l.s.c. (respectively u.s.c., closed) on 3, if it is l.s.c. (respectively
u.s.c., closed) at each λ ∈3. Here G is said to be continuous on 3 if it is both l.s.c.
and u.s.c. on 3.

REMARK 2.2.

(i) In [7], Chen et al. have established the lower semicontinuity and continuity of
the solution mapping to the following parametric generalized vector equilibrium
problem (PGVEP) of finding x ∈ A(µ) such that

F(x, y, µ)⊂ Y \ −int C ∀y ∈ A(µ).

Obviously, the solution set S(µ) of (PGVEP) is included in the solution set
Sw(µ) of (PGWVEP). Example 4.1 of [1] indicates that when Sw(·) is l.s.c.,
S(·) is not l.s.c., while [1, Example 4.2] indicates that when S(·) is l.s.c., Sw(·) is
not l.s.c. Hence, it is necessary to investigate the lower semicontinuity of Sw(·)
to (PGWVEP).

(ii) When F is a vector-valued mapping, the models (PGWVEP) and (PGVEP)
simultaneously reduce to the parametric vector equilibrium problem (PVEP) of
finding x ∈ A(µ) such that

F(x, y, µ) 6∈ −int C ∀y ∈ A(µ).

The results on the lower semicontinuity of the solution mappings to the special
cases of (PVEP) have been obtained in [8, 11]. The scalarization method used
in [7] to deal with the lower semicontinuity of solution mappings is different
from those used in [8, 11], and is also different from other methods used in the
literature, such as [1, 2, 6, 13, 17, 18].
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PROPOSITION 2.3 (Ferro [9]; Aubin and Ekeland [3]).

(i) G is l.s.c. at λ̄ if and only if for any net {λα} ⊂3 with λα→ λ̄ and any x̄ ∈ G(λ̄),
there exists xα ∈ G(λα) such that xα→ x̄ .

(ii) If G has compact values (G(λ) is a compact set for each λ ∈3), then G is u.s.c.
at λ̄ if and only if for any net {λα} ⊂3 with λα→ λ̄ and for any xα ∈ G(λα),
there exist x̄ ∈ G(λ̄) and a subnet {xβ} of {xα}, such that xβ→ x̄ .

The following lemma plays an important role in the proof of the lower
semicontinuity of the solution mapping Sw(·).

LEMMA 2.4 (Berge [4, Theorem 2, p. 114]). The union 0 =
⋃

i∈I 0i of a family of
l.s.c. set-valued mappings 0i from a topological space X into a topological space Y is
also an l.s.c. set-valued mapping from X into Y , where I is an index set.

3. Lower semicontinuity and continuity

For each f ∈ C∗ \ {0} and for each µ ∈3, let S f (µ) denote the set of f -efficient
solutions to (PGWVEP), that is,

S f (µ)= {x ∈ A(µ) | ∀y ∈ A(µ), ∃z ∈ F(x, y, µ), such that f (z)≥ 0};

and let V f denote the set of f -efficient solutions to (GWVEP), namely,

V f = {x ∈ A | ∀y ∈ A, ∃z ∈ F(x, y), such that f (z)≥ 0}.

Before discussing the lower semicontinuity of the solution mapping Sw(·), we first
give a kind of sufficient conditions which ensure that S f (µ) 6= ∅ for all f ∈ C∗ \ {0}
and µ ∈3. For the sake of simplicity of presentation, we first give the sufficient
condition which ensures the existence of solutions of S f without involving the
parameter µ. Now we recall some concepts.

A set-valued mapping E : A→ 2A is called a KKM mapping if co{x1, . . . , xn} ⊂⋃n
i=1 E(xi ) for any finite subset {x1, . . . , xn} of A, where co(D) denotes the convex

hull of the set D.
The set-valued mapping G : A→ 2Y is said to be C-convex on A if for any

x1, x2 ∈ A and λ ∈ [0, 1], λG(x1)+ (1− λ)G(x2)⊂ G(λx1 + (1− λ)x2)+ C .

PROPOSITION 3.1. Suppose that the following conditions are satisfied:

(i) A is a nonempty compact convex set;
(ii) for each y ∈ A, F(·, y) is u.s.c. with nonempty compact values on A;
(iii) F(x, x)⊂ C, for all x ∈ A, and F(x, ·) is C-convex on A.

Then, for each f ∈ C∗ \ {0}, V f 6= ∅.

