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One of the main challenges in molecular dynamics is overcoming the ‘timescale
barrier’: in many realistic molecular systems, biologically important rare transitions
occur on timescales that are not accessible to direct numerical simulation, even on
the largest or specifically dedicated supercomputers. This article discusses how to
circumvent the timescale barrier by a collection of transfer operator-based techniques
that have emerged from dynamical systems theory, numerical mathematics and ma-
chine learning over the last two decades. We will focus on how transfer operators can
be used to approximate the dynamical behaviour on long timescales, review the intro-
duction of this approach into molecular dynamics, and outline the respective theory,
as well as the algorithmic development, from the early numerics-based methods, via
variational reformulations, to modern data-based techniques utilizing and improving
concepts from machine learning. Furthermore, its relation to rare event simulation
techniques will be explained, revealing a broad equivalence of variational principles
for long-time quantities in molecular dynamics. The article will mainly take a mathe-
matical perspective and will leave the application to real-world molecular systems to
the more than 1000 research articles already written on this subject.
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1. Introduction
Rare but important transition events between long-lived states are a key feature of
many systems arising in physics, chemistry, biology and many other fields, and
particularly in molecular dynamics (MD). MD simulations describe the dynam-
ical behaviour of realistic molecular systems in atomistic resolution. However, in
many realistic molecular systems, biologically important rare transitions occur on
timescales that are not accessible to direct numerical simulation, even on dedicated
supercomputers, and will still remain inaccessible on emerging exascale machines,
with more than 18 orders of magnitude between a typical simulation time step
(∼1 fs = 10−15 s) and slow biologically relevant processes such as protein–ligand or
protein–protein association (101–103 s and beyond). This severely limits the MD-
based analysis of many biological processes: the average waiting time between the
rare transition events of interest is orders of magnitude longer than the timescale of
the transition characterizing the event itself. Therefore, performing direct numer-
ical simulation of the system until a reasonable number of events has been observed
is impractically excessive for most interesting systems. As a consequence of this
timescale barrier, rare event simulation and estimation are among the most chal-
lenging topics in molecular dynamics, despite the fact that MD simulation methods
have seen significant improvement since their inception in the late 1950s. Con-
straints of simulation size and duration that once impeded the field have lessened
with the advent of better theory and algorithms, faster processors and parallel
computing. With newer computational techniques and hardware available, MD
simulations of more biologically relevant timescales can now sample a broader
range of conformational and dynamical changes in realistic molecular systems.
This article discusses how to overcome the timescale barrier in MD by a collec-

tion of techniques that have emerged from dynamical systems theory, numerical
mathematics and machine learning over the last two decades. We will focus
on transfer operator-based approaches to the approximation of dynamical beha-
viour on long timescales, and review its introduction into molecular dynamics and
the respective theory, its algorithmic development from the early numerics-based
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methods to modern data-based techniques utilizing and improving concepts from
machine learning, and its complementation by rare event simulation techniques.
The transfer operator approach to molecular dynamics started with Deuflhard,

Dellnitz, Junge and Schütte (1999), Schütte (1998) and Schütte, Fischer, Huisinga
and Deuflhard (1999), arising from the two main insights that the rare transition
events of importance in MD can be seen as transitions between metastable sets that
can be understood as almost invariant subsets of state space in dynamical systems
theory, and the determination of thesemetastable subsets and the transition between
them from spatially discretized transfer operators. The first component – the idea
of discretizing transfer operators using Ulam’s method – had been known for a
fairly long time already, and its connection to almost invariant sets of dynamical
systems stems from Dellnitz and Junge (1998, 1999), as far as we are aware. The
other component – the relation between metastable subsets and dominant spectral
elements of the transfer operator – was also known already, but in a completely
different and fairly general setting, e.g. in Davies (1982a,b).
Putting these two components together started a growing theme in the molecular

dynamics literature, which had its first peak around the year 2010 with the intro-
duction of Markov state models (MSMs) (Bowman, Pande and Noé 2014) and its
application to many realistic timescale barrier problems in MD, including protein
folding (Chodera, Swope, Pitera and Dill 2006, Noé et al. 2009, Bowman, Volez
and Pande 2011), kinetic fingerprinting and spectroscopic observables (Keller,
Prinz and Noé 2011, Prinz, Keller and Noé 2011), RNA (Huang et al. 2010, Pina-
monti et al. 2017), protein–peptide association (Paul et al. 2017), ligand binding,
rebinding and multivalency (Weber and Fackeldey 2014, Ge and Voelz 2021), as
well as numerical recipes (Pande, Beauchamp and Bowman 2010) and software
implementations (Senne et al. 2012, Scherer et al. 2015, Beauchamp et al. 2011),
to name just a few examples.
Based on the ideas and the theory behind MSMs, the years since 2010 have seen

an enormous activity in extending the transfer operator approach by leaving the
idea of a spatially discretized transfer operator behind in favour of more general
low-dimensional representations via generalized ansatz spaces and variational for-
mulations. The same period saw a recombination of transfer operator-based meth-
ods in molecular dynamics and advanced Koopman operator-based techniques in
dynamical systems theory. This recombination process has led to considerable pro-
gress in both fields, not least because of the insight that many methods developed
in the MD community, such as the variational approach to conformation dynam-
ics (VAC) (Noé and Nüske 2013) or time-lagged independent component analysis
(TICA) (Perez-Hernandez et al. 2013), are equivalent or very similar to methods
such as extended dynamic mode decomposition (EDMD) (Williams, Kevrekidis
and Rowley 2015a) originating in the dynamical systems community; see Klus
et al. (2018b) and Wu et al. (2017) for details of the relations.

During the last ten years it has become ever clearer that there is a large family
of dynamical quantities, such as expected hitting times, (dominant) relaxation
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times, committor functions, moment generating functions, etc., which, although
theoretically computable by solving very high-dimensional linear problems that
involve transfer operators and their generators, admit variational formulations that
can be used to design algorithms that are robust in high dimensions.

In recent years this process has been further enriched bymeans of advanced data-
based approaches which utilize the immense progress in machine learning while
being inspired by the availability of loss functionals originating from the variational
formulations of many problems. Progress has been achieved, for example, by using
kernel-based methods (Williams, Rowley and Kevrekidis 2015b, Schwantes and
Pande 2015, Klus, Bittracher, Schuster and Schütte 2018a), utilizing reproducing
kernel Hilbert spaces (RKHSs) (Klus, Schuster and Muandet 2019b) and deep
learning approaches to molecular kinetics such as VAMPnet (Mardt, Pasquali,
Wu and Noé 2018, Wu and Noé 2020), and their joint software implementation
(Hoffmann et al. 2021). The enormous progress in data-based approaches has
also inspired a variety of new theoretical and algorithmic approaches to the old
problem of finding good reaction coordinates for molecular systems, ranging from
its theoretical underpinning via transfer operators (Bittracher et al. 2018, Bittracher,
Mollenhauer, Koltai and Schütte 2021) to the time-lagged autoencoder approach
(Wehmeyer and Noé 2018) or the learning the effective dynamics (LED) approach
(Vlachas, Zavadlav, Praprotnik and Koumoutsakos 2022) and many others; see
Section 5.5 for more details.
The aim of this article is to review this development in Sections 2–5, mainly

from a mathematical perspective. Section 2 sets the stage and notation and gath-
ers the basics on Markov processes required subsequently. We also introduce the
main kinds of (stochastic) dynamical systems typically considered in molecular
dynamics. Section 3 outlines some of the main theoretical insights, such as the
relation between the dominant spectrum of the transfer operator and long relaxation
and autocorrelation timescales, expected passage times and transition rates from
one metastable set to another, the relation between small exit rates and metastable
sets, optimal metastable decompositions, committor functions, and the effective
dynamics induced by optimal reaction coordinates. Section 4 takes the numerical
perspective and reviews different techniques for finding optimal low-dimensional
representations of the transfer operator by spatial discretization (theory of MSMs)
or Galerkin projections to finite ansatz spaces (projected transfer operators). Fi-
nally, Section 5 adopts the dynamical systems perspective and considers data-based
approaches to transfer/Koopman operators and generators such as EDMD and ex-
tensions, including data-based approaches to finding optimal reaction coordinates.
However, the large body of transfer operator-based theory and algorithms is just

one side of the story regarding rare events in molecular systems. The molecular
dynamics literature on rare event simulations is extremely rich. Since the 1930s,
transition state theory (TST) (Eyring 1935, Wigner 1938) and its extensions based
on reactive flux formalism have provided the main theoretical framework for the
description of transition events. TST is based on partitioning the state space into
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two sets with a dividing surface in between, leaving set � on one side and the
target set � on the other, and the theory only tells us how this surface is crossed
during the reaction. It is often difficult to choose a suitable dividing surface, and a
bad choice will lead to a very poor estimate of the rate. The TST estimate is then
extremely difficult to correct, especially if the rare event is of the diffusive type
where many different reaction channels co-exist. Therefore many techniques have
been proposed that try to go beyond TST.
In recent years, a wide variety of such computational techniques, jointly called

advanced sampling techniques, have been developed to systematically capture and
characterize rare transitions in molecular systems. Most notable among these
techniques are the following.

(1) The well-known family of techniques based on transition path sampling (TPS)
(Bolhuis, Chandler, Dellago and Geissler 2002, Bolhuis and Swenson 2021).

(2) The so-called string methods (Ren and Vanden-Eijnden 2002, Roux 2021) and
optimal path approaches (Beccara, Skrbic, Covino and Faccioli 2012, Faccioli,
Lonardi and Orland 2010, Pinski and Stuart 2010), and variants thereof.

(3) Techniques that follow the progress of the transition through interfaces, such as
forward-flux simulation (FFS) (Allen, Frenkel and Ten Wolde 2006, Hussain
and Haji-Akbari 2020), transition interface sampling (TIS) (Moroni, van Erp
and Bolhuis 2004, Swenson and Bolhuis 2014) and the milestoning techniques
(Faradjian and Elber 2004, Bello-Rivas and Elber 2015, Berezhkovskii and
Szabo 2019).

(4) Methods that drive the molecular system by external forces, with the aim of
making the required transition more frequent while still allowing computation
of the exact rare event statistics for the unforced system, for example based
on Jarzynski’s and Crook’s identity (Jarzynski 1997, Crooks 1999) such as
(adaptive) steered MD (Zhuang, Bureau, Quirk and Hernandez 2021), or via
accelerated molecular dynamics (Hamelberg, Mongan and McCammon 2004,
Yang et al. 2022).

In this article we cannot even attempt to review these methods, all of which
have their merits. Instead we will describe an alternative approach based on
stochastic control techniques that reveals a (dual) variational formulation of the
transfer operator approach to the timescale barrier problem. We explain why the
direct numerical simulation of rare events in molecular simulation (such as protein
folding) is often infeasible. Based on this, we will then explain in Section 6 how
rare event statistics can be efficiently estimated using a combination of ideas from
stochastic analysis, optimal control and statistical mechanics. The approach is
based on the insight that direct rare event simulation mainly suffers from the fact
that the sample variance of an estimator is generally much larger than the quantity
of interest.
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It turns out that a reformulation of the estimation problem by means of a
Legendre-type duality argument offers some insight into how to reduce the sample
variance in rare event simulation by a suitable change of the underlying probability
measure. (Theoretically, it is even possible to obtain a zero variance estimator.)
This reweighting can be seen as an importance sampling in path space, but also,
equivalently, as an optimal control problem forMD. Then, utilizing the well-known
Feynman–Kac theorem, it is shown that theHamilton–Jacobi–Bellman (HJB) equa-
tion related to the optimal control problem is equivalent to a linear equation where
the two equations are related by a logarithmic transformation. Our approach has
some similarities to the adaptive importance sampling techniques developed by
Dupuis, Wang and collaborators (e.g. Dupuis and Wang 2004, 2007), but it is
specifically tailored to simulate rare events far from the asymptotic regime of large
deviations (e.g. far from the limit of vanishing noise or temperature). Understand-
ing these connections opens the door to a rather general insight into connections
and equivalence of different perspectives (optimal reweighting, adaptive import-
ance sampling in path space, optimal stochastic control, linear boundary value
problems: see Theorem 6.22 for details) and their variational formulation which, in
turn, opens the door to utilizing deep learning strategies in rare event simulation.
The theories and algorithms discussed in this article all aim to overcome or

circumvent the timescale gap by a mixture of (i) reformulation of quantities charac-
terizing long timescales in MD as linear problems, (ii) using equivalences of these
linear problems to other, particularly variational formulations, and (iii) designing
efficient algorithms by computing optimal dimension-reduced problems, which
then are solved by means of the data-based approaches where MD simulations are
used to produce the required data.

2. Dynamical systems in molecular dynamics
In this section we will introduce mathematical descriptions of molecular systems
as well as transfer operators and their generators. The key notation is summarized
in Table 2.1.

2.1. Markov processes

The literature describing the dynamical behaviour of molecular systems is ex-
tremely rich: it ranges from classical deterministic Hamiltonian models that try
to cover the actual motion of each single molecule in the system to stochastic de-
scriptions such as Langevin dynamics or iterative schemes such as most Markov
chain Monte Carlo approaches. In this section we will introduce the mathematical
framework that subsumes both stochastic and deterministic approaches.

Basic concept and notation. Consider the state space X ⊂ RN for some N ∈ N
equipped with the Borel f-algebra A on X. The evolution of a single microscopic
system is assumed to be given by a homogeneous Markov process -C = {-C }C ∈T in
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Table 2.1. Overview of the key notation.

-C stochastic process
X ⊂ RN state space
%C transfer operator or Perron–Frobenius operator with lag time C
%C∗ adjoint transfer operator with lag time C
 C Koopman operator with lag time C
L or ! generator of the transfer or Perron–Frobenius operator
L∗ generator of the adjoint transfer operator or Koopman operator
?(C, G, H) or ?C (G, H) transition function of the process -C
Λ(C) eigenvalues of the transfer operator %C
_ eigenvalues of the generator under consideration
` invariant measure
〈·, ·〉` `-weighted inner product
dG(�) hitting time of set � if starting at G
gG(�) exit time from set � if starting at G
g characteristic intermediate lag time
b reaction coordinate
Z = b(X) reaction coordinate space
L likelihood ratio (Radon–Nikodým derivative)

continuous or discrete time T = R or T = N, respectively. We write -0 ∼ ` if the
Markov process -C is initially distributed according to the probability measure `,
i.e. if P[-0 ∈ �] = `(�) for every � ⊂ X. We use -0 = G if -0 ∼ XG , where XG
denotes the Dirac measure centred at G. The motion of -C is given in terms of the
stochastic transition function ? : T × X × B(X)→ [0, 1] according to

?(C, G, �) = P[-B+C ∈ � | -B = G], (2.1)

for every B, C ∈ T, G ∈ X and � ⊂ X. Hence ?(C, G, �) describes the probability
that the system moves from state G into the subset � within time C. The relation
between a stochastic transition function and a homogeneousMarkov process is one-
to-one (Meyn and Tweedie 1993, Chapter 3). In the special case where ?(C, G, �) =
XΦC (G)(�) = 1�(ΦC (G)) with the indicator function 1� of the set �, the Markov
process is in fact a deterministic process, whose evolution is defined by the flow
mapΦC (G) in state space. As well as some more technical properties, the stochastic
transition function fulfils the so-called Chapman–Kolmogorov equation

?(B + C, G, �) =
∫
X
?(C, G, dI) ?(B, I, �), (2.2)

which holds for every B, C ∈ T, G ∈ X and � ⊂ X, and represents the semigroup
property of the Markov process. As a consequence, in the discrete-time case T = N
it suffices to specify ?(G, dH) = ?(1, G, dH).
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We say that the Markov process -C admits an invariant probability measure `,
or ` is invariant with respect to -C if∫

X
?(C, G, �)`(dG) = `(�) (2.3)

for every C ∈ T and � ⊂ X (Meyn and Tweedie 1993, Chapter 10). Note that the
invariant probability measure does not need to be unique.

For a measurable function D : X → R, we denote the expectation value with
respect to the measure ` by

E`(D) =
∫
X
D(G)`(dG).

AMarkov process is called ergodicwith respect to ` if, for all functions D : X→ R
with E`(|D |) < ∞, we have

lim
)→∞

1
)

∫ )

0
D(-C ) dC = E`(D), (2.4)

for almost all initial values -0 = G. Furthermore, the process is called (uniformly)
geometrically ergodic if the convergence in (2.4) exhibits a (uniform) geometric
rate. The integral on the left-hand side of the equation has to be replaced by a sum
if T = N. There are many other definitions of ergodicity; we have chosen the one
that will serve us most in what follows but is not the most general. For an ergodic
process (-C ) we will also consider the temporal correlation between the functions
D, E : X→ R given by

�D,E (C) = E`(E(-C )D(-0)) = lim
)→∞

1
)

∫ )

0
E(-C )D(-0) dC. (2.5)

Other time-related quantities of central interest here are the first hitting time

dG(�) = inf{C ≥ 0: -C ∈ �, -0 = G} (2.6)

of a set � conditioned on the initial state G, and its expectation value

<�(G) = E(dG(�)),

which is often called the mean first passage time, and the exit time

gG(�) = dG(�2) (2.7)

from �, where �2 = X \ � denotes the complement of �.
A Markov process is called reversible with respect to an invariant probability

measure ` if ∫
�

?(C, G, �)`(dG) =
∫
�

?(C, G, �)`(dG) (2.8)

for every C ∈ T and �, � ⊂ X. If ` is unique, -C is simply called reversible. For
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the special case of a stochastic transition function and the invariant measure being
absolutely continuous with respect to the Lebesgue measure, that is, if

?(C, G, �) =
∫
�

?(C, G, H)`(H) dH,

then reversibility reads

`(G) ?(C, G, H) = `(H) ?(C, H, G) (2.9)

for every C ∈ T and a.e. G, H ∈ X.

2.2. Sampling and dynamics

In principle, molecular dynamics aims to define a mathematical model which,
given an exact initial state of the molecular system, describes the true motion of
the molecule under consideration in all necessary detail. However, this is only
true in principle. In fact there are two different concepts of MD. The first concept
introduces different Markov processes (-C ) in order to sample the associated in-
variant measure `. In this sampling concept, we want ergodic Markov processes
such that the long-term simulation of (-C ) allows us to approximate the expectation
value E`(D) of an observable D or similar statistical quantities by means of running
averages

E`(D) ≈ 1
)

∫ )

0
D(-C ) dC. (2.10)

In contrast, the dynamics concept uses specific Markov processes to compute dy-
namical information such as autocorrelation functions or exit times. In this concept,
we build molecular dynamics models that try to incorporate all necessary internal
and external interactions of the molecular system, derive associated forces and
describe the molecular motion by equations of motion resulting from these forces.
This approach normally utilizes classical mechanics and leads to deterministic
Hamiltonian systems. The corresponding initial value problem is thought to model
the evolution of the state of a single, isolated molecular system. If, however, we
consider non-isolated molecular systems that interact with a macroscopic envir-
onment (heat bath), the Hamiltonian system model is no longer appropriate, and
several extensions or stochastic models are considered instead. We will discuss
some of these mathematical models, but start with an introduction to molecular
interactions and forces underlying the Hamiltonian model.

Molecular forces, energy landscape, canonical ensemble. Let# denote the number
of atoms of the molecular system and let Γ = RN , N = 3# , denote the position
space, that is, @ = (@1, . . . , @3# ) ∈ Γ represents the vector of atomic position
coordinates, where A 9 = (@3( 9−1)+1, . . . , @3 9) ∈ R3 is the vector of the Euclidean
coordinates of atom 9 such that we can also write @ = (A1, . . . , A# ). Here the atoms
of the water molecules surrounding the molecule of interest have to be included.
Let b ∈ R3# denote the vector of all conjugated momenta. The differentiable
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potential energy function + : R3# → R that is intended to describe all interactions
between the atoms in themolecular system is traditionally split into 1-atom, 2-atom,
3-atom, . . . forces, and often has the following form:

+(@) =
∑

(8, 9)∈�
+�(|A8 − A 9 |) +

∑
(8, 9 ,:)∈�

+�(q(A8 , A 9 , A:))

+
∑

(8, 9 ,:,;)∈�
+�(\(A8 , A 9 , A: , A;)) +

#∑
8, 9=1

+�(|A8 − A 9 |)

+
#∑
8, 9=1

+LJ(|A8 − A 9 |).

Here � is the set of all (8, 9) such that atoms 8 and 9 are connected by a covalent
bond, and +� is the associated potential describing the forces related to the bond,
(8, 9 , :) ∈ �means that atom 9 has covalent bonds to 8 and : that form a bond angle
q(A8 , A 9 , A:) which enters into the bond angle potential +�, +� models the dihedral
angle interaction between four neighbouring atoms connected by covalent bonds,
+� is the electrostatic interaction in the form of the Coulomb potential, and +LJ
is the Lennard-Jones interaction. Additional potentials such as the hydrogen bond
interaction potentials may be added. There is an extensive literature on the way
these potentials are determined experimentally or modelled theoretically.
For many molecular systems (in particular for biomolecular ones) the resulting

energy landscape has a rich spatial multiscale structure. That is, there is a huge
number of local minima and saddle points (the number is estimated to grow com-
binatorically with the number of atoms of the system), but the minima are grouped
into a rather small number of deep wells in the energy landscape that are separated
by high energy barriers or extended energy plateaus (Wales 2005).
Since we are working with Euclidean coordinates, the Hamiltonian of the system

giving its total energy is simply given by

�(@, b) =
1
2
b>"−1b ++(@), (2.11)

where " denotes the diagonal mass matrix of the system.
The forces � acting on the atoms in the molecular system result from the gradient

of the potential, i.e. �(@) = −∇@+(@). According to the form of the potential just
described, these forces do not incorporate the thermodynamic interaction of the
molecular system with some external heat bath that surrounds the system. They
describe the internal interaction forces within the molecular system only, that is,
the above potential energy function describes an isolated molecular system.
In many cases – e.g. in all biologically relevant cases – we are not interested in

isolated systems but rather in systems in contact with a (macroscopic) heat bath
that defines the temperature of the system. According to statistical mechanics, a
molecular system in equilibrium contact with a heat bath of temperature T (with
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constant volume and without exchange of particles) generates a probability density
function on the state space that is known as the canonical density or canonical
ensemble

`(G) ∝ exp(−V�(G))

for some constant V = 1/(:�T ) > 0 that can be interpreted as the inverse temper-
ature, where :� is Boltzmann’s constant. The associated measure `(dG) ∝ `(G) dG
is called the canonical measure.

Hamiltonian dynamics. The most fundamental model for the dynamical behaviour
of molecular systems exploits classical Hamiltonian mechanics, that is, atoms are
described as mass points subject to forces that are generated by the interaction
potentials + outlined above. The dynamical behaviour is described by some de-
terministic Hamiltonian system of the form

¤@ = "−1b, ¤b = −∇@ +(@), (2.12)

defined on the state space X = R3# × R3# , where " again denotes the diagonal
mass matrix.
Equation (2.12) models an energetically closed, i.e. isolated system, whose total

energy, given by the Hamiltonian �, is preserved under the dynamics. For the sake
of simplicity, we assume in what follows that " is the identity matrix.

Let ΦC denote the flow associated with the Hamiltonian system (2.12), that is,
the solution GC for the initial value G0 is given by GC = ΦCG0, where we denote the
states by G = (@, b). Let 1� denote the characteristic function of the subset � ⊂ X.
Then the stochastic transition function corresponding to (2.12) is given by

?(C, G, �) = 1�(ΦCG) = XΦC G(�) (2.13)

for every C ∈ R+0 and � ⊂ X. The Markov process -C = {-C }C ∈R+0 induced by the
stochastic transition function ? coincides with the flow ΦC . Hence -C = ΦCG0 for
the initial distribution -0 = G0.

One traditional aspect of molecular dynamics is the construction of extended
Hamiltonian systems that allow for sampling the canonical ensemble by means of
long-term simulation. Several concepts have been discussed that all boil down
to the idea of constructing a Hamiltonian system in some extended state space
X̂, whose projection onto the lower-dimensional state space X of positions and
momenta allows us to generate such a sampling. One of the most prominent
examples is defined in terms of the Nosé Hamiltonian

�Nosé(@, b, B, c) =
1

2B2 b
>b ++(@)︸             ︷︷             ︸

=�B(@, b )

+ 1
2&

c2 + 1
V

log B,

where B is called the thermostat with conjugate momentum c and associated arti-
ficial mass &. Let the flow of the associated Nosé Hamiltonian system be denoted
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by ΨC and let Π denote the projection (@, b, B, c) ↦→ (@, b). If ΨC is ergodic with
respect to the microcanonical measure on the associated energy cell of �Nosé, then
ΠΨC is ergodic with respect to the canonical measure `(dG) ∝ exp(−V�B=1(G)) dG,
where G = (@, b) (Bond, Benedict and Leimkuhler 1999).

Langevin molecular dynamics. The most popular model for an open system having
stochastic interactionwith its environment is the so-called Langevin system (Risken
1996)

¤@ = b, ¤b = −∇@ +(@) − W b + f ¤,C , (2.14)

defined on the state space X = R6# . Here W > 0 denotes some friction constant
and �ext = f ¤,C the external forcing given by a 3#-dimensional Brownian motion
,C . The external stochastic force is assumed to model the influence of the heat
bath surrounding the molecular system. In this case the internal energy given
by the Hamiltonian �, as defined in (2.11), is not preserved, but the interplay
between stochastic excitation and damping balances the internal energy. Under
appropriate conditions on the potential + (see Mattingly, Stuart and Higham 2002
for details) that prevent the process from being explosive, the Langevin process
is geometrically ergodic and the canonical measure `(dG) ∝ exp(−V�(G)) dG with
G = (@, b) is its unique invariant measure if the noise and damping constants satisfy

V =
2W
f2 (2.15)

(see Risken 1996). The Langevin process does not satisfy the standard detailed
balance condition but (under some growth conditions on + : see Hérau, Hitrik and
Sjöstrand 2008) instead satisfies the following extended detailed balance condition:

`(G) ?(C, G, H) = `('H) ?(C, 'H, 'G), (2.16)

with '(@, b) = (@,−b).

Diffusive molecular dynamics. Diffusive molecular dynamics can be understood
as an approximation to the Langevin model in the limit of high friction W →∞; see
Huisinga (2001) and Schütte and Huisinga (2000) for details. While the Langevin
model gives a description of molecular motion in terms of positions and momenta
of all atoms in the system, the diffusion model is stated in the position space
only. Moreover, in contrast to the Langevin equation it defines a reversibleMarkov
process that is given by the equation

W ¤@ = −∇@+(@) + f ¤,C . (2.17)

The stochastic differential equation (2.17) defines a continuous-time Markov pro-
cess&C on the state spaceX = Γ ⊆ R3# with states G = @ with invariant probability
measure `(@) = /−1 exp(−V+(@)) (Risken 1996), where V = 2W/f2. It is known
that under weak conditions on the potential function + the Markov process is
ergodic and reversible (Huisinga 2001, Mattingly et al. 2002).
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Obviously, the diffusion model cannot be expected to model all details of mo-
lecular motion, but it samples the required statistical distribution correctly. Never-
theless, it has a long history of use as a simple toolkit for investigating the dynamical
behaviour in complicated energy landscapes (Chandler 1998).
In the literature, a more general form of diffusion molecular dynamics is some-

times considered:

¤@ = −V�(@)∇@+(@) + ∇ · �(@) +
√

2�1/2(@) ¤,C , (2.18)

where � denotes the position-dependent diffusion tensor, and for which we again
have `(@) = /−1 exp(−V+(@)).

Markov chain Monte Carlo. Markov chain Monte Carlo (MCMC) techniques are
designed to sample a given probability density, particularly in high-dimensional
state spaces. MCMC is an iterative realization of a specific Markov chain, whose
stochastic transition function is given by

?(G, dH) = @(G, H)`(dH) + A(G)XG(dH). (2.19)

That is, the stochastic transition function is composed of a transition kernel @(G, H),
which is assumed to be `-integrable, and a rejection probability

A(G) = 1 −
∫
-

@(G, H)`(dH) ≥ 0.

In almost all situations, the transition kernel @ is chosen in such a way that the
stochastic transition function is reversible with respect to `.
As an illustrative example, assume that we want to sample the canonical density

`(G) ∝ exp(−V+). Since we know diffusion molecular dynamics ¤G = −∇G+(G) +
f ¤, to be ergodic with respect to ` if 2/f2 = V, we consider its time discretization
using the Euler–Maruyama discretization with step size ΔC:

G:+1 = G: − ΔC∇+(G:) + f
√
ΔC Z: , (2.20)

where the Z: denote independent standard normally distributed random variables.
Although resulting from a consistent first-order time discretization of diffusion mo-
lecular dynamics, the resulting Markov chain (G:):=1,2,... will generally not have `
as its invariant density. Instead we use the absolutely continuous transition function
?̃(G, H) associated with (2.20) as the so-called proposal step in the following sense.
A Markov chain (-:) is determined by the following transition rule: at -: at time
: we first determine

/:+1 = -: − ΔC∇+(-:) + f
√
ΔCZ: .

However, we take this to be the next state, that is, we set -:+1 = /:+1, with so-called
acceptance probability

A = 0(-: , /:+1) = min(1, exp(V(+(-:) −+(/:+1))),

and with probability 1 − A we set -:+1 = -: . The resulting transition function
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?(G, dH) is of the following form:

?(G, dH) = ?̃(G, H) · 0(G, H) · dH + A(G)XG(dH),

where A(G) =
∫
?̃(G, H) · 0(G, H) · dH is the total rejection probability in G. Therefore

it is of the form (2.19). The resulting Markov chain is ergodic with respect to
its invariant density ` as long as the potential satisfies some essential growth
conditions; see Bou-Rabee and Vanden-Eijnden (2010).

In general, MCMC is an artificial dynamical model that is not intended to model
the dynamics of the molecular system but is just used to sample the canonical
measure. However, there are MCMC methods, such as the popular hybrid Monte
Carlo (HMC) method, which can be understood as a special realization of the
Hamiltonian system with randomized momenta.

2.3. Fokker–Planck equations, transfer operators, and generators

First we consider the diffusive molecular dynamics Markov process (-C ) given
by W ¤-C = −∇+(-C ) + f ¤,C . The transition function of this process is absolutely
continuous with respect to the Lebesgue measure, i.e. ?(C, G, dH) = ?(C, G, H) dH.
The evolution

EC (G) = %CE0(G) =
∫

?(C, H, G) E0(H) dH (2.21)

of a function E0 in time C under the process is given by the Kolmogorov forward
equation (Risken 1996),

mCEC = LDiffEC , EC=0 = E0, (2.22)

with the differential operator

LDiff =
f2

2W2Δ +
1
W
∇+(G) · ∇ + 1

W
Δ+(G),

such that the semigroup defined by (2.21) can be formally written as

%CE0 = exp(CLDiff)E0,

defining a Markov operator %C : !1 → !1. It is often advantageous to consider
the evolution of EC (G) = DC (G)`(G) weighted with the invariant measure `(G) ∝
exp(−V+(G)), i.e. to look at the evolution of DC instead of EC . Then the evolution
equation takes the form

DC (G) = %CD0(G) =
1
`(G)

∫
?(C, H, G) D0(H) `(H) dH, (2.23)

defining the Markov operator %C : !1(`)→ !1(`) or, using Hölder’s inequality, in
the Hilbert space !2(`) ⊂ !1(`). Next we introduce the inner product

〈D, E〉` =
∫
X
D(G)E(G)`(dG), (2.24)
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weighted by the invariant measure `(G) ∝ exp(−V+(G)). This bilinear form can be
seen as the inner product of the Hilbert space !2(`) or as the duality bracket of
!1(`) and !∞(`), respectively. The adjoint operator %C∗ of the propagator %C of the
semigroup (2.23) with respect to 〈·, ·〉` then has the form

%C∗D(G) =
∫

?(C, G, H)D(H) dH = EG [D(-C )] = E(D(-C ) | -0 = G). (2.25)

The evolution equation associated with DC = %C∗D0 reads

mCDC = !DiffDC , (2.26)

where, for twice differentiable functions DC , the generator has the form

!Diff =
f2

2W2Δ −
1
W
∇+(G) · ∇,

such that formally %C∗ = exp(C!Diff). Equations (2.22) and (2.26), respectively, are
called the Fokker–Planck equations of diffusive molecular dynamics. For W = 1
and V = 2/f2, !Diff can also be expressed in the following compact form:

!Diff D =
1
V
4V+∇ · (4−V+∇D). (2.27)

For the case of Langevin molecular dynamics process (-C ) = (@C , bC ), the trans-
ition function is again absolutely continuous with respect to the Lebesgue measure,
and the literature gives the Kolmogorov forward equation

mCEC = LLanEC , EC=0 = E0,

with the differential operator

LLan =
f2

2
Δb − b · ∇@ + ∇@+ · ∇b + Wb · ∇b + W,

and the Fokker–Planck equation can again be considered weighted according to the
invariant measure `(G) = `(@, b) ∝ exp(−V(b>b/2 + +(@))) in the same form as
above. Then the weighted evolution equation for (2.23) again reads mCDC = !LanDC ,
this time with

!Lan D =

(
f2

2
Δ? − ? · ∇@ + ∇@+ · ∇? − W? · ∇?

)
D.

We consider more general stochastic differential equations of the form

d-C = 1(-C ) dC + f(-C ) d,C , (2.28)

using the ‘infinitesimal’ notation in parallel to the more traditional ODE-inspired
notation ¤GC = 1(GC ) + f(GC ) ¤,C . Here 1 : X → X is the drift term, f : X → RN×B
the state-dependent diffusion term and,C an B-dimensional Wiener process. The
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generator is given by

L 5 = −
N∑
8=1

m(18 5 )
mG8

+ 1
2

N∑
8=1

N∑
9=1

m2(08 9 5 )
mG8 mG 9

(2.29)

and its adjoint generator (with respect to the standard !2 inner product) by

! 5 = 1 · ∇G 5 +
1
2
0 : ∇2

G 5 =

N∑
8=1

18
m 5

mG8
+ 1

2

N∑
8=1

N∑
9=1
08 9

m2 5

mG8 mG 9
. (2.30)

Here 0 = ff> and ∇2
G denotes the Hessian.

2.3.1. Transfer operators
For Langevin and diffusion molecular dynamics, the `-weighted evolution semi-
groups (2.23) are governed by the respective Fokker–Planck equations and define
transfer operators %C in !A (`) for 1 ≤ A < ∞ which admit strong generators !Diff
and !Lan such that the transfer operators can be written as

%C = exp(C!Diff) and %C = exp(C!Lan),

respectively. The definition (2.23) of the transfer operator can be repeated for all
Markov processes in the following slightly more general form.

Definition 2.1 (transfer operators and adjoints). For the Markov process (-C )
with transition function ?(C, ·, ·) and unique invariant measure `, the transfer op-
erator %C : !A (`) → !A (`), with A = 1, 2, is given by its action on `-measurable
subsets � ⊂ X: ∫

�

(%CD)(G)`(dG) =
∫
X
?(C, H, �)D(H)`(dH). (2.31)

We denote the adjoint operator by %C∗D(G) = EG [-C (G)]. For deterministic processes
with flow map ΦC , the transfer operator is given by the Perron–Frobenius operator∫

�

%CD(G)`(dG) =
∫
Φ−C (�)

D(G)`(dG)

and its adjoint by the Koopman operator  CD(G) = %C∗D(G) = D(ΦCG).

Remark 2.2 (Koopman and Perron–Frobenius operators). Different commun-
ities use different naming conventions. For example, %C is called the ‘transfer
operator’ in parts of the stochastic community in order to contrast it to the ‘Perron–
Frobenius operator’ for deterministic systems. In turn, the dynamical systems
community tends to call both  CD(G) = D(ΦCG) and %C∗D(G) = EG [-C (G)] the
‘(stochastic) Koopman operator’, although the name was originally used only for
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the adjoint transfer operator for deterministic systems. We will use the name that is
mostly used in the respective context, that is, we will mainly use the phrase ‘transfer
operator’ throughout Sections 2, 3 and 4 and switch to ‘Koopman operator’ and
‘Perron–Frobenius operator’ in Section 5.

Remark 2.3 (Hamiltonian dynamics). For Hamiltonian dynamics, the Perron–
Frobenius operator has the simple form %CD(G) = D(Φ−CG).

Depending on the context, the different transfer operators are considered on the
Hilbert spaces !2

1/`(X) and !2
`(X), or on the Banach spaces !1 or !1(`). They are

still well-defined non-expansive operators on these spaces.

2.3.2. Pathwise quantities
We can also consider pathwise quantities such as the non-probabilistic (i.e. not
probability-conserving) semigroup

%C5 6(G) = E
[
6(-C ) exp

(
−

∫ C

0
5 (-B, B) dB

) ���� -0 = G

]
, (2.32)

for a lower-bounded function 5 where the expectation is taken over the realizations
of the process (-B)0≤B≤C for fixed initial condition -0 = G.

Now, let (-C ) denote the diffusive or Langevin molecular dynamics process with
generator ! = !Diff or ! = !Lan, respectively. Then the Feynman–Kac theorem
tells us that D(G, C) = %C

5
6(G) is the solution of

mCD(G, C) = !D(G, C) − 5 (G, C)D(G, C), D(G, 0) = 6(G). (2.33)

In a similar fashion, in potential theory we consider the so-called potential q
associated with two real-valued functions 2 and 6 on state space, a set � and its
complement �2 = X \ �,

q(G) = E
[∫ d

0
2(-C ) dC + 6(-d)1d<∞

���� -0 = G

]
, (2.34)

where d = dG(�2) is the hitting time of the complement of �. There are some
restrictions to the choice of �. For example, for processes with T = R and
continuous paths, the process is stopped on the boundary m� of �, i.e. -d ∈ m�,
such that � should be an open set with ‘nice’ boundary. The functions 2 and 6 are
regarded as cost functions, so that

∫ d
0 2(-C ) dC is the cost for ‘wandering around’ in

�, while 6(-d) is the final cost when the process hits �2 at the boundary m�, and
the potential q can be interpreted as an expected total cost.
Wewill come back to the cost interpretation of the potential in Section 6. For now

we just emphasize that many interesting quantities can be formulated in terms of
potentials (Doob 1984), and we will restrict our attention to the mean first passage
time. To this end, first consider a set �, choose � = �2 so that �2 = �, and set
2 = 1, the constant function, and 6 = 0. Then the potential q takes the following
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form (Doob 1984):

q(G) = E
[∫ dG (�)

0
2(-C ) dC

]
= E[dG(�)] = <�(G).

One of the main insights of potential theory is that the potential can be determined
as the solution of a linear boundary value problem (Doob 1984),

!q = −2 in �, (2.35)
q = 6 in �2 ,

if a solution exists. In the continuous-time case, that is, for T = R (diffusive
or Langevin molecular dynamics), ! denotes the the generator of the underlying
Markov process. If T = N we set ! = % − Id, where % is the one-step transfer
operator associated with the process. When considering the mean first hitting time
<� of a set � with the above choices for �, 6 and 2, we get

!<� = −1 in �2 , (2.36)
<� = 0 in �. (2.37)

3. Statistical mechanics of slow processes
3.1. Dominant timescales, rare events and metastability

In this section wewill outline the theory behind the transfer operator approach: how
the dominant spectral elements of transfer operators may be used to characterize
the longest relaxation timescales of the Markov process under consideration, how
these spectral elements are related to metastable sets as well as large exit and hitting
times, how the rare transition processes between the main metastable sets can be
described, and how ‘good’ reaction coordinates can be characterized and related to
the effective dynamics of the respective molecular system.

3.1.1. Properties of transfer operators
The transfer operator %C as defined in (2.31) is a Markov operator in !1(`), that is,
%C conserves norm, ‖%CE‖A ,` = ‖E‖A ,` for A = 1, 2, and positivity, %CE ≥ 0 if
E ≥ 0. That is, %CE0 describes the transport of the function E0 in time by the
underlying dynamics given by -C and weighted relative to `. The spectrum of %C
is contained in the unit circle of the complex plane, i.e. spec(%C ) ⊂ �1(0) ⊂ C. As
a consequence of the invariance of `, the characteristic function 1X of the entire
state space is invariant under the action of %C , that is,

%C1X = 1X,

that is, Λ0 = 1 always is an eigenvalue. Whenever T = R the Chapman–
Kolmogorov property of the transition functions makes the family {%C }C ∈R a con-
tinuous semigroup. For special processes, the associated (infinitesimal) generators
have already been discussed above; the general case is given next.
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Definition 3.1. For the semigroup of propagators %C : !A (`) → !A (`) with 1 ≤
A ≤ ∞, define D(!) as the set of all E ∈ !A (`) such that the strong limit

!E = lim
C→∞

%CE − E
C

exists. Then the operator ! : D(!) → !A (`) is called the infinitesimal generator
corresponding to the semigroup %C (Karatzas and Shreve 1991, Lasota andMackey
1994).

This definition has consequences in general that we have already used above for
special cases.

(1) The extension of ! to !2(`) satisfies %C = exp(C!) in !2(`); its largest eigen-
value is _ = 0.

(2) The function 1 ∈ !2(`) represents the invariant measure and satisfies !1 = 0.
(3) An eigenvalue Λ(C) of %C is related to an eigenvalue _ of ! via

Λ(C) = exp(C_), (3.1)

and the associated eigenfunctions are identical.

Reversibility and self-adjointness. Transfer operators %C associated with reversible
Markov processes are of particular interest since they possess additional structure
on the Hilbert space !2(`). Such propagators will be called reversible too. A
reversible %C is `-symmetric and, under some technical conditions, self-adjoint
with respect to the inner product 〈·, ·〉` in !2(`). Thus the eigenvalues of %C are
real-valued such that spec(%C ) ⊂ [−1, 1] and the generator ! is self-adjoint too,
and its spectrum is contained in (−∞, 0]. This is true for (the reversible Markov
process related to) diffusive molecular dynamics, but not for Langevin molecular
dynamics!
The Langevin molecular dynamics process does not satisfy the standard detailed

balance condition but instead the extended detailed balance condition (2.16). There-
fore the operator (RD)(G) = D('G) with '(@, b) = (@,−b) satisfies R%C∗ = %CR.
That is, with the bilinear form on !2(`) defined by 〈D, E〉' = 〈RD, E〉`, we get

〈D, %CE〉' = 〈%CD, E〉',

that is, an extended reversibility of the Langevin transfer operator %C in the asso-
ciated Hilbert space !2(R). As we will see later, this property implies that the
leading eigenvalues of %C in !2(`) are also real-valued in most cases of interest in
molecular dynamics.

3.1.2. Dominant eigenmodes and implied timescales
Self-adjoint transfer operators. Let us first consider the simple case of a reversible
process with a compact transfer operator %C . Then classical results tell us the
following about the spectral decomposition of %C .
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Theorem 3.2 (spectral decomposition of self-adjoint transfer operators). Let
the transfer operator %C be self-adjoint and compact in !2(`). Then there is
a countable, monotonically decreasing sequence of real-valued eigenvalues 1 =

Λ0 ≥ Λ1(C) ≥ Λ2(C) ≥ · · · with repetitions due to multiplicity, and associated
eigenfunctions D8 ∈ !2(`) such that %CD8 = Λ8(C)D8 and 〈D8 , D 9〉` = X8 9 , such that
%C exhibits the spectral decomposition

%C =

∞∑
8=0
Λ8(C)〈D8 , ·〉`D8 .

Whenever %C possesses an associated generator ! such that %C = exp(C!), then
its eigenvalues _8 are real-valued and non-positive starting with _0 = 0, and

%C =

∞∑
8=0

exp(C_8)〈D8 , ·〉`D8 . (3.2)

That is, the longest timescales exhibited by the evolution governed by %C are induced
by the dominant eigenvalues and satisfy

)8 =
1
|_8 |

= − C

log(Λ8(C))
. (3.3)

This implies important relations for some dynamical quantities. For example, the
time correlation �D,E (C) of functions D and E, as defined in (2.5), is of the form

� 5 ,6(C) = 〈%C∗6, 5 〉` =
∞∑
8=0

exp(C_8)〈D8 , 6〉`〈D8 , 5 〉`,

showing that the dominant timescales )8 belong to the slowest temporal auto-
correlations or relaxations in the system.
If %C is not compact, the spectrum may be composed of discrete (isolated eigen-

values) and continuous parts. If the < + 1 leading spectral elements are isolated
eigenvalues 1 = Λ0 ≥ Λ1(C) ≥ · · · ≥ Λ<(C), Λ8(C) = exp(C_8), then the rest of
the spectrum is contained in [0, 4−CA ] with |_< | < A ≤ |_<+1 |, and the spectral
decomposition reads

%C =

<∑
8=0

exp(C_8)〈D8 , ·〉`D8 + � C , ‖� C ‖2 ≤ 4−CA . (3.4)

Thus the leading implied timescales from (3.3) would still be the dominant time-
scales of %C .

Non-self-adjoint transfer operators. For non-reversible processeswe have to switch
to singular values instead of eigenvalues. For a compact transfer operator % = %C
for some time C we have the following. Consider % : � → �, in general for two
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separable Hilbert spaces � and �. There exists a singular value decomposition
(SVD) given by

% =
∑
8∈�

B8 〈D8 , ·〉� E8 , (3.5)

where � is either a finite or a countably infinite ordered index set, {D8 , 8 ∈ �} ⊂ �
and {E8 , 8 ∈ �} ⊂ � are two orthonormal systems, and {B8 , 8 ∈ �} ⊂ R+ is the
set of singular values. As for the eigendecomposition, the sequence {B8} is a null
sequence if � is not finite. Without loss of generality, we assume the singular values
of compact operators are sorted in decreasing order, i.e. B8 ≥ B8+1. The following
theorem from Mollenhauer and Koltai (2020) gives the relation of the SVD to
eigenvalues.

Theorem 3.3 (singular value decomposition of compact transfer operators).
Let � and � be two separable Hilbert spaces, let % : � → � be compact and %∗
its adjoint. Let {_8 , 8 ∈ �} denote the set of non-zero eigenvalues of %∗% counted
with their multiplicities and {D8} the corresponding normalized eigenfunctions of
%∗%. Then, with E8 = Λ−1/2%D8 , the singular value decomposition of % is given by

% =
∑
8∈�

Λ
1/2
8
〈D8 , ·〉� E8 , (3.6)

where 〈·, ·〉� denotes the inner product of �.

For the situation of interest here, we have � = � = !2(`), and the implied
dominant timescales of the process associated with %C have to be defined by

)8 = −
2C

log(Λ8(C))
,

where Λ8(C) denotes the 8th eigenvalue of %C∗%C .

Existence of dominant eigenvalues. The existence of dominant eigenvalues re-
quires that the essential/continuous part of the spectrum is bounded away from the
dominant elements of the discrete spectrum. For the sake of simplicity, let us fix a
time C and consider the transfer operator % = %C in the Hilbert space !2(`); for the
case of !1

`, see Huisinga (2001). In order to allow for at least one discrete, isolated
eigenvalue we need the essential spectral radius Aess of %, i.e. the minimal radius of
a circle in the complex plane around Λ = 0 that contains the essential spectrum, to
be strictly bounded away from the largest eigenvalues. Moreover, we needΛ = 1 to
be the only eigenvalue on the unit circle since we want uniqueness of the invariant
measure. This leads to the following two conditions on the transfer operator %.

(C1) The essential spectral radius of % is less than one, i.e. Aess(%) < 1.
(C2) The eigenvalue Λ = 1 of % is simple and dominant, i.e. [ ∈ spec(%) with

|[ | = 1 implies [ = 1.
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For diffusivemolecular dynamics, for example, (C1) and (C2) are satisfiedwhenever
the potential energy+ grows to infinity for G →∞ and we can have an even stronger
statement (Zhang, Li and Schütte 2022).

Theorem 3.4 (discrete spectrum for diffusive molecular dynamics). Let the
energy function + ∈ �2(X) satisfy the growth conditions lim inf

G→∞
+(G) = ∞ and

lim
G→∞
|∇+ |(G) = ∞, lim inf

G→∞
((1 − X)V |∇+(G)|2 − Δ+(G)) > 0 (3.7)

for some X ∈ (0, 1). Then the spectrum of !Diff in !2(`) is discrete with isolated
eigenvalues _ ∈ (−∞, 0].

In general, if % is self-adjoint, it satisfies conditions (C1) and (C2) in !2(`)
if its stochastic transition function is geometrically or V-uniformly ergodic; more
precisely, there is an n > 0 such that the spec(%) ∩ (1 − n, 1] is a finite set and
Λ = 1 is a simple eigenvalue. For non-reversible transfer operators, the statement
is not true in general; for sufficient conditions see Huisinga (2001, Section 6) or
Mattingly et al. (2002), Kontoyiannis andMeyn (2012, 2003) and Down, Meyn and
Tweedie (1995). However, ergodicity may be difficult or even infeasible to check
in practice. Therefore we consider the Lebesgue decomposition of the stochastic
transition function

?(G, dH) = ?0(G, H)`(dH) + ?B(G, dH),

where ?0 and ?B, respectively, represent the absolutely continuous and singular
parts with respect to `. Assume that
(A1) the inequality ∫

X

∫
X
?0(G, H)2`(dG)`(dH) < ∞

holds, and
(A2) there exists some [ < 1 such that

[ = sup ?B(G,X) = 1 − inf
∫
X
?0(G, H)`(dH) for `-a.e. G ∈ X.

Then the essential spectrum is uniformly bounded away from 1 and condition (C1)
is fulfilled. That is, if the invariant measure ` is absolutely continuous with respect
to the Lebesgue measure as for the canonical ensemble, for example, then the
essential spectral radius Aess(%) is strictly bounded away from one if the singular
part ?B is bounded away from one and the absolutely continuous part ?0 does
not grow too fast at infinity. This implies the following conclusions. For the
special case of a deterministic Hamiltonian system, the absolutely continuous part
?0 vanishes such that Aess(%) = 1. Then, for the case of Langevin or diffusion
molecular dynamics with smooth potentials, the singular part vanishes and the
validity of condition (C1) only depends on the growth of ?0 at infinity, which can
be controlled by appropriate growth conditions on the potential energy + .
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So, as the essential result of this discussion, let us summarize that under appro-
priate growth conditions on + , the transfer operators for Langevin and diffusion
molecular dynamics will satisfy conditions (C1) and (C2) but the conditions are
not satisfied for deterministic Hamiltonian systems, for which the essential spectral
radius is one. More detailed analysis of the latter case reveals that the transfer
operator is even unitary in !2(`); see Schütte (1998) for details.

3.1.3. Dominant eigenvalues, metastable sets and large exit times
As we have seen, the dominant eigenvalues of the transfer operator are directly
related to the dominant relaxation timescales of the dynamics. In molecular dy-
namics, these timescales are often caused by the existence of metastable sets. The
intuitive concept of metastable sets is based on two properties: (i) if the process
starts in the set, it is likely to take a long time to get out (large exit time), and (ii)
once the process has escaped, it is likely to return only after a long time.

Theoretical approaches to metastability. Metastability has been studied from dif-
ferent perspectives and with fairly diverse theoretical tools: quite early on, E. B.
Davies provided the following insight into the relation between metastable sets
and low-lying eigenvalues of the generator of a reversible Markov process (Davies
1982b, Theorem 6).

Theorem 3.5 (two dominant eigenvalues induce two metastable sets). Let ! be
the generator of a reversible Markov process with leading eigenvalues 0 = _0 > _1
and spec(!) ⊂ {_0, _1} ∪ [−1,−∞) in !2(`), and let D1 denote the normalized
eigenfunction associatedwith_1. Then there is aBorel set" ⊂ Xwith complement
"2 = X \ " such that, possibly by replacing D1 with −D1,



D1 −

(√
`("2)
`(")

1" −

√
`(")
`("2)

1"2

)




2,`
≤ 4|_1 |1/2.

This theorem (along with its generalizations to more than two dominant eigen-
values, also discussed in Davies 1982b) seems to indicate that the following two
‘rules’ hold.

(R1) Dominant eigenvalues and timescales are related to the most important meta-
stable sets.

(R2) Dominant eigenfunctions are almost constant on these most important meta-
stable sets.

However, Davies himself states that ‘one of the difficulties . . . is that the partition
into " and "2 is not unique but only more and more nearly so as _1 tends to
zero’. There is a large variety of articles that aim to describe the metastable
sets in a more precise way and also to ‘justify’ rules (R1) and (R2). In this
respect a crucial role was played by large-deviation tools inherited from Wentzell
and Freidlin in their reduction procedure from continuous stochastic processes
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to finite configuration-space Markov chains with exponentially small transition
rates (Freidlin and Wentzell 1998), in particular for small noise; see Olivieri
and Vares (2005). The relation between the spectrum of the transfer operator
or generator of the stochastic process and metastability has been studied from
different perspectives and linked to molecular dynamics; see Schütte (1998) and
Huisinga, Meyn and Schütte (2004). Then, using potential-theoretic rather than
large-deviation tools, Bovier, Eckhoff, Gayrard andKlein developed a set of general
techniques to compute sharp asymptotics of the expected value of asymptotic
exponential laws associated with the metastability phenomenon and revisited the
relation between the spectrum of the generator of the stochastic dynamics and
metastability (Bovier, Eckhoff, Gayrard and Klein 2002a,b, Bovier, Gayrard and
Klein 2002c, Bovier and Den Hollander 2016). The potential-theoretic approach
also led to the so-called martingale approach, which replaces the characterization
of metastability with one expressed only in terms of the capacities that can be
estimated using the Dirichlet and Thomson variational principles; see Beltran and
Landim (2010, 2013). Many other theoretical concepts have been developed, for
instance the notion of quasi-stationary distributions within a metastable set for
the continuous state space Markov process to parametrize the exit event from the
sets (Di Gesu, Lelièvre, Peutrec and Nectoux 2016). A measure a� is called the
quasi-stationary distribution (QSD) induced by the process (-C ) in the set � if, for
all measurable � ⊂ �,

a�(�) =

∫
�
PG(-C ∈ �, C < gG(�))a�(dG)∫
�
PG(C < gG(�))a�(dG)

. (3.8)

Thus, if the initial state -0 ∈ � is distributed according to a� , then, under the
condition that the process does not exit from � in [0, C], (-C ) still has law a� ,
which explains the name ‘quasi-equilibrium distribution’. For diffusive molecular
dynamics the QSD is absolutely continuous, a�(dG) = E�(G)`(dG), for sets � with
smooth boundary m�, and its density E� satisfies

!Diff E� = _̃0E� on �, (3.9)
E� = 0 on m�,

where _̃0 is the largest (negative) eigenvalue of !Diff with Dirichlet boundary
conditions on m�. The expected exit time E[g(�)] from � scales like 1/|_̃0 |.
Moreover, the equilibration time within� towards the QSD scales like 1/(_̃0− _̃1),
where _̃1 < 0 is the second largest eigenvalue of !Diff with Dirichlet boundary
conditions on m�. Thus, in the QSD approach, the set � is called metastable if
1/|_̃0 | � 1/(_̃0 − _̃1).