PROOF. Define M : A→ 2A by

M(y)= {x ∈ A | ∃z ∈ F(x, y), such that f (z)≥ 0} ∀y ∈ A.
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We first prove that for any y ∈ A, M(y) is a closed set. Let xα ∈ M(y) and
xα→ x0. Then x0 ∈ A since A is compact. It follows from xα ∈ M(y) that there
exists zα ∈ F(xα, y) such that

f (zα)≥ 0. (3.1)

Since F(·, y) is u.s.c. at x0 with compact values, there exists z0 ∈ F(x0, y) such that
zα→ z0 (taking a subnet if necessary). It follows from the continuity of f and (3.1)
that f (z0)≥ 0. Thus, x0 ∈ M(y). So M(y) is a closed set. Moreover, since M(y)⊂ A
and A is compact, M(y) is also a compact set.

Next, we show that M is a KKM mapping. Suppose that this is false. Then
there exist a finite subset {y1, . . . , yn} ⊂ A and t1, . . . , tn ≥ 0 with

∑n
i=1 ti = 1

such that z̄ =
∑n

i=1 ti yi 6∈
⋃n

i=1 M(yi ). Then, for each i ∈ {1, 2, . . . , n}, z̄ 6∈ M(yi ),
that is, for all zi ∈ F(z̄, yi ), f (zi ) < 0. Without loss of generality, we can choose
{z1, . . . , zn} such that for j = 1, 2, . . . , n, z j ∈ F(z̄, y j ) and

f (z j ) < 0. (3.2)

From condition (iii), we have

n∑
j=1

t j z j ∈

n∑
j=1

t j F(z̄, y j )⊂ F(z̄, z̄)+ C ⊂ C + C ⊂ C.

By the linearity of f and f ∈ C∗ \ {0}, we obtain

n∑
j=1

t j f (z j )= f

( n∑
j=1

t j z j

)
≥ 0.

On the other hand, it follows from t j ≥ 0, j = 1, 2, . . . , n, with
∑n

j=1 t j = 1 and (3.2)
that

n∑
j=1

t j f (z j ) < 0,

a contradiction. Hence, M is a KKM mapping.
By the well-known Ky Fan lemma (see, for example, [13, Lemma 2.2]), we have⋂
y∈A M(y) 6= ∅. Thus, V f =

⋂
y∈A M(y) 6= ∅. 2

From Proposition 3.1, we have the following existence result readily.

PROPOSITION 3.2. For each µ ∈3, suppose that the following conditions are
satisfied:

(i) A(µ) is a nonempty compact convex set;
(ii) for each y ∈ A(µ), F(·, y, µ) is u.s.c. with nonempty compact values on A(µ);
(iii) F(x, x, µ)⊂ C, for all x ∈ A(µ), and F(x, ·, µ) is C-convex on A(µ).

Then, for each f ∈ C∗ \ {0} and µ ∈3, S f (µ) 6= ∅.
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Now we establish the lower semicontinuity and continuity of Sw(·) to (PGWVEP).
In what follows, we assume that S f (µ) 6= ∅ for all f ∈ C∗ \ {0} and µ ∈3.

LEMMA 3.3. For each µ ∈3, suppose that for each x ∈ Sw(µ), and for all y ∈ A(µ),
there exists a selection z(y) of F(x, y, µ) \ −int C (that is, z(y) ∈ F(x, y, µ) \
−int C), such that

⋃
y∈A(µ) z(y)+ C is a convex set. Then

Sw(µ)=
⋃

f ∈C∗\{0}

S f (µ).

PROOF. ‘⊃’ Let x ∈
⋃

f ∈C∗\{0} S f (µ). Then there exists f ′ ∈ C∗ \ {0} such that

x ∈ S f ′ (µ). Thus, x ∈ A(µ) and for all y ∈ A(µ), there exists z ∈ F(x, y, µ) such that
f ′(z)≥ 0. We deduce that z 6∈ −int C . Otherwise, if z ∈ −int C , then it follows from
f ′ ∈ C∗ \ {0} that f ′(z) < 0, which yields a contradiction. Hence, we obtain that there
exists z ∈ F(x, y, µ) ∩ (Y \ −int C) for all y ∈ A(µ), which shows that x ∈ Sw(µ).