Metastability in molecular dynamics. In MD, especially in biomolecular systems,
transitions between metastable sets seem to be the main cause of the longest
timescales in the system, and these timescales are often approximately given by the

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 541

implied timescales )8 induced by the dominant eigenvalues. In fact, there are at
least two different concepts for relating dominant eigenvalues and metastable sets.

• Dominant eigenvalues are related to large exit times from the dominant meta-
stable sets (or the associated very small exit rates) or, analogously, large
hitting times of a certain metastable set if starting in another.
• Dominant eigenvalues (and the associated eigenfunctions) are related to the
optimal decomposition of the process’s state space into metastable sets.

The underlying idea is most easily explained for diffusive molecular dynamics via
Kramer’s rule (Berglund 2013). The energy landscape+ contains some deep wells
that are separated by other wells by high energy barriers; for an overview regarding
energy landscapes and their multiscale structure, see Wales (2003) and Röder and
Wales (2022). When starting deep within one of these deep wells, the expected
hitting time d of another of the deep wells scales with the energy barrier Δ+ like

E[d] � exp
(

2Δ+
f2

)
as f → 0, (3.10)

where � means asymptotic equivalence, limf→0 f
2E[d] = 2Δ+ . Moreover, E[d]

is related to the corresponding dominant eigenvalue _ < 0 of the generator ! of the
process by

|_ | � 1
E[d] as f → 0.

That is, the longest timescales result from the metastability of the deepest wells
in the energy landscape. In what follows, we will also see that the eigenfunctions
related to the dominant eigenvalues are ‘almost constant’ within the main wells.

Example 3.6 (illustration for diffusive molecular dynamics). Figure 3.1 gives
an illustration of the diffusive molecular dynamics process (2.17) with parameters
W = 1, f =

√
2n and n = 0.25 for the three-well potential

+(G) =
1

400
(G6 − 30G4 + 238G2 + 56G + 100), (3.11)

and a rugged potential with three main wells but several additional smaller wells
in and between them (see Figure 3.1(a,d)). We observe that for both potentials the
three main wells lead to three dominant eigenvalues 0 = _1 > _2 > _3 � _4 of
the associated generator !Diff , and the second and third eigenfunctions are almost
constant within the core segments of the main wells. For the rugged potential the
additional smaller wells lead to larger eigenvalues _4, . . . , _6 that are still separated
by a spectral gap from the three dominant ones.

Needless to say, not all metastable effects are caused by energy barriers, since
there are also other strong dynamic separation phenomena not associated with en-
ergy barriers, the most prominent often called entropic barriers; see Example 3.21
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(a) (b) (c)

(d) (e) (f)

Figure 3.1. (a,d) Three-well potential (a) and rugged three-well potential (d).
(b,e) Eigenvalues of the generator of the diffusive molecular dynamics process for
W = 1, f =

√
2n and n = 0.25 for the three-well potential (b) and rugged three-well

potential (e). (c,f) Second (blue, solid) and third (red, dashed) eigenfunctions for
the three-well potential (c) and rugged three-well potential (f). For both potentials,
the third eigenfunction has a sign change close to the only zero of the second
eigenfunction for G ≈ −2. The results are based on high-accuracy finite element
discretizations of !Diff .

for an illustration. But even then the above ‘rules’ (R1) and (R2) seem valid in
most cases by far.

Example 3.7 (Langevin dynamics). Let us now consider the Langevin molecu-
lar dynamics model (2.14) with potential energy landscape + and f =

√
2W. This

process is not reversible, so we would normally utilize the singular value decom-
position as detailed in Theorem 3.3, and we cannot expect the dominant eigenvalues
of %C aside from Λ0 = 1 to be real-valued. In cases where the dominant eigen-
values have imaginary parts, we have to deal with almost periodic behaviour and
cyclic probabilistic flows as discussed in Banisch, Conrad and Schütte (2015) and
Conrad, Weber and Schütte (2015). However, as we will see, it is quite often the
case that the dominant eigenvalues of are real-valued. To this end, we consider the
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(a) (b)

(c) (d)

Figure 3.2. Eigenvalues (imaginary part versus real part) of the transfer operator
%g with g = 1 for Langevin molecular dynamics (3.13) with V = 2 for an energy
landscape with three wells with varying values of the friction coefficient: (a) W =
0.01, (b) W = 0.16, (c) W = 1.0 and (d) W = 4.0. For details concerning the
underlying computations, see Huisinga (2001).

case f = 1 and W = 1 in (2.14) with energy landscape + given by the three-well
potential (3.11). For g = 1, the leading eigenvalues of the associated Langevin
transfer operator %g are given by

Λ0 = 1.000, Λ1 = 0.970, Λ2 = 0.950, Λ3 = 0.440, . . .

That is, we still observe that the leading eigenvalues are real-valued (despite the
non-reversibility of the process) and that the three wells in the energy landscape
result in three dominant eigenvalues with a significant gap after the third.
Figure 3.2 shows that the spectrum of the non-self-adjoint Langevin transfer

operator %g does not in fact lie on the real line but exhibits real and imaginary
components. For different values of W and f =

√
2W (leading to V = 2 and

therefore always the same invariant measure), we observe that for small values of
W the spectrum is spread all over the unit disc, while it concentrates ever more on
the interval [0, 1] for larger values of W. This reflects the fact that the Langevin
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process is similar to the deterministic Hamiltonian system for W ≈ 0 (Freidlin and
Wentzell 1998), while its dominant eigenvalues and eigenfunctions converge to
those of diffusive molecular dynamics for large W → ∞ and constant V = 2W/f2;
see Schütte and Sarich (2014, Theorem 7).

Next we will present some rigorous results that illustrate the relation between the
dominant eigenvalues and exit times and metastable decompositions. In order to
reduce technicalities, we will do this for reversible processes and, where possible,
without lengthy technical constructions for Langevin molecular dynamics.

Dominant eigenvalues and hitting times for small noise
We will now see how hitting times can be used to characterize the transition
times between deep wells in an energy landscape and, in turn, are associated
with the dominant eigenvalues of the associated transfer operator or its generator,
respectively. We will consider the small noise case for diffusive and Langevin
molecular dynamics. When noise is small, the transitions from one well into the
others are rare events, and the basins of the wells are intuitively metastable sets
of the dynamics. To make this more precise, we will compute explicit asymptotic
expressions for the hitting time of the bottom of one well if the process is started
at the bottom of another well. For the multi-dimensional situation we need some
additional quantities and some technical assumption on + . For any disjoint sets
�, � ⊂ X, define the height of the saddle between � and � by

+̂(�, �) = inf
W∈P(�,�)

sup
C ∈[0,1]

+(W(C)),

where P(�, �) denotes the set of all continuous paths W in X with W(0) ∈ �

and W(1) ∈ �. Based on that, define the set of minimal points on these paths,
G(�, �) = {I ∈ X : +(I) = +̂(�, �)}. Moreover, we let Pmin(�, �) denote the set
of minimal paths from � to �,

Pmin(�, �) =
{
W ∈ %(�, �) : sup

C ∈[0,1]
+(W(C)) = +̂(�, �)

}
,

and we let ((�, �) denote the set of saddle points as the maximal subset of G(�, �)
such that for every G ∈ ((�, �) there is a minimal path W ∈ Pmin(�, �) that goes
through G.

Let the potential + be sufficiently smooth and satisfy appropriate growth con-
ditions (see Theorem 3.4). Moreover, assume that + has finitely many min-
ima G ∈ M = {G0, . . . , G<}, and that for every minimum G ∈ M and any set
" ⊂M \ {G} of other minima, the set of saddle points (({G}, ") contains exactly
one point of minimal energy,

(({G}, ") = {I(G, ")}.
Further, assume that the Hessian of + in the minima G8 as well as in the saddle
points I(G, ") has only non-zero eigenvalues such that det(∇2+) does not vanish
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in the minima or in the saddle points. Finally, define the depth of the well around
the minimum G ∈ M regarding transitions to other minima from " ⊂ M with
G ∉ " as

Δ(G, ") = +(I(G, ")) −+(G).

Moreover, let � 9 denote a ball of radius n around theminimum G 9 , set (: =
⋃:
9=0 � 9 ,

and assume that n is sufficiently small that dist(I(G, "), (:) > 0, and that theminima
can be ordered, G0, . . . , G<, such that the wells around the minima have different
and decreasing depths:

Δ(G: , ":−1) < min
8<:

Δ(G8 , ": \ {G8}), : = 1, 2, . . . ,

where ": = {G0, . . . , G: }.
Diffusive molecular dynamics. First let us consider the diffusive molecular dy-
namics model (2.17) with potential energy landscape + , and choose W = 1 and
f =
√

2n ,
¤GC = −∇+(GC ) +

√
2n ¤,C ,

Then the hitting times from oneminimum to the other and the dominant eigenvalues
of the associated generator !Diff = nΔG − ∇G+(@) · ∇G are connected and given by
the following theorem Bovier et al. (2002c).

Theorem 3.8 (exponentially small eigenvalues for small noise diffusive MD).
Under the assumptions made above on the potential, its minima and saddle points,
there are = exponentially small eigenvalues _0 = 0 > _1 > · · · > _< of !Diff , and
there is a X > 0 such that for all : = 1, . . . , < we have

_: = −
1

E(dG: ((:−1))
(
1 +$

(
4−X/n

))
(3.12)

= −� exp
(
−1
n
Δ(G: , ":−1)

)(
1 +$

(
n1/2 | log n |

))
,

where dG: ((:−1) is the hitting time of (:−1 starting at G: and the prefactor is
given by

� =
|[ |
2c

√
| det(∇2+(G:))|√

| det(∇2+(I(G: , ":−1)))|
,

where [ denotes the unique negative eigenvalue of the Hessian ∇2+ of + at the
saddle point I(G: , ":−1).

Remark 3.9 (Kramer’s rule). For a two-well potential, equation (3.12) is identical
to Kramer’s rule as given in (3.10) for f =

√
2n .

Langevin dynamics. Let us now consider the Langevin molecular dynamics model
(2.14) with potential energy landscape + , and choose f =

√
2Wn ,

¤G = b, ¤b = −∇G +(G) − W b +
√

2Wn ¤,C , (3.13)
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with states (G, b), and the !2
`-generator

!!0= = nW Δb − b · ∇G + ∇G+ · ∇b − W b · ∇b .

A rigorous statement about the fact that the dominant eigenvalues of the Langevin
process are real-valued for small noise is given in the following theorem for small
n > 0 in (3.13); see Hérau, Hitrik and Sjöstrand (2010).

Theorem 3.10 (exponentially small eigenvalues of Langevin generator). Under
the exact above conditions on the potential, its minima G0, . . . , G<, their enu-
meration and saddle points, there is an n∗ > 0 such that for all 0 < n < n∗ there are
exactly < + 1 exponentially small eigenvalues _0 = 0 > _1 > · · · > _< of !!0=,
and for all : = 1, . . . , < we have

_: = −� exp
(

1
n
Δ(G: , ":−1)

)
(1 +$(n)),

where the prefactor is given by

� =
|a: |
c

√
| det(∇2

G+(G:))|√
| det(∇2

G+(I(G: , ":−1)))|
and a: denotes the unique negative eigenvalue of the block matrix(

0 Id
�: WId

)
.

Here �: denotes the Hessian of + at the saddle point I(G: , ":−1). A statement
similar to (3.12) regarding the relation between the _: and the hitting times for
starting in one well and hitting another is also available, but technically more
involved.

Limitations. While these results show the relation between dominant eigenvalues
and deep wells, they have two main disadvantages in the context of MD.

(1) The small noise case corresponds to the case that the average energy per atom
is smaller than the main energy barriers, which is true for the main wells of the
energy landscape but not for the very large number of small wells contained
within each of the deep wells.

(2) These results do not characterize the basin of attraction around a particular
minimum in which the process remains for long periods of time. Specifically
we are interested in the basin of attraction of ‘all’ minima within one of the
main wells.

The next approach allows us to characterize these basins of attraction and does
not depend on a small noise assumption.
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Dominant eigenvalues and small exit rates
We consider the asymptotic decay of the conditional distribution of exit times
gG(�) = dG(�2) from a set �,

�G(B, C) = P(gG(�) ≥ B + C | gG(�) ≥ C)

for B, C ≥ 0. �G(B, C) describes the tail of the distribution for which the exit time
is larger than the so-called waiting time C. If asymptotically �G(B, C) ∝ exp(−ΓB)
for C → ∞ then the decay rate is said to be equal to Γ; see Donsker and Varadhan
(1975). When aiming at a definition of decay rates for sets, there is one main
problem: we have to expect the decay rate to depend on the starting point, i.e.
Γ = ΓG . As is shown in Huisinga et al. (2004) and Schütte, Huisinga and Meyn
(2003), there are specific sets for which this is the case.
To this end, for the diffusive molecular dynamics process with a potential satisfy-

ing appropriate growth conditions such that theMarkov process (-C ) isV-uniformly
ergodic, we consider the non-probabilistic semigroup

) C�6(G) = EG [6(-C )1(gG(�) > C)], 6 ∈ !∞. (3.14)

Then the ergodicity assumption implies that ) C
�
has a unique largest eigenvalue

[() C
�

) that asymptotically decays exponentially in C such that the limit

A = lim
B→∞

[() B�)1/B

exists. Then the exit rate Γ(�) from the set � is defined as

Γ(�) = − log A.

With these preparations, the following statement holds (Huisinga et al. 2004,
Schütte et al. 2003); see also Pinsky (1985) and Bris, Lelièvre, Luskin and Perez
(2012).

Theorem 3.11 (metastable sets and associated exit rates for diffusiveMD). Let
us assume there exists a twice continuously differentiable eigenfunction E : X→ R
of the generator !Diff with eigenvalue _ < 0 such that

!Diff E = _ E, (3.15)

and the set " is an open connected set such that

(i) E(G) > 0 or E(G) < 0 for all G ∈ " ,

(ii) E(G) = 0 and (∇E(G))>(∇E(G)) > 0 for G ∈ m" .

Then the exit rate of this set " is Γ(") = −_, and the conditional distribution
of exit times �G(B, C) from " decays asymptotically exponentially with decay rate
Γ = Γ("), independent of G ∈ " . Moreover, for all open connected true subsets
� ⊂ " we have Γ(�) > Γ(").

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


548 C. Schütte, S. Klus and C. Hartmann

That is, the positive and negative components of the dominant eigenfunctions
determine themetastable sets with the smallest exit rates. Moreover, they allow for a
hierarchical decomposition of the state space into such metastable sets: the positive
and negative components of the first eigenfunction E1 yield a decomposition into
metastable sets with smaller exit rates than the second eigenfunction E2, and so on.

Limitations. This characterization of metastable decompositions of the state space
does not require any small noise assumptions, and thus gives us relationships
between the dominant eigenvalues and the metastable sets as basins of attraction of
the main wells. However, sets are characterized by the zeros of the eigenfunctions,
i.e. by objects that are notoriously ill-conditioned when it comes to numerical
computations.
The next approach advances the concept of metastable decompositions by mak-

ing it independent of the zeros of the eigenfunctions by reformulating it as an
optimization problem.

Metastable decompositions and transition probabilities
The transition probability of the Markov process (-C ) between two sets � and � is
given by

?(C, �, �) =
1

`(�)
P` [-C ∈ � | -0 ∈ �] . (3.16)

It can be expressed directly in terms of the associated transfer operator %C :

?(C, �, �) =
〈%C1�, 1�〉`
〈1�, 1�〉`

=
〈1�, %C∗1�〉`
〈1�, 1�〉`

. (3.17)

Every decomposition D of the state space into < + 1 disjoint sets �0, . . . , �<
induces an (<+1)× (<+1) transition matrix T with entries T8 9 = ?(C, �8 , � 9) with
non-negative entries and row-sums equal to 1, i.e. a stochastic matrix. Intuitively,
a metastable decomposition, i.e. one where every set �8 is metastable, should be
strongly diagonally dominant or, more precisely, the diagonal entries should be
close to 1 and the off-diagonal ones very small. This should be true at least for
metastability timescales C that are not too small and not too large.

Therefore we fix a timescale g and assume that it satisfies the constraints

g0 � g � min
8=1,...,<

)8 , (3.18)

where g0 denotes the fastest timescale of the process (-C ) and )8 the implied
timescales related to the dominant eigenvalues as defined in (3.3). Furthermore,
let % = %g denote the associated transfer operator, and ?(�, �) = ?(g, �, �) the
transition probabilities.
Then each decomposition D = {�0, . . . , �<} has a metastability index

"(D) = ?(�0, �0) + · · · + ?(�<, �<)

that should be close to < + 1 if the decomposition is metastable.
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Equation (3.17) allows us to give a mathematical statement relating dominant
eigenvalues, the corresponding eigenfunctions and a decomposition D of the state
space into subsets (Huisinga and Schmidt 2002).

Theorem 3.12 (metastable decompositions of state space). Assume that % is a
self-adjoint transfer operator with < + 1 dominant eigenvalues, i.e. with spectrum
of the form spec(%) ⊂ [0, 1] ∪ {Λ<} ∪ · · · ∪ {Λ1} ∪ {1} with −1 < 0 ≤ 1 <

Λ< ≤ · · · ≤ Λ0 = 1 and isolated, not necessarily simple eigenvalues Λ8 of finite
multiplicity that are counted according to multiplicity, and denote by D<, . . . , D1, 1
the corresponding eigenfunctions, normalized to ‖D: ‖2 = 1. Consider the decom-
position D = {�0, . . . , �<}, and let & be the orthogonal projection of !2(`) onto
span{1�0 , . . . , 1�<}. Then the metastability index of D can be bounded by

1 + ^1Λ1 + · · · + ^<Λ< + 2 ≤ "(D) ≤ 1 + Λ1 + · · · + Λ<, (3.19)

where ^ 9 = ‖&D 9 ‖2!2(`) with & denoting the orthogonal projection with respect to
〈·, ·〉` onto span{1�0 , . . . , 1�<}, and 2 = 0 (1 − ^1) · · · (1 − ^=).

This result highlights the strong relation between a decomposition of the state
space intometastable subsets and dominant eigenvalues close to 1. Due to (3.18) the
dominant eigenvaluesΛ8 are all very close to 1, and the upper bound 1+Λ1+· · ·+Λ<
is very close to < + 1. Equation (3.19) states that the metastability of an arbit-
rary decomposition D cannot be larger than 1 + Λ1 + · · · + Λ<, while it is at
least 1 + ^1Λ1 + · · · + ^<Λ< + 2, which is close to the upper bound whenever the
dominant eigenfunctions D1, . . . , D< are almost constant on the metastable subsets
�0, . . . , �<, implying ^ 9 ≈ 1 and 2 ≈ 0. The term 2 can be interpreted as a cor-
rection that is small whenever 0 ≈ 0 or ^ 9 ≈ 1. Huisinga and Schmidt (2002) have
demonstrated that the lower and upper bounds are sharp and asymptotically exact.
The above statement ‘the dominant eigenfunctions are almost constant on the

metastable sets’ is in fact valid in many cases of importance in MD. We will reflect
on the reasons for this in the next section. However, in the transition regions
around the interface of one metastable set and the next, the eigenfunctions will
not be constant but may exhibit sharp gradients. This does not affect ^ 9 ≈ 1
because the invariant measure is very small in these transition regions. However, it
tells us that the metastability index will not change much if the boundary between
two metastable sets is changed somewhat within the associated transition region.
That is, finding the optimal metastable decomposition, i.e. the one that maximizes
"(D), is again an ill-conditioned problem.

Limitations. The characterization ofmetastable decompositions by transition prob-
abilities is different from the other characterizations because it is not based on a
pathwise concept, that is, the process might exit from the set and return during time
g and this excursion would still count as metastability. Nevertheless, the approach
via transition probabilities has been most influential regarding the utilization of
metastability in molecular dynamics, as it was the basis of Markov state models
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(MSMs), one of the most prominent computational approaches for understanding
the long-term behaviour of biomolecular systems; see Section 4.2.3.

3.2. Committor functions and fuzzy metastable states

3.2.1. Committor functions
The committor function (Metzner, Schütte and Vanden-Eijnden 2006, 2009b), as-
sociated with a pair of disjoint sets � and �, is the probability of hitting � next if
starting at G, i.e. the probability that the process (-C ), started at G, hits � before �.
In terms of the hitting times of the two sets, this can be expressed as

@��(G) = PG(dG(�) < dG(�)), � ∩ � = ∅. (3.20)

Obviously, the committor function is mainly of interest if the two hitting times
dG(�) and dG(�) are almost surely finite, for example in the case of an ergodic
process with an invariant measure ` with `(�), `(�) > 0.

Committor functions can be considered as a special case of the potential q
introduced in (2.34). This can be seen if we assume P(gG(�) < ∞) = 1, set
� = X \ (� ∪ �) such that �2 = � ∪ �, 2 = 0 and choose 5 = 1�, the indicator
function of the set �. Putting this into (2.34), we arrive at

q(G) = E[1�(-gG (�∪�))] = P(-gG (�∪�) ∈ �)
= P(gG(�) < gG(�)) = @��(G).

Since we know that the potential q is given by the linear equation (2.35), we
therefore also know that the committor function satisfies

!@�� = 0 in X \ (� ∪ �), (3.21)
@�� = 0 in �,
@�� = 1 in �,

where ! denotes the generator of the process under consideration.

Forward and backward committor. The function @�� defined above is often also
called the forward committor @+

��
= @��. Analogously, we can ask for the

probability @−
��

(G) that the process observed at G came last from � and not from �.
That is, @+

��
refers to hitting set � next and @−

��
refers to coming last from set �.

Therefore we define the last exit time of a set � = �, �, g−G (�) = inf{C > 0: -−C ∈
�}, conditioned on -0 = G, and get

@−��(G) = PG(g−G (�) < g−G (�)).

The backward committor is defined in terms of the process (-C ) reversed, i.e.
backwards in time. Whenever we assume reversibility of (-C ), then the process
forward in time is indistinguishable from the reversed process. Thus, under the
assumption of reversibility, we find that

@−��(G) = PG(g−G (�) < g−G (�)) = PG(dG(�) < dG(�)) = 1 − @+��(G).
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Definition via single states. From the definition it is not clearwhether the committor
function really depends on the whole sets � and � or whether it can be expressed in
more general formwith single states instead of sets. Lu and Vanden-Eijnden (2014)
answered the question for the case of diffusive molecular dynamics where (3.21)
contains the generator ! = !Diff , i.e. a drift-diffusion operator, and the process is
reversible. In this case one may define a function \0,1 : X→ (−∞,∞), defined as
the unique solution of (Lu and Vanden-Eijnden 2014)

!Diff \0,1(G) =
g

`(G)
(X(G − 0) − X(G − 1)), (3.22)

where 0, 1 ∈ X, 0 ≠ 1, are two arbitrary states, and g > 0 an arbitrary time
introduced solely for dimensional consistency. That is, \0,1 satisfies !Diff \0,1 = 0
in X \ {0, 1}. By choosing two arbitrary real numbers \� < \� and setting
� = {G ∈ X, \0,1(G) ≤ \�} and � = {G ∈ X, \0,1(G) ≥ \�}, we find that the
(forward) committor @�� of � and � satisfies

@��(G) =
\01(G) − \�
\� − \�

, G ∈ X \ (� ∪ �). (3.23)

This representation comes in handy in many cases where it is not clear which
sets � and � to choose. Lu and Vanden-Eijnden (2014) also discussed how this
construction can be generalized to Langevin molecular dynamics.

Partition of unity. Assume several disjoint sets �1, . . . , �< ⊂ X are given that do
not form a decomposition of state space but represent, for example, the cores of the
main wells in the energy landscape. Then we define the committors @1, . . . , @< by

@8(G) = @�8 ,�8 (G) = PG(dG(�8) < dG(�8)), �8 =
⋃

9=1,...,<
9≠8

�8 , (3.24)

that is, the probability of starting at G and hitting �8 before any other � 9 , 9 ≠ 8.
By construction, this family of committors forms a non-negative partition of unity,
that is, for all G ∈ X we have

<∑
9=1
@8(G) = 1, @8(G) ≥ 0 for all 8 = 1, . . . , <.

This partition is very useful for several constructions that we will discuss later.

Importance in theory. There are several additional characterizations of the commit-
tor function. Perhaps the most prominent theoretical example is that the committor
satisfies a variational principle, since it is the unique minimizer of the so-called
Dirichlet form of the process and is deeply related to its stochastic capacity in
the potential-theoretic approach to metastability (Bovier and Den Hollander 2016,
Bianchi and Gaudillière 2016).

Importance for MD. The committor is the key quantity of what is called transition
path theory (TPT) in the literature. As we will see below in more detail, it allows
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us to give a characterization of the dominant transition pathways and a measure
of how much they contribute to the overall transition rate between the sets � and
�. The TPT framework was developed by Vanden-Eijnden and coworkers in the
context of diffusions (E and Vanden-Eijnden 2004, 2006, Metzner et al. 2006, E
and Vanden-Eijnden 2010), generalized to discrete state spaces in Metzner et al.
(2009b) and Metzner (2007), and applied to molecular systems, e.g. in Noé et al.
(2009). Subsequently it was studied as a suitable reaction coordinate, in particular
for protein folding (Krivov 2018). In Lu and Vanden-Eijnden (2014), based on the
representation (3.23), it is even presented as the optimal reaction coordinate; see
Section 3.3.2 for more details.
Before we go into details of the TPT framework and reaction coordinates, let us

first discuss the relation between committor functions between metastable sets, and
dominant eigenfunctions of the transfer operator.

3.2.2. Committors and dominant eigenfunctions
Let us first consider the case of a process with two main metastable sets with
disjoint cores �1 and �2 and a (non-empty) transition region ) = X \ (�1 ∪ �2) in
between. Let us denote the invariant measure of the sets by `8 = `(�8). Then the
two associated committors @1 and @2 as defined in (3.24) satisfy @1+@2 = 1, and we
denote @1 = @ and @2 = 1−@. Furthermore, assume that the process is reversible. In
this situation, the transfer operator typically has two dominant eigenvalues, Λ0 = 1
and Λ1 < 1, with eigenfunctions 1 and D1 such that 〈1, D1〉` = 0 and 〈D1, D1〉` = 1.
Nowwe assume that these two committors are contained in the dominant eigenspace
of the transfer operator, that is, there are real-valued coefficients U, V such that
@ = U1 + VD1. These coefficients can be computed based on the properties of the
committor (= 1 on �1, = 0 on �2) (see Roux 2022 for details), which leads to

@ ≈ `11 − √`1`2 D1 and D1 ≈ −
√
`2
`1

1�1 +
√
`1
`2

1�2 , (3.25)

where the approximation quality is given by Theorem 3.5.
This rough computation illustrates the deep relation between committor functions

and dominant eigenfunctions in the presence of strong metastability, i.e. for energy
landscapes dominated by deep wells. In order to make this more precise, let us
again consider the case of some core sets �1, . . . , �< with smooth boundaries, and
the committor functions {@1, . . . , @<} defined by (3.24). To understand whether
the dominant eigenfunctions can be written approximately as linear combination
of the committor functions, we introduce the orthogonal projection & : !2(`) →
span{@1, . . . , @<} with respect to 〈·, ·〉`, that is,

&E =

=∑
:, 9=1

((−1): 9 〈@: , E〉` @ 9 , with (: 9 = 〈@: , @ 9〉` .
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Moreover, let ! denote the generator associated with a reversible process (-C ), e.g.
the diffusive molecular dynamics process. Then the following holds (Schütte and
Sarich 2014, Theorem 18).

Theorem 3.13 (dominant eigenfunctions in committor space). Let

T = X \
=⋃
8=1
�8

denote the transition region between the core sets, let _ < 0 denote one of the
dominant eigenvalues of !, let D be the associated normalized eigenfunction and let
) = 1/|_ | be the associated implied dominant timescale of the process. Moreover,
let E` [gG(T )] denote the mean first exit time of the process from the transition
region, let D |T (G) = D(G)1T (G) be the restriction of D to the transition region, and
let

XD(G) =


0 G ∈ T ,

D(G) − 1
`(�8)

∫
�8

D(G)`(G) dG G ∈ �8 , 8 = 1, . . . , =,

be the deviation of the eigenfunction D from its average on each core set. Then the
projection error of D with respect to & satisfies

‖&⊥D‖` ≤ ‖XD‖` + 2`(T )‖XD‖∞ +
E` [gG(T )]

)
‖D |T ‖` . (3.26)

The upper bound in (3.26) contains two parts. The first, depending on the
deviation XD of the eigenfunction D from its average value on the core sets, will
be very small if the core sets are chosen such that the eigenfunction D is almost
constant on the core sets. The second part depends on (i) the `-weighted average
of D in the transition region, ‖D |T ‖`, and (ii) the time needed to leave the transition
region on average, E` [gG(T )], and the dominant timescale ) associated with D.
Part (i) will be very small if the eigenfunction or the invariant measure take only
small values in the transition region. Part (ii) will be very small if the �8 are the
cores of the main metastable sets of the system, because then E` [gG(T )] will be
much smaller than the timescale ) of transition between these metastable sets.

Example 3.14 (dominant eigenfunctions and committors). The link between
dominant eigenfunctions and committors between metastable sets is nicely illus-
trated in Figure 3.3. There we consider diffusive molecular dynamics with W = 1
and two V = 1.67 and V = 6.67 (larger and smaller noise) in a rugged two-
dimensional energy landscape that exhibits two main wells and a smaller and less
deep third well. We see that the second eigenfunction (the first one is given by
D0 = 1) is very similar to the committor function between the two main wells for
both cases, larger and smaller noise.

The next result shows that this is the case for diffusive molecular dynamics with
small noise.
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(a)

(b) (c)

(d) (e)

Figure 3.3. (a) Rugged three-well energy landscape + with left main wells around
(−1, 0) and rightmainwell (1, 0) and a less deepwell around (0, 1). (b–e)Committor
functions @�� (b,c) and associated second eigenvalues (d,e) for diffusion molecular
dynamics with V = 1.67 (b,d) and V = 6.67 (c,e) and W = 1 for the sets � (left main
well) and � (right main well) for the rugged three-well energy landscape.
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Small noise. Let us now consider the small noise case for the diffusive molecular
dynamics model (2.17) with W = 1 and f =

√
2n ,

¤GC = −∇+(GC ) +
√

2n ¤,C ,

and associated generator !Diff = nΔG − ∇G+(@) · ∇G . We have the following
theorem connecting the dominant eigenfunctions and committor functions (Bovier
et al. 2002c).

Theorem 3.15 (eigenfunctions and committors for small noise diffusive MD).
Let the assumption on the potential (minima G0, . . . , G<, ordered according to de-
creasing well depth, saddles, energy barriers) of Theorem 3.8 be valid. Let �8
again denote a ball of radius n around the minimum G8 , and (: =

⋃:
8=0 �8 . Let

@: = @�: ,(:−1 denote the committor function between the ball around the :th
minimum and the union of balls around the minima G0, . . . , G:−1. Then there are
< + 1 exponentially small eigenvalues _1 = 0 > _1 > · · · > _= of !Diff with
normalized eigenfunctions D: ∈ !2

`. Furthermore, there exists a X > 0 such that,
for : = 1, . . . , <, possibly after replacing D: with −D: ,

D:(H) =
@:(H)
‖@: ‖2

(1 +$(4−X/n )) +$(4−X/n ). (3.27)

This result seems to contradict our previous remarks and results in so far as
(3.27) seems to indicate that the leading eigenfunctions are approximately equal to
a single committor function and therefore non-negative. In general, this is not the
case. In the situation considered in Theorem 3.15, however, formally for n → 0
and two minima, one well attracts almost all of the invariant measure such that
(3.25) takes the following form: with `1 ≈ 1 and `2 ≈ 0, we get @�1,�2 ≈ 1�2 ,
@�2,�1 ≈ 1�1 and D1 ≈ (1 − `1)−1/21�2 , consistent with (3.27).

3.2.3. Transition path theory
The committor is the key quantity for understanding the reaction pathways between
two disjoint sets � and �. In transition path theory, we first consider reactive
trajectories, that is, individual realizations of the underlying process that start in �
and end up in � without returning to � in between. For an ergodic process we can
get an ensemble of such reactive trajectories by pruning a generic infinitely long
trajectory (cutting out the reactive parts). When the invariant measure is denoted
by `, the probability of finding the process in G ∈ ) = X \ (� ∪ �) = (� ∪ �)2 is
`(G), and conditioned on being at G, the probability that the process came last from
� and will next go to � is given by @(G)@−(G), where @ = @�� denotes the forward
and @− = @−

��
the backward committor. Therefore the probability of observing a

reactive trajectory at G ∈ (� ∪ �)2 is

c��(G) =
1
/��

`(G)@(G)@−(G),
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where /�� =
∫
)
`(G)@(G)@−(G). The probability of observing a reactive trajectory

is the basic quantity based on which one can find the reactive flux from � to � and
the main reaction pathways. To this end, let us first restrict our attention to diffusive
molecular dynamics with W = 1 and invariant measure `(G) ∝ exp(−V+(G)). Then
we have reversibility and thus @− = 1 − @. As shown in E and Vanden-Eijnden
(2004, 2006) and Metzner et al. (2006), the reactive flux ���, defined by

���(G) =
1
V
`(G)∇@(G),

is the divergence-free total probability flux induced by reactive trajectories. This
means that, for any surface ( that divides X into two parts with one containing
� and the other �, the reaction rate :�� (i.e. the mean frequency of observing
reactive trajectories) is

:�� =

∫
(

���(G)=(G) df(G),

where =(G) denotes the normal (column) vector on G ∈ ( in the direction of �, and
df is the surface element on (. The (assumed) smooth boundary m� of � is such
a dividing surface; taking a subset ' ⊂ m�, we will find that∫

'

���(G)=(G) df(G) = ?' :��,

meaning that the percentage ?' of all reactive flux from � to � goes through '.
Further, the reactive flow exhibits streamlines B, given by

dB(g)
dg

= ���(B(g))

in artificial time g. Each streamline starts at an G ∈ m� and connects this state with
a state H ∈ m�, that is, for B(0) = G ∈ m� there is a g0 > 0 such that B(g0) ∈ m�.
Taking all the streamlines that start in ' ⊂ m�, we get a reaction tube or reaction
pathway that connects � and �, and through which ?' per cent of the total reactive
flux occurs.
Transition path theory (TPT) utilizes the quantities c�� and ���, both given by

the committor @, to find reaction pathways. The TPT framework was developed
by Vanden-Eijnden and coworkers (see E and Vanden-Eijnden 2004, 2006) in the
context of diffusive molecular dynamics, and has been generalized to discrete state
spaces in Metzner et al. (2009b) and Metzner (2007) and applied to molecular
systems, e.g. Noé et al. (2009).

For Langevin molecular dynamics, which is not reversible, the expressions be-
come more involved but similar (see Metzner et al. 2006 for an overview): the
sets � and � have to be defined in phase space (positions and momenta), and
consequently c�� and ��� are functions on phase space too.
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3.2.4. Fuzzy metastable states
Aswe have seen, the committor functions @8 induced by some cores�8 , 8 = 1, . . . , <
of metastable sets (see (3.24)) form a partition of unity. Its interpretation is clear:
if at state G the value @8(G) tells us the probability of going next to �8 before we
enter any other core � 9 , 9 ≠ 8.
Now assume again that there are < + 1 dominant eigenvalues 1 = Λ0 ≥ Λ1 ≥
· · · ≥ Λ< and associated eigenfunctions D8 such that the dominant eigenspace of
the transfer operator %C is � = span{D0, . . . , D<}. Normally the committors are
not fully contained in � . We will now proceed under the assumption that there is
another basis {j0, . . . , j<} of � , where the j8 are all non-negative functions on X
that form a partition of unity, and j8 is almost constant to 1 on �8 and almost 0 on
each other core set.

The functions j8 are called fuzzy or soft metastable states; the intuition behind
this name is that the value j8(G) gives the probability with which the state G
belongs to the metastable set whose core is �8 . Thus the j8 are often also called
membership functions. By this interpretation, j8 represents a fuzzy set belonging
to the metastable core �8 because the characterization of metastability by crisp sets
is ill-conditioned in the transition region between the cores �8 .

The transition matrix T C between fuzzy metastable states {j8 , 8 = 0, . . . , <} is
meant to generalize equation (3.17). Since T is the matrix representation of %C in
the basis {j8} where 〈j8 , j 9〉` ≠ 0 for 8 ≠ 9 in general, it takes the form

T C = %̂C"−1, with %̂C8 9 =
〈%C j8 , j 9〉`
〈j8 , 1〉`

, and "8 9 =
〈j8 , j 9〉`
〈j8 , 1〉`

, (3.28)

with stochastic mass matrix " and stochastic %̂C . In Schütte and Sarich (2014,
Theorem 13) we find a generalization of Theorem 3.12 to this case, where the trace
of T C (i.e. the sum of its diagonal entries) is bounded from above and below by
the dominant eigenvalues. The generator ! associated with %C has an analogous
matrix representation

L = !̂"−1, with !̂8 9 =
〈!j8 , j 9〉`
〈j8 , 1〉`

.

By introducing fuzzy metastable states, many things become computationally
easier (see below). However, there are several theoretical problems. For example,
one may ask how long the process will typically stay within j8 . If j8 were the
indicator function of a metastable sets �8 , then the answer would be given by the
expected exit time from �8 . If it is not, what can replace the exit time or exit rate?
This problem is discussed by Weber and Ernst (2017), who consider the case with
two metastable cores, that is, we have one fuzzy metastable state, j, and another
one, 1 − j, and we have two dominant eigenvalues of the associated generator !,
0 = _0 > _1 with eigenfunctions 1 = D0, D1 with orthogonality 〈D: , D;〉` = X:;.
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The fuzzy metastable state j has the mass

`j = 〈j, 1〉` =
∫

j(G)`(G) dG.

It is spanned by the leading eigenfunctions, that is, there are real coefficients 20, 21
such that

j = 201 + 21D1, with 20 = 〈j, 1〉` = `j,

such that

!j = _121E1 = _1(j − `j1) = _1(1 − `j)j − _1`j(1 − j). (3.29)

In this case we can compute the matrix representation of ! in the basis {j, 1 − j}
explicitly:

L = _1

(
1 − `j `j − 1
−`j `j

)
.

That is, L is a rate matrix (with positive off-diagonal entries and row-sum equal to
0) with eigenvalues 0 and _1 < 0. We observe that the transition rate from fuzzy
state j to 1 − j is L12 = |_1 | (1 − `j). The main idea in Weber and Ernst (2017)
is to introduce the holding probability

?j(G, C) = j(G) exp(−ΓjC), Γj = |_1 | (1 − `j) > 0. (3.30)

The intuition is that the exit rate Γj is the same for each state G relative to its mem-
bership j(G), in analogy to the exit rate from metastable sets as in Theorem 3.11.
Based on (3.29), we can show that ?j satisfies

mC ?j(G, C) = !?j(G, C) − �j(G, C)?j(G, C)

with discount rate

�j(G) = |_1 | `j
1 − j(G)
j(G)

.

By means of the Feynman–Kac theorem, this yields the pathwise representation

?j(G, C) = EG
[
j(-C ) exp

(
−

∫ C

0
�j(-B) dB

)]
. (3.31)

That is, the discount �j along a realization/path at time C is 0 if j(-C ) = 1 and ∞
where j(-C ) = 0.
In comparison, this is a generalization of the pathwise functional (3.14) used in

the approach to exit rates from a set � which takes the form

?�(G, C) = EG
[
1�(-C ) exp

(
−

∫ C

0
��(-B) dB

)]
,

with �� = ∞1�2 such that the discount at time C also takes value 0 if -C ∈ � and
∞ if -C ∉ �.
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(a) (b) (c)

Figure 3.4. (a) Lemon-slice potential: dark blue indicates the seven deepwells in the
energy landscape, light blue the transition region between them, and yellow/orange
the high-energy regions. (b) Six dominant eigenfunctions D1, . . . , D6 of the transfer
operator %g for diffusive molecular dynamics with W = f = 1 (eigenfunction
D0 = 1 not shown). (c) Leading eigenvalues Λ8 of %g exhibiting seven dominant
eigenvalues (including Λ0 = 1) and a significant gap to the remaining eigenvalues.

3.3. Reaction coordinates and transition manifolds

The notion of reaction variables, also called collective variables, is used in different
versions in the literature. The basic concept is that the reaction coordinates are
an abstract low-dimensional set of coordinates which represent progress along a
transition pathway between an initial state and a target state that mostly belong to
two different metastable sets. That is, a reaction variable is a nonlinear smooth
map b : X→ R: that reduces the dimensionN = dim(X) to a significantly smaller
dimension : � N with the main additional requirement that the ‘projection’
of full-dimensional molecular dynamics to the reaction coordinate allows for a
‘good’ reproduction of the long-term dynamical behaviour of the system under
investigation. Figure 3.4 illustrates the basic ideas. The lemon-slice potential
exhibits seven wells that are arranged around a circle. On long timescales, the
dynamics will be characterized by the transitions between these wells (as can be
seen from the dominant eigenvalues and eigenvectors of the associated transfer
operator), and can thus be described in terms of the one-dimensional reaction
coordinate b(G1, G2) = \, where \ is the polar angle. However, \ will generally
not be a slow variable of the system: there is no ‘simple’ splitting into slow and
fast coordinates, at least not on the short timescales. In order to get a dynamical
description of the long timescales in terms of \ only, we have to understand how
to project the transfer operator onto the reaction coordinate or how to design a
dynamical system that describes the progress of the full dynamics in \ alone. Both
options will be discussed below.
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3.3.1. Reaction coordinates, marginal measure and free energy
Let b : X → R: be a �1 function, where : ≤ =. Let LI = {G ∈ X | b(G) = I}
be the I-level set of b. The so-called coarea formula (Federer 1969, Section 3.2)
splits integrals over X into consecutive integrals over level sets of b and then over
the range of b. For 5 ∈ !2

`(X), with !2
` ⊂ !1

`, the coarea formula gives∫
X
5 (G) d`(G) =

∫
b (X)

∫
LI

5 (G ′)r(G ′) det(∇b(G ′)>∇b(G ′))−1/2 dfI(G ′) dI, (3.32)

where I = b(G) and fI is the surface measure on LI . The coordinate projection,
defined next, averages a given function along the level sets of a coordinate function
b. For all G ∈ LI ,

& b 5 (G) =
∫
LI

5 (G ′) d`I(G ′) (3.33)

=
1
Γ(I)

∫
LI

5 (G ′)r(G ′) det(∇b(G ′)>∇b(G ′))−1/2 dfI(G ′),

where `I is a probability measure on LI with density (r/Γ(I)) det(∇b>∇b)−1/2

with respect to fI , and Γ(I) is just the normalization constant so that `I becomes
a probability measure. That is, & b 5 is constant along the level sets LI to which G
belongs. The residual projection is given by &⊥

b
= Id −& b .

Another way to express & b uses that & b 5 (G) is the expectation of 5 (x′) with
respect to ` conditional to b(x′) = b(G), that is,

& b 5 (G) = E` [ 5 (x′) | b(x′) = b(G)] . (3.34)

Or, in other words, `I is the marginal of ` conditional to b(G) = I. Note in
particular that %b 5 is itself a function on X but it is constant on the level sets of b.
The coordinate projection has the following properties:"conjugated momentum"
(i) & b is a linear projection, i.e. &2

b
= & b ,

(ii) & b is self-adjoint with respect to 〈·, ·〉`,
(iii) & b : !2

`(X)→ !2
`(X) is orthogonal, hence non-expansive, i.e.

‖& b 5 ‖!2
`
≤ ‖ 5 ‖!2

`
.

Thus& b 5 is the average of 5 along the level sets of b, and constant on these level
sets LI . Therefore & b 5 can also be understood as a function on I space, I ∈ b(X).
For the canonical measure `(dG) = /−1 exp(−V+(G)) dG, a particular case is given
by

& b1(I) =
∫
LI

1(G)`b (dG)

and the associated free energy function

�b (I) = − 1
V

log& b1(I). (3.35)
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Example 3.16 (free energy and potential of mean force). For the easiest case
b(G) = G1 (the first component of G), this reads (with I = G1)

�b (G1) = − 1
V

log
∫

/−1 exp(−V+(G)) dG2 . . . I dG=

such that
d

dG1
�b (G1) =

∫
d+
dG1

(G) exp(−V+(G)) dG2 . . . dG=∫
exp(−V+(G)) dG2 . . . dG=

,

which shows that �b is identical to the potential of mean force in terms of G1 = b(G).

3.3.2. Committor functions as ‘optimal’ reaction coordinates
Let us again consider the diffusive molecular dynamics process

d-C = −∇+(-C ) dC + f d,C ,

with associated generator !Diff and a scalar-valued reaction coordinate b : X→ R.
The process (-C ) defines dynamics in a one-dimensional I-space b(X) by

IC = b(-C ),

and an application of Itô’s lemma yields

dIC = (!Diffb)(-C ) dC + f∇b(-C ) · d,C . (3.36)

Since the right-hand side of this equation depends on -C and not only on IC , the
equation is not closed, which explains the key problem of dynamic coarse-graining.
However, as first pointed out in Lu and Vanden-Eijnden (2014), if we consider

the special case of the scalar-valued committor reaction coordinate b = \0,1 as
defined in (3.22), we find that almost everywhere the process IC = \01(-C ) satisfies

dIC = f∇\01(-C ) · d,C = f
∑
8

m

mG8
\01(-C ) d,8,C , (3.37)

since !Diff \01 = 0 as long as we stay away from the two states 0, 1. The trans-
formation of time C to the artificial (random) time B given by

B(C) =
1
2
f2

∫ C

0
|∇\01(-C′)|2 dC ′

and transforms (3.37) into
dIB = f d,B, (3.38)

which is a closed equation in the committor reaction coordinate IB!
This insight tells us that the committor RC \01 is the ‘optimal’ reaction co-

ordinate in the sense that it allows us to reduce the dimension to 1 and reproduce
the dynamical behaviour by means of a closed equation. As shown in Lu and
Vanden-Eijnden (2014), this is even true for the more general form of diffusive
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molecular dynamics (2.18) with position-dependent diffusion tensor (but only after
a transformation to an artificial time), and also for Langevin molecular dynamics.
However, there are several essential limitations.

Limitations. Two main bottlenecks are that there is no way to reconstruct the full
state -C from the reaction coordinate process IC = \01(-C ) and that the dynamics
(3.38) is given in artificial time B and not in physical time. The dynamics (3.37)
informs us only about the sequence in which the level sets LI are crossed; however,
by averaging along the level sets of \01,

f̃(I)2 = f2& b [|∇\01 |2](I) for b = \01,

which approximately transforms (3.37) into the equation

dIC = f̃(IC ) d,C .

As shown in Lu and Vanden-Eijnden (2014), despite the fact that the last equation
is not equivalent to (3.37), it allows us to compute the mean first passage time
from one level set of \01 to another, as in other methods such as exact milestoning
(Bello-Rivas and Elber 2015). Depending on the choice of 0 and 1, there might not
be a level set LI of \01 that separates a certain pair of main metastable sets; if so,
the transition process between these sets will not be characterized at all. The choice
of the singular states 0 and 1 is therefore essential for what emergent dynamical
behaviour can be described. Moreover, the committor function is notoriously
difficult to compute with sufficient precision. This fact renders many insights into
properties of the committor RC theoretical and only hypothetically practical.

3.3.3. Transition manifolds
We will now utilize the transfer operator approach for characterizing good reaction
coordinates. We restrict our consideration to reversible processes for the sake of
simplicity. Therefore, let %C denote a self-adjoint transfer operator in !2(`), and
let b : X → R: denote a reaction coordinate and & b the associated coordinate
projection.
The effective transfer operator %C

b
: !2

`(X)→ !2
`(X) is defined by

%Cb = & b%
C& b . (3.39)

We obtain from the self-adjointness of %C that %C
b
is a self-adjoint operator on

!2
`(X). Moreover, ‖%C

b
‖!2
`
≤ 1. Thus the spectrum of the effective transfer

operator also lies in the interval [−1, 1].
Returning to the purpose of these constructions, we call b a good reaction

coordinate if, for all dominant eigenvalues Λ8(C), 8 = 0, . . . , <, of %C , we have an
eigenvalue Λ̃8(C) of %Cb such that

Λ8(C) ≈ Λ̃8(C). (3.40)
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The reduction lies in the fact that %C operates on functions over X ⊆ R=, = =
dim(X), but the effective transfer operator %C

b
operates essentially on functions

over b(X) ⊂ R: , although we embed those into X through the level sets of b.
In Bittracher et al. (2018) we find the following general result on the closeness

of eigenvalues of %C and %C
b
.

Theorem 3.17 (approximation of dominant eigenvalues). Let %C , %C
b
and & b

be as above and &⊥
b
= Id − & b . Let D with ‖D‖ = 1 be an eigenfunction of %C ,

i.e. %CD = Λ(C)D for some Λ(C) ∈ R. If ‖&⊥
b
D‖ < Y, then %C

b
has an eigenvalue

Λ̃(C) ∈ R with

|Λ(C) − Λ̃(C)| < Y/
√

1 − Y2.

The interpretation is as follows: if there exists a reaction coordinate b : X→ R:
so that the dominant eigenfunctions D are constant on the level sets of b, that is, if,
for all dominant eigenfunctions D8 of %C , there exist functions D̃8 : R: → R such
that D8 = D̃8 ◦ b, then the projection error ‖&⊥

b
D8 ‖!2

`
is zero. A generalization of

this is that if the eigenfunctions D8 are almost constant on level sets of b, then the
projection error is small, and the dominant eigenvalues of %C and %C

b
are Y-close

to each other.
This insight inspires us to look for reaction coordinates b for which the dominant

eigenfunctions are almost constant on the level sets. The first obvious choice would
be to take the dominant eigenfunctions of %C , that is, b = (1, D1, . . . , D<) : X →
R<+1 such that&⊥

b
D8 = 0 for all 8 = 0, . . . , <, and perfect reproduction of dominant

timescales. However, in many realistic cases, < can be too large in the sense that
there is a reaction coordinate b with dim(b(X)) being considerably smaller than <
but sufficient approximation quality regarding the dominant timescales.
This leads to the concept of transition manifolds as first introduced in Bittracher

et al. (2018). To introduce the concept we first have to fix a timescale g that is much
larger than the fastest timescales and much faster than the dominant timescales )8
implied by the dominant eigenvalues of %C :

Cfast � g � min
8
)8 .

Definition 3.18 (transition manifold). We call the process -C (Y, A)-reducible if
there exists a smooth closed A-dimensional manifoldM ⊂ !2

1/` ⊂ !
1(X) such that

for all G ∈ X
min
5 ∈M
‖ 5 − ?(g, G, ·)‖!2

1/`
≤ Y. (3.41)

We callM the transition manifold and the map Q : X→ M,

Q(G) ≔ arg min
5 ∈M
‖?(g, G, ·) − 5 ‖!2

1/`
, (3.42)

the mapping onto the transition manifold.
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Note that the !2
1/`-norm appears for technical reasons and that (since ` is a

probability measure) we have

‖ 5 ‖!1 ≤ ‖ 5 ‖!2
1/`
,

which means that if two transition functions are close in the !2
1/`-norm, they are

also close in the !1-norm.
Next we see that (Y, A)-reducibility implies that dominant eigenfunctions are

almost constant on the level sets of the reaction coordinate given by the transition
manifold.

Theorem 3.19 (eigenvalues and eigenvectors projected to transition manifold).
Let -C be (Y, A)-reducible and reversible, and let E : !1(`)→ R2A+1 be one-to-one
on the transition manifold M and its image. Moreover, let the reaction coordi-
nate b : X → R2A+1 be given by b(G) = E(Q(G)). Then, for an eigenfunction D8
of the transfer operator %g with associated eigenvalue Λ8 , there exists a function
D̃8 : M→ R such that

|i8(G) − ĩ8(b(G))| ≤ Y

|Λ8 |
,

which implies that ‖& bD8 ‖!2
`
≤ 2Y/|Λ8 |. Then Theorem 3.17 implies that there is

an eigenvalue Λ̃8 of the effective transfer operator %gb associated with b = Q such
that

|Λ8 − Λ̃8 | ≤ 2
Y√

Λ2
8
− 4Y2

.