‘⊂’ Let x ∈ Sw(µ). Then, for every y ∈ A(µ), there exists a selection z(y) of
F(x, y, µ) \ −int C , such that

⋃
y∈A(µ) z(y)+ C is a convex set. We have( ⋃

y∈A(µ)

z(y)

)
∩ (−int C)= ∅,

and, hence, ( ⋃
y∈A(µ)

z(y)+ C

)
∩ (−int C)= ∅.

As
⋃

y∈A(µ) z(y)+ C is convex, by the well-known Eidelheit’s separation theorem
(see [14, Theorem 3.16]), there exist a continuous linear functional f ∈ Y ∗ \ {0} and a
real number γ such that

f (ĉ) < γ ≤ f (z + c),

for all z ∈
⋃

y∈A(µ) z(y), c ∈ C and ĉ ∈ −int C . Since C is a cone, we obtain f (ĉ)≤ 0
for all ĉ ∈ −int C . Thus, f (ĉ)≥ 0 for all ĉ ∈ C , that is f ∈ C∗. Moreover, it follows
from c ∈ C , ĉ ∈ −int C and the continuity of f that f (z)≥ 0 for all z ∈

⋃
y∈A(µ) z(y).

Thus, for all y ∈ A(µ), there exists z(y) ∈ F(x, y, µ), such that f (z(y))≥ 0. Hence,
we obtain x ∈ S f (µ)⊂

⋃
f ∈C∗\{0} S f (µ). 2

REMARK 3.4. When F is a vector-valued mapping, the assumption condition of
Lemma 3.3 automatically reduces to that for each x ∈ Sw(µ), F(x, A(µ), µ)+
C =

⋃
y∈A(µ) F(x, y, µ)+ C is a convex set. Clearly, in order to avoid any

information on the solution set Sw(µ), we can strengthen it to that for each x ∈ A(µ),
F(x, A(µ), µ)+ C is a convex set. Thus, Lemma 3.3 reduces to [11, Theorem 2.1].

REMARK 3.5. In [7, Lemma 3.1], in order to obtain a similar scalarization
representation of the solution mapping to (PGVEP), the authors suppose that for each
x ∈ A(µ), F(x, A(µ), µ)+ C =

⋃
y∈A(µ) F(x, y, µ)+ C is a convex set, where F is
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a set-valued mapping. Now we give an example to show that this convexity assumption
is different from the convexity assumption used in Lemma 3.3 of this paper.

EXAMPLE 3.6. Let X = Z = R, Y = R2,3= (0, 1)⊂ R and C = R2
+ := [0,+∞)×

[0,+∞). For each µ ∈ (0, 1), let A(µ)= [0, 1]. For each µ ∈3 and x ∈ A(µ), for
all y ∈ A(µ), let

G(x, y, µ)= {µ(−2, 2), (0,−x − y)},

and

F(x, y, µ) = {(a, b) ∈ R2
| (a, b)= t (c, d)+ (1− t)(1, 0),

t ∈ [0, 1], (c, d) ∈ G(x, y, µ)}.

Then, for each x ∈ A(µ), obviously, F(x, A(µ), µ)+ R2
+ is not a convex

set. However, for every y ∈ A(µ), letting z(y)= (0,−x − y), we have z(y) ∈
F(x, y, µ) \ −int R2

+. It is clear that
⋃

y∈A(µ) z(y)+ R2
+ is a convex set.

Now we state our main result as follows.

THEOREM 3.7. Suppose that the following conditions are satisfied:

(i) A is continuous with nonempty compact values on 3;
(ii) F is u.s.c. with nonempty compact values on B × B ×3;
(iii) F(·, ·, µ) is C-strictly monotone on A(µ)× A(µ) for any given µ ∈3, that is,

for all x, y ∈ A(µ) and x 6= y, F(x, y, µ)+ F(y, x, µ)⊂−int C;
(iv) for eachµ ∈3, for each x ∈ Sw(µ), and for all y ∈ A(µ), there exists a selection

z(y) of F(x, y, µ) \ −int C, such that
⋃

y∈A(µ) z(y)+ C is a convex set.

Then, Sw(·) is l.s.c. on 3.

We remark that the C-strict monotonicity of F in Theorem 3.7 is essential.
Example 3.1 of [7] illustrates this fact, since F is assumed to be single-valued therein.