The existence of such an embedding E is a consequence of infinite-dimensional
embedding theorems; see Bittracher et al. (2018, Corollary 4.11). According
to these theorems, almost every bounded linear function does the job (see The-
orem 4.10) and E(M) is an A-dimensional smooth manifold in R2A+1.

Theorem 3.19 states that (Y, A)-reducibility of the process gives us an at most
(2A +1)-dimensional reaction coordinate, for which the dominant eigenvaluesΛ8 of
the transfer operator %C of the original dynamics (which are very close to 1 based on
the choice of g) are nicely approximated by the eigenvalues of the effective transfer
operator %C

b
. Thus the existence of a transition manifold implies the existence of a

good reaction coordinate. This reaction coordinate allows better reproduction of the
dominant eigenvalues as Y decreases; the interpretation of (3.41) is as follows: for
all G ∈ X, the transition function ?(g, G, ·) of the process started at G is close to the
transition manifold M with best approximation Q(G) ∈ M. That is, the timescale
g is sufficiently large such that the fast equilibration from the transition region
into one metastable set and the slower equilibration there towards the associated
quasi-equilibrium have happened but the global equilibration between the main
metastable sets has not. The transition manifold represents the backbone of the
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transition events between the main metastable sets (i.e. the transition pathways),
which is of considerably lower dimension than the full state space.
Bittracher and Schütte (2020) introduced a weaker concept of transition mani-

folds: for Y > 0, A ≤ =, g ∈ R+0 , the process (-C ) is called weakly (Y, A, g)-
reducible if there exists an A-dimensionally parametrizable smooth manifold M ⊂
{?(g, G, ·), G ∈ X} such that for all G ∈ X∫

LI

‖Q(G) − ?(g, G ′, ·)‖!2
1/`

d`I(G ′) ≤ Y, (3.43)

where `I is the marginal invariant measure on LI . Any smooth manifold M that
fulfils (3.43) is called a weak transition manifold. Bittracher and Schütte (2020)
showed that the above statements about approximation of the dominant eigenvalues
generalize to weak transition manifolds.

3.3.4. Variational characterization of reaction coordinates
Following Bittracher et al. (2021), we will now introduce two seemingly different
conditions for a system/reaction coordinate pair. Each condition may be taken
individually as a definition of a good reaction coordinate. However, it will turn out
that the two conditions are equivalent to each other for reversible systems, so a good
reaction coordinate with respect to one condition is a good reaction coordinate with
respect to the other.
The two new properties of the process (-C ) to be considered next are defined via

conditions on its transition function ?(C, ·, ·) : X × X → R+ relative to a smooth
reaction coordinate b : X → RA (b is �1 and its level sets are smooth topological
submanifolds of X) with Z = b(X).

Lumpability. The process (-C ) is called Y-lumpable with respect to b if there is a
reduced transition function ?!(C, ·, ·) : Z × X→ R+ and a lag time g > 0 such that

1
|Z| ‖?(C, ·, · ) − ?C!(b(·), · )‖K ≤ Y (3.44)

for all C ≥ g and K = !1(` × _) with Lebesgue measure _. Here · is a placeholder
for the two state variables on which the respective transition functions depend.
In words, lumpability means that for sufficiently large C, the transition densities
?(C, G, ·) essentially depend only on the value b(G) of the reaction coordinate at G,
and not on the precise location of G on the level set LI with I = b(G).

Decomposability. Similarly, (-C ) is called Y-decomposable with respect to b if
there is a reduced transition function ?�(C, ·, ·) : X × Z→ R+ and a lag time g > 0
such that

1
|Z| ‖?(C, ·, ·) − ?�(C, ·, b(·))`(·)‖K ≤ Y (3.45)

for C ≥ g. That is, decomposability holds, for instance, for systems such that this
transition function ?(C, G, H) can be decomposed into a slow transition from G to
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anywhere on the level set LI , I = b(H), for which the transition probability is given
by ?�(C, G, b(H)), followed by an instantaneous equilibration on that level set with
respect to the invariant density `(H), which no longer depends on the starting point.
Whenever a system is Y-lumpable or Y-decomposable, there exists a reduced

transition kernel ?CLD : Z × Z→ R+ such that

‖?C (·, ·) − ?CLD(b(·), b(·))`(·)‖K ≤ Y (3.46)

for C ≥ g. Under this condition, we know that b and ?CLD allow us to approximately
reconstruct the effective long-term dynamics of the full system.
Bittracher et al. (2021) showed that if the process is weakly (Y, A, g)-reducible as

defined in (3.43), then it is also Y-lumpable with respect to the transition manifold
reaction coordinate b = E(Q(·)), and that Y-lumpability and Y-decomposability
are equivalent for reversible processes. Conclusively, we can find good reaction
coordinates by looking at lumpability or deflatability. The main difficulty, however,
is that the lumpability and deflatability depend on the unknown reduced transition
functions ?! and ?� and we do not know how to construct them explicitly.
A variational formulation helps to overcome this obstacle. To this end, let us fix

a timescale g and set ?(G, ·) = ?(g, G, ·), define the functional

L(o) ≔
1
|Z| min

?! : Z×X→R+
‖?(·, ·) − ?!(o(·), ·)‖K (3.47)

and consider its minimizers as optimal reaction coordinates:

b ∈ arg min
o∈�(X,Z)

L(o), (3.48)

This variational formulation still requires a minimization over transition functions
that proves almost infeasible in practice. However, this can be avoided. To this end,
we first define lumpability and decomposability loss functionals that act on the set
SA (Z) of all smooth reaction coordinates b : X→ RA such that the domainZ = b(X)
is the same for all b ∈ SA (Z). The lumpability loss functional F! : ((X,Z) → R+
and the deflatability loss functional F� : ((X,Z)→ R+ are defined by

F!(o) =
1
|Z|

∫
Z

∫
LI (o)

∫
LI (o)
‖?(G(1), ·) − ?(G(2), ·)‖!1 d`I

(
G(1)) d`I

(
G(2)) dI,

(3.49)

F�(o) =
1
|Z|

∫
Z

∫
LI (o)

∫
LI (o)





 ?(·, H(1))
`(H(1))

− ?(·, H(2))
`(H(2))






!1
`

d`I
(
H(1)) d`I

(
H(2)) dI

(3.50)

and, in addition to the reaction coordinate, depend solely on the transition function
of the process and its invariant measure, not on any reduced transition function.
They allow for the following direct variational formulation of good reaction co-
ordinates.
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Theorem 3.20 (variational principle for optimal reaction coordinates). Let the
process be (Y, A, g)-reducible as defined in (3.43). Then the process is Y-lumpable
and Y-decomposable with L(b) = Y for an optimal reaction coordinate b satisfying
(3.48), and reaction coordinates b! and b� that minimize the lumpability and
deflatability loss functionals,

b! ∈ arg min
o∈SA (Z)

F!(o) and b� ∈ arg min
o∈SA (Z)

F�(o), (3.51)

satisfy F!(b!) ≤ 2Y and F�(b�) ≤ 2Y.

That is, the minimizers of the lumpability and deflatability functionals can be
understood as quasi-optimal reaction coordinates. As we will see, this fact opens
the door to efficient algorithms for computing such reaction coordinates.

3.3.5. Slow variables
In order to understand the relation between the concepts for reaction coordinates
introduced above and slow collective variables, let us briefly discuss a diffusive
molecular dynamics process (-C ) = (.C , /C ) with explicit and simple separation
between fast scales (.C ) and slow scales (/C ):

Yd.C = −∇H+(.C , /C ) dC +
√
Yf d, H

C ,

d/C = −∇I+(.C , /C )dC + f d, I
C ,

(3.52)

with invariant measure `(H, I) = exp(−V+(H, I))// , where V = 2/f2. The intuitive
understanding is that b(G) = b(H, I) = I is the (optimal) reaction coordinate if Y is
small enough; more precisely, the equilibration of (.C ) for an arbitrary fixed /C = I
(i.e. on every level set LI) must take place on an >(1) timescale. The literature
contains different approaches to the behaviour for small Y (stochastic averaging,
homogenization, . . . ). In fact, with Y small enough, the process is (Y, A = 1)-
reducible and Y-lumpable and Y-deflatable with respect to b(G) = I; see Bittracher
et al. (2021).

Moreover, the lumped and deflated transition function

?LD(b(G), b(H)) = ?LD(I, I′)

that satisfies (3.46) is given by the transition function of the process

d/C = −∇I�(/C ) dC + f d, I
C , with �(I) = − 1

V
log

∫
`(H, I) dH, (3.53)

where � is the free energy with respect to b(H, I) = I as introduced in (3.35).
This identity is the background for the widespread belief in MD that the free
energy associated with a reaction coordinate allows for the derivation of dynamical
information such as transition timescales via free energy barriers (which is not true
in general).
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Example 3.21 (fast–slow process with entropic barrier). Let us consider a two-
dimensional energy landscape given by

+(H, I) = ,(I) + 1
2
l(I)2H2, l(I) = 1 + 15 exp(100(I − 0.8)2), (3.54)

with double well potential ,(I) = (I2 − 1)/2 in the I-direction with minima at
I = ±1. The other direction is governed by a quadratic potential centred at H = 0,
with a I-dependent stiffness l2 that assumes its maximum value at I = 0.8. From
Figure 3.5 we see that the sharp peak at I = 0.8 generates a vertically tapered
passage that gives rise to an entropic barrier in the horizontal direction. (Note that
the potential is essentially flat in the middle of the passage, i.e. there is no energy
barrier.) The resulting free energy can be computed explicitly:

�(I) = − 1
V

log
∫

`(H, I) dH = ,(I) + 1
V

logl(I) + �,

with a constant � that is independent of I. If we define the conditional entropy, (I ,
of the H-variable for given I as

(I(H) = −
∫

`(H, I) log `(H, I) dH = − logl(I) − V�,

we observe that the second term in the free energy, � = , − V−1(I , that is induced
by averaging out H indeed represents the entropic contribution to the free energy.
From Figure 3.5(b) it can be seen that � is a three-well potential with an entropic

barrier in the free energy landscape located at I ≈ 0.8. Note that in contrast to
potential energy barriers that are easier to overcome at large noise, the opposite is
true for an entropic barrier, since the entropic barrier height in the free energy is
proportional to V−1.

The leading eigenvalues of the generator !Diff of the fast–slow dynamics (3.52)
with n = 0.1, f =

√
2/V and V = 5.5 are

_0 = 0, _1 = −0.0541, _2 = −0.6646, _3 = −2.4716,

showing that there are in fact three dominant eigenvalues, taking into account that
the entropic contribution of the fast variable splits the right well of the double well
potential into two parts, which results in three metastable sets.
Figure 3.5(c,d) shows the associated eigenfunctions D1 and D2 which are (i)

almost constant on the three wells of the free energy, and (ii) almost constant on
the level sets LI = {(H, I), H ∈ R} of the reaction coordinate b(H, I) = I.

3.4. Effective dynamics

Given a smooth reaction coordinate b : X → R: for some kind of molecular
dynamics process (-C ), it defines a process IC = b(-C ) on reaction coordinate space
Z = b(X) ⊂ R: . The process IC is called the effective dynamics with respect to b.
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Figure 3.5. (a) Energy landscape + given in (3.54). (b) Free energy for V = 5.5.
(c,d) Second and third eigenfunctions of the generator of the fast–slow process
(3.52) with n = 0.1.

Typically there is no closed equation that describes IC without reference to the
original full process (-C ). Therefore the phrase ‘effective dynamics’ is often used
for a (closed) dynamical system whose solution process /C is an almost accurate
approximation of IC in particular on long timescales.

There is a huge variety of different approaches to finding such dynamical sys-
tems, for example via conditional expectations (Legoll and Lelièvre 2010), via
equation-free approaches (Kevrekidis and Samaey 2009) or transfer operator the-
ory (Froyland, Gottwald and Hammerlindl 2013), to name just a few examples.
The most prominent example, however, may be the approach to effective dynamics
using the Mori–Zwanzig formalism, which is an operator approach to studying the
coarse-graining of dynamical systems (Mori 1965, Zwanzig 1973, Grabert 1982).
To this end, let us assume that we are dealing with a process (-C ) with continuous
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path, generator ! and transfer operator %C = exp(C!). Moreover, let & b denote the
associated projection defined in (3.33). Following theMori–Zwanzig approach, for
an arbitrary given function 5 ∈ �(L) ⊂ !2(`), we can directly verify the following
identity for all C ≥ 0:

d
dC
4C! 5 = 4C!! 5 = 4C!& b ! 5 +

∫ C

0
4(C−B)!& b !AB dB + AC , (3.55)

AC = 4
C&⊥

b
!
&⊥b ! 5

where &⊥
b
= Id − & b . Letting & b act on this equation, the third term vanishes,

& b AC = 0, and we get

d
dC
& b%

C 5 = %Cb ! 5 +
∫ C

0
%C−Bb !AB dB, (3.56)

where %C
b
= & b%

C& b denotes the effective transfer operator considered above.
If we follow reasoning similar to that of optimal prediction (Chorin, Hald and
Kupferman 2000, Hijón, Español, Vanden-Eijnden and Delgado-Buscalioni 2010)
to drop the second term in (3.56), we end up with an equation that expresses the
evolution of a function 5 under the full original dynamics considered in terms
of the reaction coordinate, & b%

C 5 , in a Markovian way in terms of the effective
transfer operator %C

b
. In the next section we will see that this Markovian effective

dynamics can be worked out in detail, and how good its approximation of the
full dynamics might be. In Section 3.4.2, however, we will take the second term
in (3.56) seriously. Memory enters into the description via the second term, and
taking it into account therefore leads to non-Markovian descriptions of the effective
dynamics.

3.4.1. Markovian effective dynamics
In order to see which form the Markovian description takes explicitly, let us again
consider the diffusive molecular dynamics model (2.17) with potential energy
landscape + , and choose W = 1 and f =

√
2/V,

¤GC = −∇+(GC ) +
√

2V−1 ¤,C ,

with invariant measure `(G) ∝ exp(−V+(G)) and generator !Diff . Given a smooth
reaction coordinate b : X → R: , the diffusive molecular dynamics process (-C )
defines a process IC = b(-C ) on reaction coordinate space Z = b(X) ⊂ R: that
is governed by equation (3.36), which generally does not have a closed form (i.e.
it can be written down in terms of IC alone). However, we can write down its
projection onto the reaction coordinate space by means of the projection & b . The
result is the SDE (Zhang, Hartmann and Schütte 2016)

dIB = 1̃(IB) dB +
√

2V−1f̃(IB) dFB, (3.57)
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where IB ∈ R: , FB is a Brownian motion on R: and the coefficients 1̃ : R: → R: ,
f̃ : R: → R:×: are given by (Zhang et al. 2016)

1̃;(I) = & b (!Diffb;)(I) = & b

(
−∇+ · ∇b; +

1
V
Δb;

)
(I),

0̃;;′(I) = (f̃f̃>);;′(I) = & b

( =∑
8=1

mb;

mG8

mb;′

mG8

)
(I),

(3.58)

for all I ∈ Z ⊂ R: , 1 ≤ ;, ; ′ ≤ : . The infinitesimal generator of the reduced
process governed by (3.57) is given by

L̃ =
:∑
;=1

1̃;
m

mI;
+ 1
V

:∑
;,;′=1

0̃;;′
m2

mI;mI;′
, (3.59)

which is a self-adjoint operator on the reduced Hilbert space with discrete spectrum
under appropriate conditions on b and + . Moreover, for all 5 = 5̃ ◦ b, we have

& b !Diff 5 =
(
L̃ 5̃

)
◦ b, (3.60)

and the following result (Zhang and Schütte 2017).

Theorem 3.22 (long-term error of Markovian effective dynamics). Let D be a
normalized eigenfunction of the operator !Diff corresponding to the eigenvalue _.
Define constants

X1 = ‖!Diff &
⊥
bD‖`, X2 = ‖&⊥bD‖` ≤ 1,

and suppose that 0 < X2 < 1. Then there is an eigenvalue ^ of the operator& b !Diff ,
such that

|^ − _ | ≤ X1

(1 − X2
2)1/2 . (3.61)

Moreover, there is an eigenvalue _̃ of L̃ with eigenfunction D̃ such that

_ ≤ _̃ ≤ _ + 1
V

∫
X
|∇(D − D̃ ◦ b)(G)|2`(G) dG.

That is, when considering the reduced process (3.57) as a model for the effective
dynamics, then the dominant timescales/eigenvalues of the original process are
approximated only imperfectly with an error given in (3.61). For the perfect
reaction coordinate, i.e. the one given by all dominant eigenfunctions of !Diff , the
error is zero and the approximation exact.

Remark 3.23 (fast–slow process). For reversible fast–slow processes, such as
(3.52), the Markovian effective dynamics (3.57) is identical to the averaged process
given by (3.53). See Hartmann, Neureither and Sharma (2020) for a discussion
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of non-reversible dynamics, for which the Markovian effective dynamics and the
averaged equation turn out to be different in general.

Conclusion. TheMarkovian effective dynamics (3.57) offers a good approximation
of the full dynamics on the dominant timescales only for ‘good’ reaction coordinates
for which X1 = ‖!Diff &

⊥
b
D‖` is small for all dominant eigenfunctions.

3.4.2. Non-Markovian effective dynamics
In the physics-oriented literature, the Zwanzig–Mori identity (3.55) is taken as the
starting point for deriving so-called generalized Langevin equations (GLE) as non-
Markovian approximations of the effective dynamics IC = b(-C ). In the standard
approach we start with Hamiltonian dynamics (2.12) for the molecular system
with Hamiltonian �(G, ?) = ?>"−1?/2 + +(G), written in the second-order form
" ¥GC = −∇+(GC ), and invariant measure `(G, ?) ∝ exp(−V�(G, ?)). For a scalar
reaction coordinate b = b(G) that depends on the positions G only, the standard
approach yields, by means of several ad hoc assumptions and approximations
(Lange and Grubmüller 2006, Ayaz et al. 2021),

< ¥IC = −∇I*(IC ) −
∫ C

0
Γ(C − B) ¤IB dB + �'(C), (3.62)

where < denotes the so-called effective mass, *(I) = �b (I) the associated free
energy or potential of mean force with respect to the invariant measure `, and
�' the so-called ‘random force’ that is connected to the memory kernel Γ via the
dissipation–fluctuation principle, that is,

E[�'(C)�'(B)] = 1
V
Γ(C − B).

This form of the GLE has often been used in practical applications; in many cases
documented in the literature, it allows for a much better approximation of the
‘true’ effective dynamics IC = b(-C ) than available Markovian approaches such as
(3.57), at least regarding collective processes on long timescales such as transition
between metastable sets (barrier crossing) (Ayaz et al. 2021, Kappler et al. 2018).
However, there is also a considerable number of articles in which improvements
to the GLE (3.62) are discussed; see Ayaz, Scalfi, Dalton and Netz (2022) for a
recent contribution that compares several approaches. The observation is that for
‘good’ reaction coordinates the memory kernel decays very fast as a function of
time, while for ‘bad’ reaction coordinates it does not.
Moreover, in Hijón et al. (2010), the derivation starting from the original

Zwanzig–Mori identity (3.55) is performed on a sound mathematical basis,
yielding an equation that is a formally exact reformulation of (3.55) (Hijón et al.
2010, eq. (15)), from which a more general form of GLE with random forcing as
in (3.62) is derived with a memory kernel that does not depend only on time as
in (3.62).
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4. Numerical analysis of transfer operators
In this section we will consider different methods for discretizing transfer operators
and generators, that is, methods for finding finite-dimensional approximations of
these operators for which we can get some form of error estimate telling us how
closely the dominant timescales/eigenvalues of the finite-dimensional approxima-
tion are to the exact ones. To this end, we will focus our considerations on spatial
discretization and see that different methods based on spatial discretization allow
for deriving matrix representations of the respective operators with some form of
discretization error. However, at first we will not discuss how to compute the
entries of these matrix representations; in Section 5 we will see that the entries can
be computed by means of stochastic approximations based on MD simulation data
but that these stochastic methods introduce another form of statistical error that
will be considered independently from the discretization error.

4.1. Spatial discretization

Due to the huge dimension of the state space X, spatial discretizations of transfer
operators or generators associated with realistic molecular system have to face the
curse of dimensionality, that is, standard numerical discretization schemes lead
to exponential growth of the size of the respective discretization matrix with the
dimension of X, rendering it practically infeasible in high dimensions. Therefore
the discretization schemes discussed herein will for the most part utilize non-
standard approaches, for which we will subsequently discuss whether they allow
circumvention of the curse of dimensionality.

4.1.1. Spatial discretization of the Fokker–Planck equation
Spatial discretization of the Fokker–Planck equation in high dimensions requires
careful consideration, especially if we wish the discretized version to inherit the
main structural properties (e.g. invariant measure, reversibility, stability, stochastic
interpretation). One prominent example of a spatial discretization scheme meeting
these requirements is the so-called square-root approximation (SQRA) (Donati,
Heida, Keller and Weber 2018, Donati, Weber and Keller 2021, Latorre, Metzner,
Hartmann and Schütte 2011). In order to see how it works, we consider diffusive
molecular dynamics, i.e. a reversible process. In its compact form (2.27), the
Fokker–Planck equation for diffusive molecular dynamics reads

mCD(G, C) =
1
V

1
`(G)
∇ · (`(G)∇GD(G, C)) = !DiffD(G, C), (4.1)

with `(G) = exp(−V+(G))// .
Square-root approximation. SQRA is based on a partition of state space into
disjoint sets �8 , 8 = 1, . . . , =, of which we assume that the �8 are convex polytopes
resulting from a Voronoi discretization defined by grid point G8 ∈ X such that
G8 ∈ �8 . Following Sikorski (2023), we let m8 denote the boundary of �8 , and
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let m8 9 be the boundary that is shared by neighbouring polytopes �8 and � 9 , such
that m8 =

⋃
9∈# (8) m8 9 , where 9 ∈ #(8) means that � 9 shares a boundary with �8 .

Integration of (4.1) over �8 , using Gauss’s theorem, yields

V

∫
�8

mCD(G, C)`(G) dG =
∫
�8

∇ · (`(G)∇D(G, C)) dG

=
∑
9∈# (8)

∫
m8 9

`(G)∇D(G, C) · =8 9(G) d(8 9(G),

where =8 9 denotes the outer unit normal of m8 9 and d(8 9 the corresponding surface
element. Based on this, standard finite volume discretization is used based on the
approximation of the flux across the boundary and of the volume integral,

∇D(G, C)=8 9(G)
��
m8 9
≈
D 9(C) − D8(C)

ℎ8 9
,

∫
�8

mCD(G, C)`(G) dG ≈ ¤D8(C)`8(�8)

with D8(C) = D(G8 , C) and ℎ8 9 = ‖G 9 − G8 ‖. In contrast to standard volume discretiz-
ation, SQRA uses

`(G)
��
m8 9
≈ 1
/

exp(−V(+(G8) ++(G 9))/2) = √`8` 9

as the approximation to the value of the measure at the surface m8 9 , with `8 = `(G8).
This yields the discrete scheme

V ¤D8(C)`(�8) =
∑
9∈# (8)

(D 9(C) − D8(C))
08 9

ℎ8 9

√
`8` 9 ,

where 08 9 =
∫
m8 9

d(8 9(G). With `(�8) ≈ `(G8)Vol(�8), we get the master equation

¤D8(C) =
∑
9∈# (8)

'8 9D 9(C) − '88D8(C), (4.2)

where the matrix ' = ('8 9) contains the entries

'8 9 =



�8 9

√
` 9

`8
if 9 ∈ #(8),

−
∑
9∈# (8)

'8 9 if 8 = 9 ,

0 otherwise,

with

�8 9 =
1
V

08 9

ℎ8 9Vol(�8)
.

For regular grids, �8 9 = � is the same for all index pairs 8, 9 .
The master equation (4.2) inherits the main structural properties of the Fokker–

Planck equation (4.1): ' is a rate matrix (non-negative off-diagonal entries and
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row-sums all equal to 0) with leading eigenvalues 0 and it satisfies the detailed
balance condition, that is,

ˆ̀8'8 9 = ˆ̀ 9' 98 ,

where ˆ̀8 = `8Vol(�8), which is thus also the invariant measure of the master
equation (4.2). Donati et al. (2021) and Latorre et al. (2011) have given several
alternative derivations of SQRA and its variants (leading to different �8 9).
SQRA is a method to calculate transition rates as a ratio of the invariant measure

of neighbouring discretization sets times a flux. Donati et al. (2018) used MD sim-
ulations to determine the flux across the set boundaries. Donati et al. (2021) used
several alternative methods to calculate the exact or approximate flux for various
grid types, and thus estimate the rate matrix without a simulation, showing very
high accuracy and efficiency for regular grids. Latorre et al. (2011) demonstrated,
based on numerical experiments on Lennard-Jones clusters, that the dominant
eigenmodes of ' are highly accurate approximations of those of the generator !Diff
already for rather coarse grids.
Furthermore, a deeper mathematical analysis can be found in Heida (2018),

including a convergence result for SQRA for smooth potentials + .

High dimensions. Finite volume discretizations based on regular grids are standard
numerical schemes and thus suffer from the curse of dimensionality. We will see
later that SQRA can be used in contexts where this problem is avoided to some
extent.

4.2. Projected transfer operators

4.2.1. Galerkin projection
A large class of methods uses the Galerkin projection of transfer operators and
generators onto a finite-dimensional subspace � ⊂ !2(`) of dimension =. In
what follows we will assume that we are given a basis {q1, . . . , q=} ⊂ !2

` of �,
that is, our finite-dimensional ansatz space is spanned by the linearly independent
functions q8 ,

� = span{q1, . . . , q=}.

Definition 4.1. We call the basis {q1, . . . , q=} a partition of unity if the following
conditions are satisfied.

(i) The q: are non-negative, linearly independent functions.
(ii) The q: sum up to unity almost everywhere, i.e.

∑=
:=1 q: = 1X.

Now let & : !2(`) → � denote the Galerkin projection onto the associated
finite-dimensional ansatz space �. Then & has the form

&E =

=∑
:, 9=1

((−1): 9 〈q: , E〉` q 9 , (4.3)
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where the non-negative, symmetric matrix ( ∈ R=×= has entries

(: 9 = 〈q: , q 9〉`, (4.4)

which is invertible since it is a Gramian matrix of a set of linearly independent
functions.
The special case results from a full partition of state space {�: }:=1,...,=, formed

of disjoint, measurable, non-null sets �: withX =
⋃=
:=1 �: . Then the projection&

associated with the partition of unity {q1, . . . , q=} with ansatz functions being the
indicator functions q: = q�: of the partition sets, is called full partition projection.
In this case we have that ( is a diagonal matrix with entries

(:: = 〈q: , q:〉` = `(�:) such that &E =

=∑
:=1

1
`(�:)

〈q: , D〉` q: .

Next we consider a transfer operator %C : !2(`)→ !2(`) for some time C and write
% = %C for simplicity.

Definition 4.2. Under Galerkin projection with &, the transfer operator

% : !2(`)→ !2(`)

yields the projected operator&%
��
�

: � → �. In addition we consider the projected
operator &%& : !2(`) → �. Both operators will be called projected transfer
operators in what follows andwewill use the common notation&%& for simplicity.
Whether &% |� or &%& is meant will become clear from the context.

It is easy to show that projected transfer operator&%& has the matrix represent-
ation

%& = P"−1,

with the invertible mass matrix " ∈ R=×= and P ∈ R=×= with entries

": 9 =
(: 9

〈q: , 1〉`
=
〈q: , q 9〉`
〈q: , 1〉`

and P: 9 =
〈q: , %q 9〉`
〈q: , 1〉`

. (4.5)

Let us now assume that the q8 form a partition of unity. Then both " and P are
stochastic matrices. Let 4 ∈ R= denote the vector with all entries being identical
to 1, i.e. the vector representation of the function 1 ∈ �. Then %&4 = 4. That is,
%& also has an eigenvalue _ = 1 with the constant vector as the associated left
eigenvector. In search of the associated right eigenvector, we define the vector
ˆ̀ ∈ R= with entries

ˆ̀: = 〈1, q:〉` =
∫

q:(G)`(dG) > 0, (4.6)

and observe that ˆ̀ is also the left eigenvector associated with the eigenvalue _ = 1
of %&. This leads to the following result (Schütte and Sarich 2014).
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Theorem 4.3 (basic properties of projected transfer operators). Let % be a
transfer operator with unique, positive invariant measure `, and let {q1, . . . , q=}
be a partition of unity with associated projection & onto the subspace spanned
by q. Then the projected transfer operator &%& has the matrix representation
%& = P"−1 with the two stochastic matrices " and P as defined in (4.5) and
associated generalized eigenvalue problem PD = Λ"D, with a pair of stochastic
matrices such that all the eigenvalues Λ of %& satisfy |Λ| ≤ 1. Moreover, we have
the following properties.

(i) The row vector ˆ̀ ∈ R= defined in (4.6) is a left eigenvector corresponding to
the eigenvalue Λ = 1 of %&, " and P . The associated right eigenvector of
%&, " and P is the constant vector 4 = (1, . . . , 1)>.

(ii) Whenever % is self-adjoint in !2(`), then so is &%&. Moreover, P and "
satisfy the detailed balance condition with respect to ˆ̀, i.e. ˆ̀: P:; = ˆ̀; P;:
for every pair :, ; ∈ {1, . . . , =}. Hence all eigenvalues of P and " are
real-valued and contained in the interval [−1, 1].

(iii) Whenever & is a full partition projection, then %& is a stochastic matrix too,
and the statements in (ii) hold for %&. Then %& induces a Markov chain on
state space {1, . . . , =} with transition probabilities

%&,: 9 = P` [-C ∈ �: | -0 ∈ � 9] =
1

`(�:)

∫
� 9

?(C, G, �:)`(G) dG

given by the transition probabilities of the Markov process (-C ) underlying
% = %C between the full partition sets �: , : = 1, . . . , =.

Obviously we can also consider the projection of the generator ! of (-C ) onto the
space �. Analogously, the projected generator &!& has the matrix representation
!& = !̃"

−1 with the same mass matrix and

!̃ =
〈q: , !q 9〉`
〈q: , 1〉`

. (4.7)

Results concerning the properties of !̃ similar to those of Theorem 4.3 can be found
in Schütte and Sarich (2014). Moreover, the results in Donati et al. (2021) show
that, for diffusive molecular dynamics and q8 = 1�8 with Voronoi cells �8 , the
square-root approximation of the generator yields the same discretization matrix
as (4.7).

Projection onto reaction coordinates. When given a reaction coordinate b : X →
R: , a set of linearly independent ansatz functions {q̃1, . . . , q̃=}, q̃8 : Z→ R on the
reaction coordinate space Z = b(X) induces a set of ansatz functions q8 : X → R,
8 = 1, . . . , = by means of

q8 = q̃8 ◦ b.
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Thematrix representation %& = P"−1 of the associated projected transfer operator
&%& is then given by

": 9 =
〈q̃: , q̃ 9〉a
〈q̃: , 1〉a

and P: 9 =
〈q̃: , %q̃ 9〉a
〈q̃: , 1〉a

, (4.8)

where a denotes the invariant measure of the effective dynamics IC = b(-C ) on
the much lower-dimensional reaction coordinate space Z. Consequently, a full set
partition {�1, . . . , �=} of the reaction coordinate space Z = b(X) induces a full
partition {�1, . . . , �=} of X with indicator sets q�8 = q�8 ◦ b, and the associated
transition matrix has entries

P` [-g ∈ � 9 | -0 ∈ �:] = Pa [Ig ∈ � 9 | I0 ∈ �8] . (4.9)

When turning to diffusive molecular dynamics and considering the matrix rep-
resentation !& = !̃"−1 of the projected generator &!& induced by the basis
{q̃1, . . . , q̃=}, we find the following interesting consequence:

!̃ =
〈q: , !q 9〉`
〈q: , 1〉`

=
〈& bq: , !q 9〉`
〈q: , 1〉`

=
〈q: , & b !q 9〉`
〈q: , 1〉`

=
〈q: , (L̃q̃ 9) ◦ b〉`
〈q: , 1〉`

=
〈q̃: , L̃q̃ 9〉a
〈q̃: , 1〉a

,

where & b denotes the projection induced by b and L̃ is the generator of the
Markovian approximation (3.57) to the effective dynamics, given in (3.59). That
is, the Markovian approximation (3.57) to the effective dynamics is sufficient
to compute the matrix representation of &!&, even if it is insufficient as an
approximation of IC = b(-C ).

Dominant eigenvalues. The following result from Schütte and Sarich (2014) shows
that the dominant eigenvalues of the full transfer operator % = %C are well approx-
imated by the dominant eigenvalues of the projected transfer operator &%& if
the dominant eigenfunction of % can be well represented in the ansatz space �
(independent of whether the basis {q1, . . . , q=} of � forms a partition of unity).

Theorem 4.4 (approximation of dominant eigenvalues). Let the transfer oper-
ator % be self-adjoint with spectrum sp(%) such that there is a non-negative A < 1 so
that spec(%)∩[−A, A] contains only isolated eigenvalues, among them the dominant
eigenvalues 1 = Λ0 > Λ1 > · · · > Λ<. Let D0, D1, . . . , D< be the corresponding
normalized eigenvectors, and � ⊂ !2(`) a subspace with

1 ∈ � and dim(�) ≕ = > <. (4.10)

Let & denote the orthogonal projection onto �, and let 1 = Λ̂0 > Λ̂1 > · · · > Λ̂<
be the dominant eigenvalues of the projected operator &%&. Then

max
8=1,...,<

|Λ8 − Λ̂8 | ≤ <Λ1Y
2, with Y = max

8=1,...,<
‖&⊥D8 ‖` . (4.11)
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Furthermore, for every isolated eigenvalue Λ of % with corresponding normalized
eigenvector D and X = ‖&⊥D‖`, there is an eigenvalue Λ̂ of &%& such that

|Λ − Λ̂| ≤ _1X(1 − X2)−1/2.

Remark 4.5 (projected generators). Conrad, Sarich and Schütte (2012) have
given a similar result for the dominant eigenvalues of the associated generator.

Convergence. By increasing the number of ansatz functions and thus the dimen-
sion of �, a convergence of the Galerkin approximation &%& to the real operator
% in the strong operator topology (i.e. pointwise on !2(`)) as =→∞ can generally
be obtained (Korda and Mezic 2018b). However, desirable spectral convergence
results typically require a convergence in operator norm (Kato 1995). The spectral
convergence is therefore ultimately limited by the pointwise convergence of nu-
merical projection methods. As an alternative, there exist RKHS-based versions
where the basis functions are adapted to the data (Klus et al. 2019b). These meth-
ods allow for stronger modes of convergence than the classical projection methods
(Mollenhauer and Koltai 2020). They will be discussed in more detail in Section 5
on data-driven methods.

Projection error. General estimates on the projection error Y in Theorem 4.4 are
given in terms of the distance between % and &%&. The theorem of Davis and
Kahan (1970) and its generalization in Yu, Wang and Samworth (2015) show that
the error will generally depend on the spectral gap: if % and � are compact and
positive self-adjoint in !2(`), and Π<(%) and Π<(% + �) denote the orthonormal
projections on the first < eigenfunctions of % and % + � , respectively, then

‖Π<(%) − Π<(% + �)‖HS ≤
22/3√<

Λ< − Λ<+1
‖� ‖!2(`), (4.12)

where ‖ · ‖HS denotes the associated Hilbert–Schmidt norm and Λ< > Λ<+1 the
<th and (< + 1)th eigenvalue of %. For a generalization to non-self-adjoint transfer
operators in terms of singular values, see Mollenhauer (2022, Theorem 3.5.6).
However, despite its theoretical value, this estimate is of limited use in practice
since one would be required to estimate ‖� ‖!2(`) = ‖% − &%&‖!2(`). It will,
however, become handy in controlling statistical errors; see Section 5, for example.

Propagation error. In Theorem 4.4 the time C in % = %C is not explicitly specified.
In general we have (&%&): ≠ &%:& such that the long term evolution of functions
under (&%&): will differ from the projected evolution under &%:& such that we
should know about the propagation error

�(:) = ‖(&%&): −&%:&‖` .

Therefore let us fix a specific lag time g and set % = %g . Under the same
assumptions on % = %g and � as in Theorem 4.4, and with Y as defined in (4.11),
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ansatz functionspartition: 1�1 , . . . , 1�= q1, . . . , q= & k1, . . . , k=

PCCA+ for transition matrix SVD of time-correlation matrixaggregation method

best < × < linear modelMarkov state model VAMP rank-< model

Figure 4.1. There are several approaches to aggregation of the ansatz space for
finding the best low-dimensional linear model. Here two of these approaches are
illustrated: on the left, Markov state model (MSM) building, where the aggregation
of an = × = transition matrix using membership functions is done by PCCA+ (see
Section 4.2.3); on the right, the variational approach toMarkov processes (VAMP),
where the aggregation is performed by singular value decomposition (SVD) of the
time-correlation matrix (see Section 4.3.1).

it is shown in Schütte and Sarich (2014) and Sarich, Noé and Schütte (2010) that

�(:) ≤ min[2 ; �(:)] · Λ:1 , (4.13)

with [ = A/Λ1 < 1 and

�(:) = (<Y + [)
[
<1/2(: − 1) Y + [

1 − [ (1 − [:−1)
]
. (4.14)

Sarich et al. (2010) have shown that by choosing an appropriate ansatz space (with
small Y) and large enough lag time g, we can control the maximal propagation error.

4.2.2. Best linear model
We saw that given an ansatz space � = span{q1, . . . , q=}, the projected transfer
operator &%g&, respectively its = × = matrix representation, is the best approxim-
ation in the sense of ‖ · ‖`. If %g has just < � = dominant eigenvalues, the natural
objective is to look for ways to find the best < × < linear model. Figure 4.1 illus-
trates two prominent strategies: Markov state models (MSMs) (see Section 4.2.3)
and the variational approach to Markov processes (VAMP) (see Section 4.3.1).

Several other approaches will be explained in detail below, e.g. the milestoning
approach using committor functions as ansatz functions (see Section 4.2.4), the
time-lagged independent component analysis (TICA), which maximizes the auto-
correlation time of aggregated coordinates (see Section 5), and extended dynamic
mode decomposition (EDMD), a data-basedmethodwhere a least-squares approach
is used for aggregation (see Section 5.1.1).

4.2.3. Markov state models
The special case of a full partition projection based on a complete partition of the
state space into disjoint subsets {�: }:=1,...,=, X =

⋃=
:=1 �: , associated with the

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 581

partition of unity {q1, . . . , q=} spanned by the indicator functions q: = q�: of the
partition sets, is the basis of the most prominent approach to discretizing transfer
operators, namely Markov state models (MSMs). The projected transfer operator
&%g& is represented by the stochastic matrix %g

&
with entries

%g&,: 9 = P` [-g ∈ �: | -0 ∈ � 9], (4.15)

that induces a Markov chain on the state space {1, . . . , =} with transition probabil-
ities %g

&,: 9
. The phrase ‘Markov state models’ originates from this fact.

In the previous section we mentioned that in general

(%g&): ≠ (%:g)&,

which is due to non-Markovian behaviour. Let us illustrate this by means of the
discrete index process (-̃:):∈N on the finite index space {1, . . . , =}, by setting

-̃: = 8 ⇐⇒ -:g ∈ �8 . (4.16)

Here (-̃:) describes the snapshot dynamics of the continuous process (-C ) with
lag time g between the sets �1, . . . , �=. The entries of the transition matrix %g

&

are then given by %g
&,8 9

= P ˆ̀ [-̃:+1 = 9 | -̃: = 8]. However, in general, the index
process (-̃:) is not Markovian, that is,

P ˆ̀ [-̃:+1 = 9 | -̃: = 8: , -̃:−1 = 8:−1, . . . , -̃0 = 80] ≠ P ˆ̀ [-̃:+1 = 9 | -̃: = 8:] .

Example 4.6 (two deep wells). This can be understood on the basis of an energy
landscape with just two deep wells and two sets � and � around these wells that
form a full partitioning of state space. When considering a lag time g that is
small compared to the expected transition time from � to �, the knowledge of
-(:−1)g ∈ � implies that at time :g most trajectories that arrived in set � are still
close to set � because the lag time g is not large enough. That is, they are still
inside the transition region and not close enough to the minimum in set �, as is to
be expected with overwhelming probability if we just know -:g ∈ �. Therefore

P` [-(:+1)g ∈ � | -:g ∈ �, -(:−1)g ∈ �] > P` [-(:+1)g ∈ � | -:g ∈ �] .

In other words, if g is too small, the effect of re-crossing causes memory, thus
making the index process non-Markovian.

This re-crossing problem has several other undesired consequences. For ex-
ample, let us consider the implied dominant timescales )8 of the process (-C ) as
defined in (3.3). The )8 are given by means of the dominant eigenvalues Λ8(g) of
the associated transfer operator %g but do not depend on the chosen timescale g.
Naturally we aim to approximate the)8 via the implied dominant timescales)&,8(g)
associated with &%g&. To this end, we define

)&,8(g) = −1
g

log(Λ̂8(g)), (4.17)
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where Λ̂8(g) are the dominant eigenvalues of &%g&, respectively, of its matrix
representation %&. When computing the )&,8(g), we observe that they increase
strongly with g for small values of g and then slowly (but monotonically) reach
a plateau for large values of g. The plateau value )&,8 is an approximation of
the dominant timescales )8 of the full process with an accuracy depending on the
accuracy of the dominant eigenvalues and therefore on the projection error of the
chosen subspace �; see Theorem 4.4. However, the increase of )&,8(g) with g
is an effect of the re-crossing phenomenon and thus of the non-Markovianity of
the index process (-̃:); the plateau )&,8 is reached for values of g for which this
problem becomes less and less of an issue, that is, as soon as (-̃:) becomes closer
and closer to Markovianity.

Perron-cluster cluster analysis (PCCA). PCCA (Deuflhard and Weber 2005) ex-
ploits the structure of the eigenvectors in order to define the metastable (long-lived)
states of a Markov chain. PCCA+ and its variants (Röblitz and Weber 2013, Frank,
Sikorski and Röblitz 2022) are advanced methods that find an optimal linear trans-
formation of the eigenvector into membership functions. In particular, PCCA+
ensures that all membership functions are non-negative, and partitions of unity.
Using PCCA+ or PCCA++ with a Markov model is a common approach to finding
long-lived states in molecular dynamics trajectories.
PCCA starts from a Markov state model with transition matrix %& of the form

(4.15), originating from a set partition �1, . . . , �= of the state space. If %& res-
ults from a self-adjoint transfer operator, that is, if it is reversible in the sense of
Theorem 4.3(ii), then the dominant subspace of %& is spanned by its first < eigen-
vectors, that is, if the matrix * ∈ R=×< contains the dominant eigenvectors in its
columns andΛ ∈ R<×< denotes the diagonal matrix of its< dominant eigenvalues,
then*>�`* = Id with �` = diag(`(�8)) in accordance with orthonormality with
respect to 〈·, ·〉`, and

%&* = *Λ. (4.18)

If %& is not reversible, then we do not have orthonormal eigenvectors and real-
valued eigenvalues. However, the decomposition (4.18) is still possible based on
the Schur decomposition, that is,* is an orthonormal matrix (*>�`* = Id) whose
columns are called the Schur vectors, and Λ is an upper quasi-triangular (1× 1 and
2 × 2 blocks on its diagonal) matrix, called the Schur form. PCCA uses the Schur
reordering algorithm (Kressner 2006, Röblitz andWeber 2013). The columns of*
are called the Schur vectors of %&. The eigenvalues of %& appear on the diagonal
of Λ, where complex conjugate eigenvalues correspond to the 2 × 2 blocks. The
first eigenvalue 1 always has the eigenvector 4 = (1, . . . , 1)>, thus *8,1 = 1 for all
8 = 1, . . . , =.

PCCA aims to find a linear transformation matrix � ∈ R<×< such that the
column of* (the eigenvectors or Schur vectors) is transformed into < membership
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vectors. To this end, we set
j = *�,

such that the < column vectors of j = (j1, . . . , j<) ∈ R=×<, j8 = (j 98) 9=1,...,= ∈
R=, are membership vectors, that is, they are non-negative and form a partition of
unity:

j8 9 ≥ 0, (4.19)
=∑
8=1

j 98 = 1 for all 9 = 1, . . . , =. (4.20)

The set of feasible matrices A ⊂ R=×= forms a convex polytope with constraints
originating from (4.19) and (4.20) such that � ∈ A if and only if

�1 9 ≥ −
<∑
:=2

*8:�: 9 , 8 = 1, . . . , =, 9 = 1, . . . , <, (4.21)

�81 = X81 −
<∑
9=2

�8 9 , 8 = 1, . . . , <. (4.22)

Röblitz andWeber (2013) argue that the freedom in choosing � ∈ A should be used
to find membership vectors that are as crisp as possible, i.e. as close as possible to
characteristic functions. This leads to the maximization problem

max
�∈A

�(�), with �(�) =
<∑

8, 9=1

�2
8 9

�1 9
, (4.23)

which is then solved using an efficient optimization algorithm based on the Schur
reordering algorithm that takes the side constraints (4.21) and (4.22) into account
by projection techniques; see Röblitz and Weber (2013) and Sikorski (2015) for
details. Moreover, there are several extensions and variants, for example to take
into account specifics of non-reversible cases; see Frank et al. (2022).

Resulting MSM. What did we achieve? We computed the transition matrix %&,
given by (4.15), associated with the transfer operator %g based on the set partition
{�1, . . . , �=} of state space. If g is large enough, the number of dominant eigen-
values of %&, denoted by <, is taken as a good approximation of the < leading
eigenvalues of %g . Next we use PCCA+ to find the aggregation of %& into an
< ×< transition matrix with the same < eigenvalues. To this end, we compute the
optimal matrix � (solution of (4.23)) and the associated collection of membership
vectors, the columns of j = *�. These vectors allow us to define membership
functions in state space,

j̃8(G) =
=∑
9=1

j 98 1� 9 (G),
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that form a partition of unity in X. Taking these functions as ansatz functions of
a Galerkin projection, we get the following matrix representation of the associated
projected transfer operator:

%j = P"−1, P8 9 =
〈j̃8 , %g j̃ 9〉`
〈j̃8 , 1〉`

, " =
〈j̃8 , j̃ 9〉`
〈j̃8 , 1〉`

.

With �` = diag(`(�8)), we find that %j can be computed from %& directly,

%j = (j>�`%&j) (j>�`j)−1, (4.24)

and by inserting j = �* and %&* = *Λ immediately

%j = (�>Λ�) (�>�)−1,

which shows that %j and %& have the same < dominant eigenvalues, the diagonal
entries of Λ. Moreover, the projection error related to %j is the same as that with
respect to %&. Therefore %j in (4.24) is called the resulting Markov state model
(MSM) with < metastable states, the best < ×< approximation of %& in the sense
of (4.23).

4.2.4. Projection on committor functions: milestoning
There are several ways to circumvent the re-crossing problem of standard MSMs.
The most natural one uses a partition of unity that connects to the dynamics of
the underlying process with respect to its metastable sets and avoids transition
regions between the metastable sets having to be intersected by the boundaries
between the partition sets �8 of the MSM. To this end, assume several disjoint
sets �1, . . . , �= ⊂ X are given that do not form a decomposition of state space but
represent, for example, the cores of the main wells in the energy landscape. Then
we define the committors @1, . . . , @= for these core sets according to (3.24). Thus,
for every core set �8 , the associated committor function @8(G) is the probability
that the process will hit the core set �8 next among the other core sets when the
process is started in state G. Obviously, the committor functions form a partition of
unity under the condition that the process is sufficiently ergodic and will hit almost
surely one core set in finite time.
Schütte et al. (2011) introduced a projection onto the committor space

� = span{@1, . . . , @=}

and analysed the associated projected transfer operator %. From Section 4.2.1 it is
clear that the matrix representation of the projected transfer operator &%& has the
form %& = P"−1 with

": 9 =
〈@: , @ 9〉`
〈@: , 1〉`

and P: 9 =
〈@: , %@ 9〉`
〈@: , 1〉`

. (4.25)
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These expressions seem to indicate that we first have to compute all < committor
functions before being able to compute the representation matrices " and P . This
is not the case, as stated by the following theorem (Sarich 2011, Schütte et al.
2011).

Theorem 4.7 (milestoning process). Let % = %g be the transfer operator of the
Markov process (-C ) for given lag time g. Let & be the orthogonal projection onto
the space � = {@1, . . . , @=} spanned by the committor functions with respect to
some core sets�1, . . . , �=, and let %& = P"−1 denote the matrix representation of
&%& as given in (4.25). Moreover, let (-̃−

:
) and (-̃+

:
) be the backward and forward

discrete-time milestoning processes defined by

-̃−: = 8 ⇐⇒ -f(:g) ∈ �8 , with f(C) = sup
B≤C

{
-B ∈

=⋃
:=1

�:

}
(4.26)

and

-̃+: = 8 ⇐⇒ -f+(:g) ∈ �8 , with f+(C) = inf
B≥C

{
-B ∈

=⋃
:=1

�:

}
. (4.27)

Then
"8 9 = P

[
-̃+: = 9 | -̃

−
: = 8

]
(4.28)

and
P8 9 = P

[
-̃+:+1 = 9 | -̃

−
: = 8

]
. (4.29)

The milestoning processes are index processes that simply keep track of the last
and next core set hits: -̃−

:
= 8 means that the index of the core set where the process

last came from before time :g was 8. So (-̃−
:

) always stays in a state 8 until the
original process hits another core set� 9 , 9 ≠ 8. Similarly, -̃+

:
= 9 holds if the index

of the core set that is hit next after time :g is 9 .
Thus Theorem 4.7 shows that when projecting onto a committor space, one can

construct a matrix representation %& for the projected transfer operator&%& using
transition probabilities between the core sets as given by the milestoning processes.
This leads to a strong computational advantage because the committor functions
never need to be computed, and nor does any inner product.
According to Theorem 4.4, the deviation of the eigenvalues Λ̂8 of the projected

transfer operator &%& from the true eigenvalues Λ8 can be estimated according
to max8 |Λ8 − Λ̂8 | ≤ =Λ1 max8 ‖&⊥D8 ‖`, with the projection error ‖&⊥D8 ‖` of
the dominant eigenfunctions D8 of %. For the subspace spanned by committor
functions, we have already seen in Theorem 3.13 that for reversible processes this
projection error can be understood more precisely. The bound given there means
that

max
8
‖&⊥D8 ‖` � 1
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if the core sets �8 form the cores of the main metastable sets, i.e. the centres of the
basins of attraction of the deepest wells in the energy landscape, such that

• the dominant eigenfunctions D8 are almost constant on the core sets,
• the mean first exit time from the transition region X \ (

⋃
8 �8) is much smal-

ler than the dominant implied timescales )8 associated with the dominant
eigenvalues, and
• the invariant measure of the transition region is small.

Remark 4.8 (milestoning). Milestoning was introduced as a computational ap-
proach in a different context, without reference to committor functions or transfer
operators, in Faradjian and Elber (2004) and Bello-Rivas and Elber (2015). It
starts by choosing a set of non-intersecting, sequential surfaces, called milestones,
and initiating short trajectories from each milestone, which are terminated when
they reach an adjacent milestone for the first time. From the average duration of
these trajectories and the probabilities of where they terminate, a rate matrix can be
constructed and then used to calculate the mean first-passage time (MFPT) between
any two milestones (Berezhkovskii and Szabo 2019).

4.3. Variational approaches

The min-max formula or Rayleigh–Ritz principle allows us to compute the largest
eigenvalues of a self-adjoint, positive definite operator by means of a variational
principle.

For example, let !Diff again denote the generator of the diffusive molecular
dynamics process, let the growth conditions (3.7) on the potential energy function
+ be satisfied and let _: < 0 denote the :th largest eigenvalue after _0 = 1. Then

−_: = min
�:+1

max
5 ∈�:+1
‖ 5 ‖`=1

〈 5 ,−!Diff 5 〉`,

where theminimum runs over all (:+1)-dimensional subspaces�:+1 of the Sobolev
space H1 (Zhang et al. 2022). This statement shows that the projected generator
of (4.7), since it belongs to a specific finite-dimensional subspace, always has
eigenvalues that approximate the exact eigenvalues from below.

Furthermore, theGalerkin approach, based onfixing a specific finite-dimensional
subspace �, is fundamentally insufficient in the sense of parametric models in
statistics, the parameter choice being the fixed ansatz functions spanning the ansatz
space. Instead one should look for non-parametric alternatives, where the optimal
subspace itself is becoming part of a variational formulation. In the context of
molecular dynamics, this idea was first introduced in Noé and Nüske (2013).
However, most of the subsequent approaches use variational principles not for
eigenvalues but for singular values instead, thus allowing for non-reversible cases.
They aim to find the best finite-dimensional linear representation of the given
transfer operator without specifying a subspace in advance.
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Wewill follow the so-called variational approach forMarkov processes (VAMP)
(Mardt et al. 2018, Wu and Noé 2020). For the sake of simplicity we restrict our
attention to transfer operators % = %C in !2(`) that are Hilbert–Schmidt operators,
and how to best approximate them by low-rank operators. To this end, we start in
a slightly more general setting in which we consider linear operators � : � → �

between two arbitrary separable Hilbert spaces.
A bounded operator � : � → � is said to be A-dimensional if rank(�) = A . If

A < ∞, we say that � is finite-rank. The given operator � : � → � is finite-
rank with rank(�) = A if and only if there exist linearly independent sets { 58 , 8 =
1, . . . , A} ⊂ � and {68 , 8 = 1, . . . , A} ⊂ � such that

� =

A∑
8=1
〈 58 , · 〉�68 ,

where 〈·, ·〉� is the inner product in �. Furthermore, then the adjoint of � is
given by

�∗ =
A∑
8=1
〈68 , · 〉� 58 .