PROOF. We now prove that for each f ∈ C∗ \ {0}, S f (·) is l.s.c. on 3.
Suppose to the contrary that there exist f ∈ C∗ \ {0} and µ0 ∈3 such that S f (·) is

not l.s.c. at µ0. Then there exist {µα} with µα→ µ0 and x0 ∈ S f (µ0), such that for
any xα ∈ S f (µα), xα 6→ x0.

Since A(·) is l.s.c. at µ0, there exists a net x̄α ∈ A(µα) such that x̄α→ x0. For any
yα ∈ S f (µα), because A(·) is u.s.c. at µ0 with compact values, there exist y0 ∈ A(µ0)

and a subnet {yβ} of {yα} such that yβ→ y0. It follows from x0 ∈ S f (µ0) and
y0 ∈ A(µ0) that there exists z0x ∈ F(x0, y0, µ0) such that

f (z0x )≥ 0. (3.3)

On the other hand, since yβ ∈ S f (µβ) and x̄β ∈ A(µβ), there exists zβ ∈
F(yβ , x̄β , µβ) such that

f (zβ)≥ 0. (3.4)
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Because F(·, ·, ·) is u.s.c. at (y0, x0, µ0) with compact values, there exists z0y ∈

F(y0, x0, µ0) such that zβ→ z0y (taking a subnet if necessary). It follows from the
continuity of f and (3.4) that

f (z0y)≥ 0. (3.5)

By (3.3), (3.5) and the linearity of f , we obtain

f (z0x + z0y)= f (z0x )+ f (z0y)≥ 0. (3.6)

Assume that y0 6= x0. Since F(·, ·, µ0) is C-strictly monotone on A(µ0)× A(µ0),
we have

F(x0, y0, µ0)+ F(y0, x0, µ0)⊂−int C .

Then it follows from f ∈ C∗ \ {0} and z0x + z0y ∈ −int C that

f (z0x + z0y) < 0,

which contradicts (3.6). Therefore, y0 = x0. This contradicts the assumption that
y0 6= x0.

By virtue of condition (iv) and Lemma 3.3, for each µ ∈3, it holds that

Sw(µ)=
⋃

f ∈C∗\{0}

S f (µ).

Since for each f ∈ C∗ \ {0}, S f (·) is l.s.c. on3, in view of Lemma 2.4, we obtain that
Sw(·) is l.s.c. on 3. 2

Furthermore, we point out that under the assumptions of Theorem 3.7, the solution
mapping Sw(·) is both continuous and closed. Thus, Theorem 3.7 is essentially a
sufficient condition for the continuity of the solution mapping Sw(·).

THEOREM 3.8. Suppose that all conditions of Theorem 3.7 are satisfied. Then, Sw(·)
is both continuous and closed on 3.

PROOF. In fact, the upper semicontinuity and closedness of Sw(·) could be directly
implied by [1, Theorem 3.2], without using the C-strict monotonicity and the
convexity assumptions. 2

Motivated by [11, Example 4.1], we give the following example to illustrate
Theorem 3.8.

EXAMPLE 3.9. Let X = Y = R2, Z = R, C = R2
+ and3= (0, 1)⊂ R. For any given

µ ∈ (0, 1), let
A(µ)= {x = (x1, x2) ∈ R2

| x2
1 + x2

2 ≤ µ
2
}.

Note that A(µ)⊂ {x = (x1, x2) ∈ R2
| x2

1 + x2
2 ≤ 1} := B, for all µ ∈3.

Let
F1(x)= (αx1, x2), F2(x)= (x1, x2) ∀x = (x1, x2) ∈ R2,
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where the constant α > 0 is fixed. Define the mappings ϕ : B × B ×3→ R2 and
ψ : B ×3→ R2 by

ϕ(x, y, µ)= (〈µF1(x), y − x〉, 〈µF2(x), y − x〉) ∀x, y ∈ B, µ ∈3,

ψ(x, µ)= µ(x1, x2
2) ∀x = (x1, x2) ∈ B, µ ∈3.

For x = (x1, x2), y = (y1, y2) ∈ A(µ), let

Fv(x, y, µ)= ϕ(x, y, µ)+ ψ(y, µ)− ψ(x, µ) := (a, b),

and

F(x, y, µ)= {(u, v) ∈ R2
| (u, v)= t (a, b)+ (1− t)(−2α − 4,−5), t ∈ [0, 1]},

where Fv : B × B ×3→ R2, F : B × B ×3→ 2R2
and

(a, b)= µ(αx1 y1 − αx2
1 + x2 y2 − x2

2 + y1 − x1, x1 y1 − x2
1 + x2 y2 − 2x2

2 + y2
2).