The class of finite-rank operators is a dense subset of the class of compact operators
with respect to the operator norm.
Let { 58 , 8 ∈ �} ⊂ � be a complete orthonormal system. An operator � : � → �

is called a Hilbert–Schmidt operator if

‖�‖2HS =
∑
8∈�
‖� 58 ‖2� < ∞, (4.30)

and then the Hilbert–Schmidt norm ‖�‖HS of � is independent of the orthonormal
system. The space of finite-rank operators is a dense subset of the space of Hilbert–
Schmidt operators with respect to the Hilbert–Schmidt norm.
The transfer operator %C : !2(`)→ !2(`) with

%CD(H)`(H) =
∫

?(C, G, H)D(G)`(G) dG

is Hilbert–Schmidt if

‖%C ‖2HS =
∫
X

∫
X
?(C, G, H)2 `(G)

`(H)
dG dH < ∞.

Best rank-A approximation. Every Hilbert–Schmidt operator is compact and there-
fore admits an SVD as in (3.5). This allows the following best low-rank approxim-
ation statement, here stated as in Wu and Noé (2020) and Froyland et al. (2013).
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Theorem 4.9 (optimal rank-A approximation of transfer operators). Let the
transfer operator % = %C : � → � be Hilbert–Schmidt with singular value decom-
position

% =
∑
8∈�

B8 〈D8 , ·〉� E8 , (4.31)

with orthonormal systems {D8 , 8 ∈ �} ⊂ � and {E8 , 8 ∈ �} ⊂ �, and singular values
{B8 , 8 ∈ �}, ordered such that B8 ≥ B8+1. Then, for given A ∈ N, the unique solution
of the variational problem

min
�: �→�,
rank(�)=A

‖% − �‖HS

is given by

%A =

A∑
8=1

B8 〈D8 , ·〉� E8 .

Moreover, for sets of functions 5 = { 51, . . . , 5A } ⊂ � and 6 = {61, . . . , 6A } ⊂ �,
and any positive integer : ∈ N,

A∑
8=1

B:8 = max
5 ,6

A∑
8=1
〈% 58 , 68〉:� , with 5 , 6 such that 〈68 , 6 9〉� = X8 9 = 〈 58 , 5 9〉� .

(4.32)

4.3.1. Variational approach to Markov processes (VAMP)
In VAMP (Mardt et al. 2018, Wu and Noé 2020), for given A ∈ N, the VAMP-:-
score of the transfer operator %g in � = !2(`) with respect to orthonormal sets
5 = { 51, . . . , 5A } ⊂ � and 6 = {61, . . . , 6A } ⊂ � is defined as

R:( 5 , 6, g) =
A∑
8=1
〈%g 58 , 68〉:� =

A∑
8=1
〈 58 , %g∗ 68〉:`, (4.33)

which can also be expressed as

R:( 5 , 6, g) =
A∑
8=1
E`( 58(-0)68(-g)): =

A∑
8=1

� 58 ,68 (g): , (4.34)

in terms of the time correlations of the functions 58 and 68 , as introduced in (2.5).
Now let q = (q1, . . . , q=)> ∈ �= and k = (k1, . . . , k=) ∈ �= denote linearly

independent ansatz functions. The representation of 5 = { 58 , 8 = 1, . . . , A} and
6 = {68 , 8 = 1, . . . , =} as linear combinations of these ansatz functions, that is,

58 = *8q, *8 ∈ R1×=,

68 = k+ 9 , + 9 ∈ R=×1,

transforms (4.33) into

R:( 5 , 6, g) =
A∑
8=1

( =∑
9 ,;=1

*8, 9�q 9 ,k; (g)+8,;
):

=

A∑
8=1

(*8�q,k(g)+8): ,
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where �q,k(g) ∈ R=×= denotes the time-correlation matrix between the ansatz
functions, with entries �q8 ,k9 (g). The orthogonality constraints on 5 and 6 trans-
form to

〈 58 , 5 9〉� = *8(q*>9 , (q = ((q,:;), (q,:; = 〈q: , q;〉� ,
〈68 , 6 9〉� = +>8 (k+ 9 , (k = ((k,:;), (k,:; = 〈k: , k;〉� .

Therefore the variational problem (4.32) transforms into the variational problem

max
*,+

A∑
8=1

(*8�q,k(g)+8): such that*8(q*>9 = X8 9 = +
>
8 (k+ 9 . (4.35)

This immediately leads to the following.

Theorem 4.10 (optimal rank-A VAMP model). Let the ansatz functions be given
by (q1, . . . , q=) and (k1, . . . , k=), let �q,k(g) be the associated time-correlation
matrix, and let (q and (k be the associated mass matrices. Then the matrix rep-
resentation (4.35) of the variational problem (4.32) with respect to ansatz functions
has the form*8 = *̃8

>
(
−1/2
q

and+8 = (−1/2
k

+̃8 , with *̃8 , +̃8 ∈ R=×1 being the left and
right singular vectors of the matrix

(
−1/2
q

�q,k(g)(−1/2
k

=

A∑
8=1

B̃8*̃8+̃8
>
, (4.36)

whose singular values B̃8 are the approximations of the singular values B8 of the
transfer operator % from (4.31) with respect to the ansatz spaces.

Wu and Noé (2020) then used this result to construct data-based algorithms for
finding the best rank-A approximation of the transfer operator; see Section 5. There
we will also see that we can go beyond this via a data-based computational of the
optimal ansatz functions.
The VAMP approach has proved to be quite general and powerful; in partic-

ular, the relative freedom we still have to choose Hilbert spaces � and � also
allows us to extend the transfer operator approach to non-equilibrium processes
and the identification of coherent sets (Koltai, Wu, Noé and Schütte 2018); see also
Section 5.

5. Data-driven methods
In this section we will provide an overview of different data-driven methods for
the approximation of transfer operators and their eigenvalues and eigenfunctions.
Similar approaches can also be used to estimate the generators of transfer operat-
ors. All the algorithms except for the methods to approximate the generators are
implemented in the deeptime toolbox (Hoffmann et al. 2021).
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Mollenhauer, Mücke and Sullivan (2022) have considered the problem of learn-
ing a linear operator between two Hilbert spaces from empirical observations in
general. Their framework allows for the elegant derivation of dimension-free rates
for generic learning algorithms, that is, learning a transfer operator from data is not
fundamentally more difficult than learning a matrix or tensor.

5.1. Data-driven methods for time-homogeneous systems

Let us consider a discrete dynamical system ( : X → X, where X ⊂ RN , so that
G ∈ X evolves as {G, ((G), (2(G), . . . }. In our setting, ( is typically given by the
flow map Φg for a fixed lag time g > 0. That is, we have trajectories of the
form {G(0), G(g), G(2g), . . . }. In what follows, we assume that the process is time-
homogeneous, i.e. the transition probabilities from time C1 to time C2 depend only
on the difference C2 − C1, and that we have training data

{(G(;), H(;))}<;=1,

with H(;) = ((G(;)). Such a training data set can, for instance, be extracted from
one long trajectory {G(1), G(2), G(3), . . . , G(<+1)}, where H(;) = G(;+1). Another way to
generate training data is to sample< initial conditions G(;) from a given distribution,
e.g. the uniform distribution or the invariant density, and to apply the dynamical
system ( to each initial condition to obtain the corresponding H(;). Note that the
estimated operators generally depend on the underlying density of the training data.

5.1.1. Extended dynamic mode decomposition
One of the simplest and most popular methods to approximate transfer operators
from data is extended dynamic mode decomposition (EDMD) (Williams et al.
2015a). Although originally developed for the Koopman operator, it can also be
used to estimate the Perron–Frobenius operator or the Perron–Frobenius operator
reweighted with respect to the invariant density (Klus, Koltai and Schütte 2016).
EDMD is a nonlinear extension of dynamic mode decomposition (DMD) (Schmid
2010), which was initially intended for the analysis of fluid dynamics problems, but
has in the meantime been used for a host of other applications, including molecular
dynamics, stock market data, traffic data, EEG data and quantum systems (Klus
et al. 2018a, Hua et al. 2017, Marrouch, Slawinska, Giannakis and Read 2020,
Avila and Mezić 2020, Klus, Nüske and Peitz 2022), to name just a few. The main
difference between DMD and EDMD is that EDMD maps the data to a higher-
dimensional feature space before solving the regression problem. This will be
described in more detail below.

Estimation of the Koopman operator. Given training data {(G(;), H(;))}<
;=1, we first

define data matrices - ∈ RN×< and . ∈ RN×< by

- =
[
G(1), G(2), . . . , G(<)] and . =

[
H(1), H(2), . . . , H(<)] .
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Further, we have to select a set of basis functions {q8}=8=1, with q8 : X → R, also
called a dictionary. The optimal choice of basis functions depends strongly on
the dynamical system, for which we aim to estimate associated transfer operators.
Ideally, the basis functions are chosen in such a way that eigenfunctions can be
well approximated by linear combinations of basis functions. In practice, however,
the properties of the eigenfunctions are not known in advance. Typical choices of
basis functions include monomials up to a certain order, indicator functions, radial
basis functions or combinations thereof. Note that we do not assume here that the
basis functions form a partition of unity. Now let q : X→ R= be the vector-valued
function

q(G) = [q1(G), q2(G), . . . , q=(G)]>.
We then define the transformed data matrices ΦG ,ΦH ∈ R=×< by

ΦG =
[
q(G(1)), q(G(2)), . . . , q(G(<))

]
and

ΦH =
[
q(H(1)), q(H(2)), . . . , q(H(<))

]
,

and solve the minimization problem

min
 ̂ ∈R=×=

‖ΦH −  ̂ >ΦG ‖� ,

whose solution is given by

 ̂ > = ΦHΦ
+
G =

(
ΦHΦ

>
G

)(
ΦGΦ

>
G

)+
= �HG�

+
GG ,

where ‖·‖� denotes the Frobenius norm and + the pseudoinverse. Furthermore,�GG
and �HG are the (uncentred) covariance and cross-covariance matrices associated
with the transformed data matrices, that is,

�GG =
1
<
ΦGΦ

>
G =

1
<

<∑
;=1

q(G(;)) ⊗ q(G(;)),

�HG =
1
<
ΦHΦ

>
G =

1
<

<∑
;=1

q(H(;)) ⊗ q(G(;)).

In some applications the mean-subtracted data are used, which essentially elimin-
ates the trivial constant eigenfunction of the Koopman operator corresponding to
the eigenvalue Λ = 1. The matrix  ̂ = �+GG�GH is a representation of the projected
Koopman operator with respect to the chosen dictionary. Any function contained
in the function space spanned by the dictionary can be written as

5 (G) = 2>q(G) =
=∑
8=1

28 q8(G),

where 2 ∈ R= contains the coefficients for the basis expansion. By solving the
above minimization problem,  ̂ is chosen such that q(H) = ( q)(G) ≈  ̂ >q(G),
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that is,

( q8)(G) ≈
=∑
9=1
 ̂ 98 q 9(G).

It follows that

( 5 )(G) =
=∑
8=1

28 ( q8)(G) ≈
=∑
8=1

28

=∑
9=1
 ̂ 98 q 9(G)

=

=∑
9=1

[ =∑
8=1

 ̂ 98 28

]
q 9(G) =

=∑
9=1
[ ̂ 2] 9 q 9(G)

= [ ̂ 2]>q(G).

Assuming that the data are i.i.d. and sampled from the probability distribution `,
EDMD then converges to the projected Koopman operator in the infinite-data limit.

Theorem 5.1. For < → ∞, EDMD converges to a Galerkin projection of the
Koopman operator onto the space span{q8 }=8=1.

Proof. It holds that

[�HG]8 9 =
1
<

<∑
;=1

q8(H(;))q 9(G(;)) −→
<→∞

∫
( q8)(G)q 9(G) d`(G) = 〈 q8 , q 9〉`,

[�GG]8 9 =
1
<

<∑
;=1

q8(G(;))q 9(G(;)) −→
<→∞

∫
q8(G)q 9(G) d`(G) = 〈q8 , q 9〉`,

where G(;) ∼ `; see also Williams et al. (2015a) and Klus et al. (2016).

Note that ` does not necessarily have to be the invariant density, but can be any
distribution. The matrices defined in (4.5) are normalized in a slightly different
fashion, but lead to the same representation of the operator, where�GG corresponds
to " and �HG to P . In addition to the number of data points <, we can also let
the number of basis functions = go to infinity. A detailed convergence analysis is
outlined in Korda and Mezic (2018b). Statements regarding the convergence of
�GG and �GH and the concentration of measure can also be found in Mollenhauer
(2022).

Estimation of the Perron–Frobenius operator. The adjoint operator can also be
easily computed using EDMD. In this case the matrix representation %̂ of the
Perron–Frobenius operator % is

%̂ = �+GG�HG .

Note, however, that the estimated operator depends on the underlying density of
the training data. If G(;) is drawn from the uniform distribution, we obtain the
Perron–Frobenius operator with respect to the Lebesgue measure, and if the data
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were extracted from one long equilibrated trajectory, then we would obtain an
estimate of the Perron–Frobenius operator with respect to the invariant density.
For a comprehensive derivation, we refer the reader to Klus et al. (2016).

Spectral decomposition. We are particularly interested in the dominant eigenvalues
of transfer operators, which represent the slowest timescales, and the associated
eigenfunctions, which contain information about metastable sets. Let E be an
eigenvector of  ̂ corresponding to the eigenvalue Λ, i.e.  ̂ E = ΛE, and define
D(G) = E>q(G). Then

( D)(G) ≈ ( ̂ E)>q(G) = ΛE>q(G) = ΛD(G).

That is, approximations of eigenfunctions are determined by the eigenvectors of
 ̂ . Provided that the covariance matrix �GG is non-singular, which implies that
�+GG = �

−1
GG , the eigenvalue problem  ̂ E = �−1

GG�GH E = ΛE can be rewritten as a
generalized eigenvalue problem of the form

�GH E = Λ�GG E

and eliminates the pseudoinverse computation. A necessary condition1 for the
existence of the inverse of �GG is that the basis functions are linearly independent.
Similarly, in order to compute eigenfunctions of the Perron–Frobenius operator,
we have to solve the generalized eigenvalue problem

�HG E = Λ�GG E.

Example 5.2. In order to illustrate a typicalworkflow, let us consider the stochastic
differential equation

d-C = −∇+(-C ) dC +
√

2 V−1 d,C ,

where the potential +(G) is given by the Himmelblau function

+(G) = (G2
1 + G2 − 11)2 + (G1 + G2

2 − 7)2

and V = 1
10 . We generate < = 10000 uniformly distributed initial conditions

G(;) in X = [−6, 6]2 and apply the Euler–Maruyama integrator with a step size
ℎ = 10−3 to compute the corresponding vectors H(;) using the lag time g = 10.
Selecting a basis comprising 900 Gaussians with bandwidth e = 1.2 centred at
the midpoints of a uniform grid, we then estimate the Koopman operator and
the Perron–Frobenius operator with the aid of EDMD and compute the dominant
eigenvalues and associated eigenfunctions. The results are shown in Figure 5.1. By
clustering the state space into metastable sets, we obtain a coarse-grained model.

1 This is not a sufficient condition since the integrals are computed via Monte Carlo integration and
depend on the data.
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(a) (b) (c)

(d) Λ1 = 1.00 (e) Λ2 = 0.98 (f) Λ3 = 0.91

(g) Λ1 = 1.00 (h) Λ2 = 0.98 (i) Λ3 = 0.91

Figure 5.1. (a) Himmelblau potential, where blue corresponds to small values and
yellow to large values. (b) Spectrum of the Koopman operator. There are three
dominant eigenvalues close to 1, implying three metastable sets. Due to the prox-
imity of the minima C and D and the large noise, these two wells constitute one
metastable set. (c) Clustering of the dominant Koopman eigenfunctions (shown
below) into three metastable sets. (d–f) Dominant eigenfunctions of the Koopman
operator. The eigenfunction corresponding to Λ1 = 1 is the constant function.
The second eigenfunction separates well A from the other wells, which forms the
highest energy barrier. The third eigenfunction separates B and C∪D. (g–i) Dom-
inant eigenfunctions of the Perron–Frobenius operator. These eigenfunctions again
contain information about the locations of the metastable sets. The eigenfunction
corresponding to Λ1 = 1 is the invariant density ` ∼ exp(−V+).
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Koopman modes and system identification. In addition to computing spectral prop-
erties of transfer operators, EDMD can also be used for prediction. Let 6 : X→ X
be the vector-valued observable defined by 6(G) = G. The function 6 is also some-
times referred to as the full-state observable. Furthermore, let � ∈ R=×N be the
matrix such that

6(G) = �>q(G). (5.1)

The easiest way to accomplish this is to add the observables {G8}N8=1 to the set of
basis functions if these functions are not already contained in the dictionary. We
define

+ =
[
E1, E2, . . . , E=

]
,

where E8 denotes the 8th eigenvector of  ̂ . Then

D(G) ≔
[
D1(G), D2(G), . . . , D=(G)

]>
= +>q(G).

It follows that

6(G) = �>q(G) = �>+−>︸  ︷︷  ︸
≔Ξ

D(G) =
=∑
8=1

b8 D8(G).

The columns of the matrix Ξ, denoted by b8 , are called Koopman modes. Applying
the Koopman operator to the full-state observable yields

( 6)(G) = 6(((G)) = ((G) ≈
=∑
8=1
Λ8 b8 D8(G).

That is, the dynamical system can be written in terms of the Koopman eigenvalues,
eigenfunctions and modes. For instance, we can now use the Koopman-based
approximation of the potentially unknown dynamical system ( for prediction and
control (Korda and Mezić 2018a, Peitz and Klus 2019). For stochastic systems we
will only be able to predict the expected value of the next state.
The above derivation of EDMD is based on the solution of a least-squares

problem. Alternatively, given a reversible dynamical system, we can formulate a
variational problem (Noé and Nüske 2013); see also Section 4. It was shown in
Klus et al. (2018b) that the resulting eigenvalue problems are identical.

Curse of dimensionality. The above derivations show that we can estimate transfer
operators and their spectra from data. In practice, however, accurate approxima-
tions of eigenfunctions often require a prohibitively large number of basis functions.
Assume that we want to use =8 basis functions for each variable G8; then the product
basis contains = =

∏3
8=1 =8 functions. Storing the covariance and cross-covariance
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matrices and solving the resulting eigenvalue problem thus often becomes in-
feasible for high-dimensional problems. This is a consequence of the curse of
dimensionality. Different approaches have been developed over the last few years
to mitigate this effect, for example kernel-based and tensor-based methods as well
as deep-learning techniques.

5.1.2. Kernel-based extensions
There are two different scenarios: the number of data points < is larger than (or
equal to) the number of basis functions =, or vice versa. Conventional EDMD
requires computing (cross-) covariance matrices, which in turn requires computing
outer products of the form q(G(;)) ⊗ q(G(;)) and q(H(;)) ⊗ q(G(;)), and solving an
=-dimensional eigenvalue problem. If, on the other hand, = > <, which is, for
instance, often the case for fluid dynamics problems, it is possible to construct a
dual<-dimensional problem. The idea is to rewrite the algorithm in such a way that
only inner products need to be computed, i.e. 〈q(G(;)), q(G(;))〉 and 〈q(H(;)), q(G(;))〉.
This additionally allows us to replace the inner product in feature space by a kernel
function : : X × X→ R such that :(G, G ′) = 〈q(G), q(G ′)〉, which can be evaluated
efficiently without explicitly constructing the feature spacemapping q by exploiting
the so-called kernel trick. Instead of covariance and cross-covariance matrices, we
then have to compute (generalized) Gram matrices, i.e. �GG and �HG with entries

[�GG]8 9 = :(G(8), G( 9)) and [�HG]8 9 = :(H(8), G( 9)). (5.2)

Furthermore, kernels allow us to map the data into potentially infinite-dimensional
feature spaces. An example of a kernel that spans an infinite-dimensional feature
space is the standard Gaussian function

:(G, G ′) = exp
(
− ‖G − G

′‖2
2e2

)
,

where the bandwidth e is a hyperparameter. Introducing the required reproducing
kernel Hilbert spaces (Schölkopf and Smola 2001, Steinwart and Christmann 2008)
in detail, however, is beyond the scope of this review. Wewill briefly summarize the
main results. For a detailed derivation and high-dimensional molecular dynamics
examples, we refer the reader to Williams et al. (2015b) and Klus et al. (2018a,
2019b).

Eigenfunctions of the Koopman operator can be approximated by solving the
generalized eigenvalue problem

�HGF = Λ�GGF

and defining

D(G) =
<∑
8=1

F8 :(G(8), G).
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Analogously, for the Perron–Frobenius operator, we solve

�GHF = Λ�GGF

and set

D(G) =
<∑
8=1

F̃8 :(G(8), G),

where F̃ = �−1
GGF. Note that computing these eigenfunctions does not require

explicit evaluation of the feature map q: the algorithms rely solely on kernel
evaluations.
The advantage of kernel EDMD is that it also works well for high-dimensional

systems. However, the number of data points < that can be taken into account is
limited since the complexity of solving the typically dense generalized eigenvalue
problem is $(<3). Another benefit is that we do not have to explicitly construct
a set of basis functions: the feature space mapping q is implicitly defined by the
kernel. Choosing the right kernel for a given system – or tuning its hyperparameters
such as the bandwidth – is still an open problem. In practice, the Gaussian kernel is
often a good choice. A kernel-based variant of TICA that is based on the variational
principle has been proposed in Schwantes and Pande (2015).

5.1.3. Tensor-based variants
EDMD maps the data to a generally higher-dimensional feature space. The size
of the resulting data matrices ΦG ,ΦH ∈ R=×< depends on the number of basis
functions = and the number of snapshots <. The idea behind tensor-based methods
is to construct a tensor product basis of simple (typically univariate) functions

5(G) = q1(G) ⊗ · · · ⊗ q?(G) =


q1,1(G)
...

q1,=1(G)

 ⊗ · · · ⊗

q?,1(G)
...

q?,=? (G)

 ∈ R
=1×=2×···×=?

so that �G ,�H ∈ R=1×=2×···×=?×<. Choosing, for example, ? = N and q8(G) =
[1, G8 , G2

8
, . . . , G

=8−1
8
]> results in a basis comprising all monomials of the form∏N

8=1 G
@8
8
, with 0 ≤ @8 ≤ =8 − 1. Since the size of a tensor grows exponentially with

the dimension N , these high-dimensional arrays are decomposed into a network
of lower-dimensional tensors using higher-order singular value decompositions or
other types of low-rank approximations. There are many different tensor formats
(Tucker 1964, Carroll and Chang 1970, Hackbusch 2014), one of the most powerful
and efficient being the tensor-train format (Oseledets 2011, Gelß 2017). Tensor-
based variants of the variational approach and EDMD, which exploit the low-
rank structure to compute approximations of the eigenvalues and eigenfunctions
of transfer operators without constructing the full tensor, have been proposed in
Nüske, Schneider, Vitalini and Noé (2016) and Nüske, Gelß, Klus and Clementi
(2021).
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5.1.4. Deep learning approaches
Selecting a suitable dictionary often requires domain knowledge. A deep learning
approach that automatically generates dictionaries is described in Yeung, Kundu
and Hodas (2019). The basis functions are defined to be the output of a deep
neural network and the dictionary and the Koopman operator are thus learned
simultaneously. Since the basis functions are then tailored to the given system, it
is possible to reduce the size of the dictionary significantly. A similar method to
learn suitable observables using autoencoders can be found in Alford-Lago, Curtis,
Ihler and Issan (2022).

5.2. Data-driven methods for time-inhomogeneous systems

So far we have assumed that the system is time-homogeneous. However, in general
this is not necessarily the case. The energy potential and hence also the meta-
stable sets could, for instance, change over time or the system might depend on
external forcing terms. For such problems, the notion of metastability needs to be
generalized. Instead of computing metastable sets we then compute coherent sets,
which can be regarded as time-dependent metastable sets and play an important
role in the analysis of transport and mixing processes in fluid dynamics. The com-
putation of such coherent sets is based on a generalized operator corresponding to
the forward–backward dynamics of the system (Froyland 2013, Banisch and Koltai
2017, Froyland and Junge 2018). Various other approaches for detecting coherent
sets have been developed in the past; an overview of Lagrangian-based methods is
presented in Allshouse and Peacock (2015).

5.2.1. Canonical correlation analysis
Let `(G) be a reference density (not necessarily the invariant density, which might
not exist) at time C = 0 and let

a(G) =
∫

?g(G, H)`(G) dG (5.3)

be the density mapped forward by the dynamics, i.e. the image density at time
C = g. The forward–backward operator � is then defined by

� 5 (G) =
∫

?g(G, H)
1
a(H)

∫
?g(I, H) 5 (I)`(I) dI dH (5.4)

and can be regarded as the composition of the Koopman operator and a reweighted
Perron–Frobenius operator; see Banisch and Koltai (2017) for a detailed deriva-
tion. We are again interested in spectral properties of this operator. By applying
clustering techniques to the dominant eigenfunctions, we obtain sets that are al-
most invariant under the forward–backward dynamics. These sets are now time-
dependent. Initial conditions starting in such a coherent set will typically stay
close together over long timescales. Koltai et al. (2018), Klus, Husic, Mollenhauer
and Noé (2019a) and Wu and Noé (2020) have shown that the forward–backward
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operator can also be approximated using covariance and cross-covariance matrices,
and that identifying dominant eigenvalues and eigenfunctions is related to apply-
ing nonlinear variants of canonical correlation analysis (CCA) (Hotelling 1936,
Melzer, Reiter and Bischof 2001) to Lagrangian data.

Estimation of the forward–backward operator. Given two multi-dimensional ran-
dom variables - and . , CCA identifies basis vectors such that the correlation
between the projections of - and . onto these basis vectors is maximized. We ap-
plyCCA to trajectory data, where. is a time-lagged version of - , but in order to find
nonlinear transformations, we first map the data to a typically higher-dimensional
feature space. The derivation of CCA requires the data to have zero mean, that is,
we have to centre the data in feature space. We will show that CCA is related to
eigenfunctions of the forward–backward operator. We again use training data of
the form {(G(;), H(;))}<

;=1 and select a set of basis functions {q8}
=
8=1, with q8 : X→ R.

The goal is to find two nonlinear mappings 5 (G) = 2>G q(G) and 6(H) = 2>H q(H) such
that the correlation

d =
E[ 5 (G)6(H)]√

E[ 5 (G)2]
√
E[6(H)2]

is maximized. We have

E[ 5 (G)6(H)] = 1
<

<∑
;=1

5 (G(;))6(H(;)) =
1
<

<∑
;=1

2>G q(G(;))2>H q(H(;)) = 2>G�GH 2H

and, analogously, E[ 5 (G)2] = 2>G�GG 2G and E[6(H)2] = 2>H�HH 2H . That is, we
want to maximize

d =
2>G�GH 2H√

2>G�GG 2G

√
2>H�HH 2H

.