For all µ ∈3 and x, y ∈ A(µ), we have−2α − 4< a, and−5< b. So, F(x, y, µ)⊂
(a, b)− R2

+.
It follows from [11, Example 4.1] that for each

f ∈ C∗ \ {0}, V f (µ)= {x ∈ A(µ) | f (Fv(x, y, µ))≥ 0 ∀y ∈ A(µ)} 6= ∅.

Obviously, V f (µ)⊂ S f (µ). So, for each f ∈ C∗ \ {0}, S f (µ) 6= ∅.
It is clear that the conditions (i) and (ii) in Theorem 3.7 are satisfied. Now we check

the condition (iii). Clearly,

F(y, x, µ)= {(u, v) ∈ R2
| (u, v)= t (c, d)+ (1− t)(−2α − 4,−5), t ∈ [0, 1]},

where

(c, d)= µ(αx1 y1 − αy2
1 + x2 y2 − y2

2 + x1 − y1, x1 y1 − y2
1 + x2 y2 − 2y2

2 + x2
2).

We also have F(y, x, µ)⊂ (c, d)− R2
+. Thus, for each µ ∈3, for any x, y ∈ A(µ)

and x 6= y,

F(x, y, µ)+ F(y, x, µ) ⊂ (a, b)− R2
+ + (c, d)− R2

+

= µ(2αx1 y1 − αy2
1 − αx2

1 + 2x2 y2 − y2
2 − x2

2 ,

2x1 y1 − x2
1 − y2

1 + 2x2 y2 − y2
2 − x2

2)− R2
+

= µ(−α(x1 − y1)
2
− (x2 − y2)

2,

− (x1 − y1)
2
− (x2 − y2)

2)− R2
+

⊂ −int R2
+ − R2

+

= −int R2
+.

Hence, condition (iii) of Theorem 3.7 holds.
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Since for each x ∈ Sw(µ), we have for all y ∈ A(µ), there is an zy ∈ F(x, y, µ) \
−int R2

+, hence it is clear that (ay, by) ∈ F(x, y, µ) \ −int R2
+, where (ay, by)means

that (a, b) depends on y. Without loss of generality, set z(y)= (ay, by). Thus,
we obtain

⋃
y∈A(µ) z(y)= Fv(x, A(µ), µ). It follows from [11, Example 4.1] that⋃

y∈A(µ) z(y)+ C = Fv(x, A(µ), µ)+ C is a convex set. Thus, condition (iv) of
Theorem 3.7 is also satisfied.

So, all of the conditions of Theorem 3.7 hold. By Theorem 3.8, Sw(·) is continuous
and closed on 3.

When the mapping F is vector-valued, we obtain the following corollary.

COROLLARY 3.10. Suppose that F is a vector-valued mapping and the following
conditions are satisfied:

(i) A is continuous with nonempty compact values on 3;
(ii) F is continuous on B × B ×3;
(iii) F(·, ·, µ) is C-strictly monotone on A(µ)× A(µ) for any given µ ∈3, that is,

for all x, y ∈ A(µ) and x 6= y, F(x, y, µ)+ F(y, x, µ) ∈ −int C;
(iv) for each µ ∈3 and for each x ∈ A(µ), F(x, ·, µ) is C-convexlike on A(µ), that

is, for any x1, x2 ∈ A(µ) and any ρ ∈ [0, 1], there exists x3 ∈ A(µ) such that
ρF(x, x1, µ)+ (1− ρ)F(x, x2, µ) ∈ F(x, x3, µ)+ C.

Then, Sw(·) is both continuous and closed on 3.

PROOF. For each µ ∈3 and for each x ∈ A(µ), since F(x, ·, µ) is C-convexlike on
A(µ), F(x, A(µ), µ)+ C is a convex set. Then it follows from Remark 3.4 and
Theorem 3.8 that the result obviously holds. 2

It is obvious that Corollary 3.10 coincides with [7, Theorem 3.2] if F is a vector-
valued mapping and the closedness of Sw(·) is not considered.

Corollary 3.10 includes and improves [8, Theorem 3.1] and [11, Theorem 4.2 and
Corollary 5.1], respectively, because the uniform compactness of A is not required,
see also [7, Corollaries 3.1 and 3.2].
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