Since the vectors 2G and 2H are only determined up to multiplicative constants (see
Shawe-Taylor and Cristianini 2004), we write this as a constrained optimization
problem:

max
2G ,2H

2>G�GH 2H subject to

{
2>G�GG 2G = 1,
2>H�HH 2H = 1.

It can be shown – using Lagrange multipliers – that the solution is given by the
eigenvectors corresponding to the largest eigenvalue of the problem{

�GH 2H = d�GG 2G ,

�HG 2G = d�HH 2H .
(5.5)

Solving the second equation for 2H and inserting the result into the first equation
yields

�+GG�GH�
+
HH�HG2G = d

22G , (5.6)
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where we replaced the inverses, which might not exist, with pseudoinverses.
Alternatively, Tikhonov regularization could be used. The obtained expression
closely resembles the matrix representations of the transfer operators derived in
Section 5.1.1, where �+GG�GH is the Koopman operator and �+HH�HG is a reweighted
Perron–Frobenius operator.

Theorem 5.3. For < →∞, CCA converges to an approximation of the forward–
backward operator (5.4) in the space spanned by the basis functions.

Proof. The first part of (5.6), �+GG�GH , converges to the projected Koopman
operator as shown above. Furthermore, it holds that

[�GH]8 9 =
1
<

<∑
;=1

q8(G(;))q 9(H(;)) −→
<→∞

∫
q8(G) ( q 9)(G) d`(G) = 〈q8 ,  q 9〉`,

[�HH]8 9 =
1
<

<∑
;=1

q8(H(;))q 9(H(;)) −→
<→∞

∫
q8(H)q 9(H) da(H) = 〈q8 , q 9〉a ,

and 〈q8 ,  q 9〉` = 〈�q8 , q 9〉a , where

� 5 (H) =
1
a(H)

∫
?g(G, H) 5 (G)`(G) dG.

The composition of these two operators approximates the forward–backward oper-
ator; see Banisch and Koltai (2017) and Klus et al. (2019a) for a detailed derivation.

Spectral decomposition. The dominant eigenfunctions of the forward–backward
operator encode information about the coherent sets. Approximations of these
eigenfunctions can be obtained by computing the dominant eigenvalues and asso-
ciated eigenvectors of the matrix

�̂ = �+GG�GH�
+
HH�HG ,

i.e. �̂ E = ΛE, and defining D(G) = E>q(G).

Example 5.4. We construct a time-dependent potential +(G, C) by modifying the
Himmelblau potential introduced in Example 5.2 and define

+(G, C) =
(
H2

1 + H2 − 11 + 2 sin(3 B)
)2 +

(
H1 + H2

2 − 7 + 2 sin(3 B)
)2
,

where H = '(B)G and '(B) is the matrix that rotates vectors in clockwise direction
by the angle B = (2c/20)C. The distances between the wells now change in time and
the wells are also rotating around the origin; see Figure 5.2(a–c). Consequently,
the resulting stochastic differential equation and the associated transfer operators
explicitly depend on the time C and we would not be able to detect metastable
sets using standard EDMD. As in Example 5.2, we define X = [−6, 6]2 and
choose the lag time g = 10 and a basis comprising 900 Gaussians with bandwidth
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(a) C = 0 (b) C = 5 (c) C = 10

(d) (e) (f)

Figure 5.2. (a–c) Himmelblau potential at different times C. (d) Spectrum of
the forward–backward operator. There are three dominant eigenvalues close to 1,
implying the existence of three coherent sets. The corresponding eigenfunctions
are similar to the eigenfunctions of the Koopman operator shown in Figure 5.1.
(e) Clustering of the dominant eigenfunctions into three coherent sets at the initial
time C = 0. (f) End points of the trajectories at time C = 10 coloured according to
the obtained clustering. Only a few trajectories escape the coherent sets, i.e. there
is little mixing.

e = 1.2. We then generate < = 5000 initial conditions G(;) sampled from the
uniform distribution and again use the Euler–Maruyama method to compute H(;).
By applying CCA, we obtain three coherent sets corresponding to the wells A, B
and C∪D. Trajectories starting in these coherent sets are typically trapped within
the sets for a long time. The numerical results are shown in Figure 5.2(d–f).

Curse of dimensionality. Just like EDMD, standard CCA (in feature space) requires
a set of basis functions. Approximating eigenfunctions associated with high-
dimensional systems might thus be infeasible. There are again many different
variants and extensions of CCA using reproducing kernels, tensors or deep learning
techniques.
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5.2.2. Kernel-based extensions
The kernel trick can again be used to replace the covariance and cross-covariance
matrices in (5.6) by Gram matrices, resulting in kernel CCA (Melzer et al. 2001,
Shawe-Taylor and Cristianini 2004). An interpretation of kernel CCA applied to
Lagrangian data in terms of transfer operators is given in Klus et al. (2019a). In
order to compute eigenfunctions of the forward–backward operator, we have to
solve the eigenvalue problem

�+GG�
+
HH�HH�GGF = ΛF

and set

D(G) =
<∑
8=1

F8:(G(8), G).

The eigenfunctions corresponding to the largest eigenvalues encode information
about the coherent sets. To extract these sets, we apply clustering techniques such
as :-means to the dominant eigenfunctions. Note that again only kernel evaluations
are required: the feature map q itself is not needed. There exist many different
variants; see Klus et al. (2019a) for a detailed derivation and examples. A kernel
embedding-based variational approach called KVAD is described in Tian and Wu
(2021).

5.2.3. Tensor-based variants
A tensor-based formulation of CCA can be found in Nüske et al. (2021), along with
molecular dynamics and fluid dynamics examples. The idea is again to mitigate the
curse of dimensionality by using low-rank tensor approximations. In addition to
the multilinear singular value decomposition, an alternative tensor decomposition
based on a higher-order CUR decomposition (Oseledets and Tyrtyshnikov 2010) is
presented.

5.2.4. Deep learning approaches
VAMP (Wu andNoé 2020) is formulated as an optimization problem. The goal is to
find nonlinear functions that maximize the so-called VAMP-A score, which can be
regarded as a generalization of the CCA cost function. A deep-learning formulation
of the VAMP approach, called VAMPnets, is described in Mardt et al. (2018). The
training data points G(;) and H(;) are fed into two deep networks, whose outputs
are then merged and used to compute the VAMP-A score. The main advantage is
that the neural network not only optimizes the loss function but also automatically
selects basis functions that encode the slow dynamics of the system. Deep CCA
was also derived in Andrew, Arora, Bilmes and Livescu (2013). A recent survey
of machine learning techniques for enhanced sampling and discovering collective
variables in molecular dynamics can be found in Sidky, Chen and Ferguson (2020).
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5.3. Data-driven approximation of generators

In the previous sections we presented data-driven techniques to learn the Koopman
operator or the Perron–Frobenius operator. Our goal now is to estimate their
generators, which can again be posed as a regression problem.

5.3.1. Generator EDMD
Conventional EDMD requires time-series data and a dictionary containing basis
functions to estimate associated transfer operators. A method to estimate the
Koopman generator and its adjoint from data, called generator EDMD or gEDMD,
was proposed in Klus et al. (2020b).

Estimation of the Koopman generator. Given a stochastic differential equation of
the form (2.28), assume we have training data {(G(;), 1(G(;)), f(G(;)))}<

;=1, where G
(;)

is again sampled from an arbitrary distribution `, and 1(G(;)) and f(G(;)) are the
drift and diffusion terms evaluated at the training data points. That is, in order
to generate the training data, we need a black-box model that allows us either to
compute the drift and diffusion terms directly or to generate trajectory data from
which we can then estimate these terms using Kramers–Moyal formulae, that is,

1(G) = lim
C→0
E

[
1
C

(-C − G)
���� -0 = G

]
,

0(G) = lim
C→0
E

[
1
C

(-C − G)(-C − G)>
���� -0 = G

]
.

Further, gEDMD requires a set of basis functions {q8(G)}=
8=1 and, since the Koop-

man generator is a second-order differential operator, their first and second deriv-
atives.2 These derivatives can be computed either analytically or via automatic
differentiation capabilities. In what follows, we will denote the generator of the
Perron–Frobenius operator (2.29) by !% and the generator of theKoopman operator
(2.30) by ! . We again start with the Koopman case and introduce the notation

dq:(G) = (! q:)(G) =
N∑
8=1

18(G)
mq:

mG8
(G) + 1

2

N∑
8=1

N∑
9=1
08 9(G)

m2q:
mG8 mG 9

(G)

and
dq(G) =

[
dq1(G), dq2(G), . . . , dq=(G)

]>
.

That is, dq:(G) represents the Koopman generator applied to the basis function q:
evaluated in a data point G. Our goal is to derive a regression problem that allows
us to obtain a global matrix representation of the Koopman generator based on

2 Provided that the system is reversible, only first-order derivatives of the basis functions are
required; see Klus et al. (2020b) for details.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


604 C. Schütte, S. Klus and C. Hartmann

training data. To this end, we construct a new data matrix dΦG ∈ R=×<, defined by
dΦG =

[
dq(G(1)), dq(G(2)), . . . , dq(G(<))

]
,

and solve the minimization problem

min
!̂ ∈R=×=

‖dΦG − !̂> ΦG ‖� ,

whose solution is

!̂> = dΦGΦ+G =
(
dΦGΦ>G

)(
ΦGΦ

>
G

)+
= � ¤GG�

+
GG .

That is, !̂ = �+GG�G ¤G is the matrix representation of the Koopman generator
! and we have dq(G) = (! q)(G) ≈ !̂>

 
q(G), where the generator is applied

componentwise to the basis functions.

Theorem 5.5. For < → ∞, gEDMD converges to a Galerkin projection of the
Koopman generator onto the space span{q 9 }=9=1.

Proof. The proof is equivalent to the counterpart for standard EDMD. We again
assume that the data are i.i.d. sampled from `. In the infinite-data limit, it holds
that

[� ¤GG]8 9 =
1
<

<∑
;=1

dq8(G(;))q 9(G(;)) −→
<→∞

∫
(! q8)(G)q 9(G) d`(G) = 〈! q8 , q 9〉`,

[�GG]8 9 =
1
<

<∑
;=1

q8(G(;))q 9(G(;)) −→
<→∞

∫
q8(G)q 9(G) d`(G) = 〈q8 , q 9〉`,

where G(;) ∼ `; see Klus et al. (2020b) for details.
Estimation of the Perron–Frobenius generator. Using the duality between the
Koopman generator and the Perron–Frobenius generator, we obtain a matrix rep-
resentation !̂% of the adjoint operator !%, that is,

!̂% = �
+
GG� ¤GG .

Additional details and examples can be found in Klus et al. (2020b).

Spectral decomposition. In order to approximate eigenfunctions of the Koopman
generator, we thus have to solve the eigenvalue problem !̂ E = _E. The derivation
is analogous to the EDMD counterpart. We then obtain

(! D)(G) ≈ (!̂ E)>q(G) = _E>q(G) = _D(G).

If the covariance matrix is invertible, the generalized eigenvalue problem

�G ¤G E = _�GG E

can be solved instead. Equivalently, for the Perron–Frobenius generator, we have

� ¤GG E = _�GG E.
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The eigenfunctions are then again given by D(G) = E>q(G).

Koopman modes and system identification. Using standard EDMD, we were able
to learn the underlying discrete dynamical system, which in our case is typically
the flow map associated with the stochastic system for a fixed lag time g. With
the aid of gEDMD, on the other hand, we can identify the governing equations
of dynamical systems described by ordinary or stochastic differential equations.
This again requires the full-state observable 6(G) = G, written in terms of the basis
functions q; see (5.1). We define

+ =
[
E1, E2, . . . , E=

]
to be the matrix containing all the eigenvectors of !̂ , so that we can write the
eigenfunctions as

D(G) ≔
[
D1(G), D2(G), . . . , D=(G)

]>
= +>q(G).

It follows that

6(G) = �>q(G) = �>+−>︸  ︷︷  ︸
≔Ξ

D(G) =
=∑
8=1

b8 D8(G),

where thematrixΞ contains theKoopmanmodes. Applying theKoopman generator
to the full-state observable yields

(! 6)(G) = 1(G) ≈
=∑
8=1

_8 b8 D8(G).

That is, we can express the drift term using the eigenvalues, eigenfunctions and
modes of the Koopman generator and decompose it into different timescales. Al-
ternatively, we can directly write

(! 6)(G) = 1(G) ≈ (!̂ �)>q(G).

In order to estimate the diffusion term as well, note that applying the Koopman
generator to a function of the form q:(G) = G8 G 9 , which we assume is also contained
in the dictionary, yields

(! q:)(G) = 18(G)G 9 + 1 9(G)G8 + 08 9(G). (5.7)

Provided that the functions 18(G), estimated in the previous step, can be accurately
approximated and also that the functions 18(G)G 9 and 1 9(G)G8 can be expressed by
the set of basis functions, this allows us to identify 08 9(G) and hence the diffusion
matrix. Applying a Cholesky decomposition to the matrix 0(G) yields an estimate
of f(G).

Example 5.6. Let us again consider the Himmelblau system introduced in Ex-
ample 5.2. We could also use gEDMD to compute the eigenvalues and eigen-
functions of the Koopman generator, but our goal now is to learn the governing
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equations. We sample < = 100 initial conditions from the uniform distribution,
choose a dictionary comprising monomials of order up to four, and then apply
gEDMD. Here we use the exact values for 1(G(;)) and f(G(;)), but we could also
estimate these terms using the aforementioned Kramers–Moyal formulae. The first
six columns of the matrix representation of the generator with respect to this basis
are given by



1 G1 G2 G2
1 G1 G2 G2

2

1 0 14 22 20 0 20
G1 0 42 0 28 22 0
G2 0 0 26 0 14 44
G2

1 0 0 −2 84 0 0
G1 G2 0 −4 −4 0 68 0
G2

2 0 −2 0 0 0 52
G3

1 0 −4 0 0 −2 0
G2

1 G2 0 0 0 −8 −4 −4
G1 G

2
2 0 0 0 −4 −4 −8

G3
2 0 0 −4 0 −2 0
G4

1 0 0 0 −8 0 0
G3

1 G2 0 0 0 0 −4 0
G2

1 G
2
2 0 0 0 0 0 0

G1 G
3
2 0 0 0 0 −4 0

G4
2 0 0 0 0 0 −8



.

Using the second and third columns we extract the drift term

1(G) =
[
14 + 42G1 − 4G1 G2 − 2G2

2 − 4G3
1

22 + 26G2 − 2G2
1 − 4G1 G2 − 4G3

2

]
,

and using the third, fourth and fifth columns and exploiting (5.7) we extract the
diffusion matrix

0(G) =
[
20 0
0 20

]
.

The obtained function 1(G) is indeed the negative gradient of the potential +(G),
and since f(G) =

√
2 V−1� it follows that 0(G) = f(G)f(G)> = 20 �. That is, we

have successfully identified the stochastic differential equation.

This approach also works for non-isotropic diffusion terms; see Klus et al.
(2020b). The example illustrates the close relationships between gEDMD and
system identification. The Koopman generator can be used in the same way to
identify the governing equations of deterministic systems described by ordinary
differential equations. We then obtain, as a special case, the sparse identification
of nonlinear dynamics (SINDy) approach proposed in Brunton, Proctor and Kutz
(2016).
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Example 5.7. In Example 5.6 we identified the drift and diffusion terms of the
stochastic differential equation. Further, since 1(G) = −∇+(G), we obtain

+(G) = −
∫

11(G) dG1 + 21(G2)

= −14G1 − 21G2
1 + 2G2

1 G2 + 2G1 G
2
2 + G

4
1 + 21(G2),

+(G) = −
∫

12(G) dG2 + 22(G1)

= −22G2 − 13G2
2 + 2G2

1 G2 + 2G1 G
2
2 + G

4
2 + 22(G1),

where 21(G2) and 22(G1) are unknown functions. However, by combining these
two representations, it is possible to reconstruct the potential +(G) up to additive
constants, that is,

21(G2) = −22G2 − 13G2
2 + G

4
2 .

The antiderivatives of the basis functions, required for computing the above integ-
rals, can again be computed analytically for suitable dictionaries. In order for this
approach to work, we have to assume that the potential can be written in terms of
the basis functions. The Himmelblau potential comprises monomials of order up
to four and can thus be represented as a linear combination of the basis functions.
While this will generally not be the case, it is still possible to obtain approximations
of the potential.

The advantage of gEDMD is that we obtain interpretable equations for the drift
and diffusion terms as well as the eigenfunctions and the potential. If, on the other
hand, we are only interested in approximating the potential from data, it would also
be possible to use kernel density estimation to compute the invariant density ` and
to define + = −V−1 log(`) (assuming the process is reversible) or to learn a neural
network representation.

Curse of dimensionality. For high-dimensional systems we again have to face the
curse of dimensionality, but we can use the same tricks introduced in the EDMD
and CCA sections. This will be described in more detail below.

5.3.2. Kernel-based extensions
We can derive a kernel-based formulation of gEDMD, which, in addition to the
kernel itself, also requires partial derivatives of the kernel (Klus, Nüske and Hamzi
2020a). The derivatives of the feature space functions are then computed implicitly.
For the Koopman generator, this leads to an eigenvalue problem of the form

�10F = _�00F,

where

[�10]8 9 =
3∑
A=1

1A (G(8))
m

mGA
:(G(8), G( 9)) + 1

2

3∑
A=1

3∑
B=1

0AB(G(8))
m2

mGAmGB
:(G(8), G( 9))
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and the derivatives are computed with respect to the first argument. The derivation
requires derivative-reproducing properties (Zhou 2008). This approach can also be
used to approximate related differential operators such as the Schrödinger operator.

5.3.3. Tensor-based variants
A tensor-based formulation of gEDMD, which can be regarded as a combination
of the methods presented in Klus et al. (2020b) and Nüske et al. (2021), for the
approximation of the Koopman generator is described in Lücke and Nüske (2022).
The tensor-train format is again used to generate extremely high-dimensional feature
spaces.

5.3.4. Deep learning approaches
We are not aware of deep learning-based approaches that directly approximate the
Koopman generator using variants of EDMD, although similar methods have been
developed for related differential operators (Pfau, Spencer, Matthews and Foulkes
2020, Han, Lu and Zhou 2020).

5.4. Related methods

Several different methods to compute projected transfer operators and their eigen-
values and eigenfunctions have been developed independently by the fluid dy-
namics, molecular dynamics and dynamical systems communities. Some of these
methods are closely related or, under certain conditions, equivalent.

5.4.1. DMD and TICA
As already mentioned above, EDMD is a nonlinear variant of DMD. By choosing
q(G) = G, we obtain the optimization problem

min
�∈R3×3

‖. − �- ‖� ,

and thus DMD as a special case. Note, however, that DMD computes the eigen-
vectors of � (not �>) and thus the Koopman modes, whereas EDMD computes the
Koopman eigenfunctions. Time-lagged independent component analysis (TICA),
on the other hand, computes the Koopman eigenfunctions. (Of course, DMD can
be rewritten in such a way that it also computes the Koopman eigenfunctions and
TICA so that it computes the Koopman modes.) TICA was originally introduced
in the signal processing literature (Molgedey and Schuster 1994) and later used
in molecular dynamics as a method for extracting slow order parameters (Perez-
Hernandez et al. 2013, Schwantes and Pande 2013). It is often used to project
high-dimensional trajectory data onto the dynamically relevant slowest timescales.
This dimensionality reduction step is typically required for high-dimensional prob-
lems to be able to then, for instance, derive Markov state models in the reduced
space (Perez-Hernandez et al. 2013). TICA maximizes the auto-correlation of the
transformed coordinates and can be regarded as a special case of EDMDandVAMP.
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5.4.2. Data-driven estimation of projected transfer operators
Let us return to the projection of a transfer operator % = %g onto a finite-
dimensional ansatz function space spanned by the ansatz functions {q8}=8=1, and let
& be the projection onto the ansatz space. Then the matrix representation %& of
the associated projected transfer operator &%&, as defined in Section 4, has the
form %& = P"−1 with

P8 9 = 〈q 9 , %gq8〉` = E`(q8(-0)q 9(-g)),
"8 9 = 〈q8 , q 9〉` = E`(q8(-0)q 9(-0)),

which is again slightly different from (4.5) but leads to the same %&. Given a long
time-series {G(;)}<+1

;=1 that results from sampling a long realization of (-C ) with lag
time g, let P̂ and "̂ denote the statistical estimates

P̂ (<)
8 9

=
1
<

<∑
;=1

q8(G(;))q 9(G(;+1)), "̂
(<)
8 9

=
1
<

<∑
;=1

q8(G(;))q 9(G(;)).

Note that these matrices are equivalent to the matrices �GH and �GG defined above,
a fact that again illustrates the basic equivalence of the underlying strategies. Then
P (<) approximates P in the following sense (Mollenhauer 2022).

Theorem 5.8. Let the underlying Markov process be ergodic. Then P (<) → P
for < → ∞ P-a.e. in Hilbert–Schmidt norm ‖ · ‖HS. If the process is furthermore
geometrically ergodic and there is a constant � > 0 such that q8(-C ) ≤ � P-a.e. for
all 8 = 1, . . . , =, then P-a.e. we have the convergence speed estimate

‖P − P̂ (<)‖HS = $
(

(log<)3/2

<1/2

)
and the concentration of measure estimate

P
[
‖P − P̂ (<)‖HS ≥ n

]
≤ 4 exp

(
−<n

2

 

)
+ � exp(−2<),

with constants � and 2 that do not depend on =, <, n, � and  = 8f2 + 4
3= �

2<n ,
where f2 is a variance proxy that does not depend on n and satisfies f2 ≤
4=2�4� exp(−2<).

There is an identical statement for the convergence and convergence speed for
the mass matrix " and a similar one for the concentration of measure effect; see
Mollenhauer (2022, Theorem 3.4.5) for details.

5.4.3. Data-driven Markov state models
In Section 4.2.3 we discussed how to construct the best MSM for the process (-C )
and the associated transfer operator %g for some given fixed lag time g > 0, based
on an ansatz space spanned by indicator functions q8 = 1�8 defined by an initial set
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partition {�1, . . . , �=} of state space, and then aggregating it further. The related
= × = transition matrix is

%8 9 = P` [-g ∈ � 9 | -0 ∈ �8] .

Given the long time-series {G(;)}<+1
;=1 sampled from (-C ) with lag time g, we know

from the discussion above that the estimator %̂(<) with entries

%̂
(<)
8 9

=

∑<
:=1 1�8 (G:)1� 9 (G:+1)∑<

:=1 1�8 (G:)

converges to% for< →∞with convergence speed given byTheorem5.8. However,
the statement in Theorem 5.8 is mostly useful as an asymptotic statement for large
<. Therefore we are also interested in understanding the statistical uncertainty
of quantities computed from %̂(<) for given < and potentially not asymptotically
large <.

To this end, we define the transition counts between the partition sets,

�8 9 =

<∑
;=1

1�8 (G
(;))1� 9 (G

(;+1)).

Now, under the condition that the hitting and transition counts � resulted from
a realization of the Markov chain with states {�1, . . . , �=} and transition matrix
) with initial distribution c, then the probability of observing this time series
would be

P(� | )) = c(G(1))
=∏

8, 9=1
)
�8 9

8 9
.

We are interested in the opposite question: What is the probability P() | �) of the
transition matrix ) given the observed data? By virtue of Bayes’ theorem it follows
that the posterior probability P() | �) is given by

P() | �) =
P(� | ))P())
P(. )

,

where P(� | )) is the likelihood function, P()) is the prior probability of transition
matrices, and the normalization factor P(. ) =

∫
P(� | ))P()) d) is called the evid-

ence, where we do not distinguish between probabilities and probability densities
for simplicity. Based on the above considerations, the likelihood takes the form

P(� | )) =
=∏

8, 9=1
)
�8 9

8 9
,

whereas, if no other information is available, the prior P()) is a uniform distribution
on the space of = × = stochastic matrices. In this case the optimal transition matrix
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%̂ is the maximum of the posterior %̂(<) = arg max) P(� | ))P()), which can be
computed explicitly by likelihood maximization with stochasticity side constraints,

%̂
(<)
8 9

=
�8 9∑=
9=1�8 9

,

which is just the estimator from above.
In MSM building the typical procedure is (i) to compute a long time series and

the associated maximal posterior transition matrix )̂ ≈ %, and (ii) to use PCCA+ to
aggregate )̂ into the low-dimensional MSM %q, as described in Section 4.2.3. The
MSM %q then optimally encodes the dominant eigenvalues of the transfer operator
%g with errors resulting from discretization and the finiteness of the time series
only.
The above Bayesian approach allows us to do uncertainty quantification for all

the quantities that we may want to extract from theMSM, for example the dominant
eigenvalues or timescales. To this end, we have to sample the posterior P() | �)
on the set of stochastic matrices. From the resulting distribution of transition
matriceswe can then extract uncertainties of the desired quantities. Several different
approaches (different sampling strategies that allow for including addition side
constraints) were introduced in Singhal and Pande (2005), Noé (2008), Metzner,
Noé and Schütte (2009a) and Metzner, Weber and Schütte (2010). See therein
for examples of uncertainty quantification regarding the dominant eigenvalues, for
instance.

Related literature. There is a large collection of articles in which MSM building
procedures have been applied to a wide variety of molecular systems, includ-
ing protein folding (Noé et al. 2009), kinetic fingerprinting (Keller et al. 2011),
spectroscopic observables (Prinz et al. 2011), RNA (Huang et al. 2010), protein–
peptide association (Paul et al. 2017), ligand binding, rebinding and multivalency
(Weber and Fackeldey 2014, Ge and Voelz 2021), non-equilibrium kinetics (Nüske
et al. 2017) and numerical recipes (Pande et al. 2010), overviews of theory and
algorithms (Bowman et al. 2014, Husic and Pande 2018, Schütte and Sarich 2014)
and software (Senne et al. 2012, Scherer et al. 2015, Beauchamp et al. 2011, Hoff-
mann et al. 2021), to name just a few examples. A recent critical appraisal can be
found in Suarez et al. (2021).

5.4.4. Data-driven methods for computing coherent sets
Various other methods have been proposed to detect coherent sets using space–time
diffusionmaps (Banisch and Koltai 2017), generalizedMarkov state models (Koltai
et al. 2018) or FEM-based discretizations (Froyland and Junge 2018). The analogy
between metastable sets and clusters in undirected graphs can also be exploited
to develop clustering techniques for directed and time-evolving graphs (Klus and
Conrad 2022). This leads to the notion of coherent sets in graphs.
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5.4.5. Koopman lifting technique
TheKoopman generator can also be computed from time-series data only, as shown
inMauroy andGoncalves (2016). The idea is first to estimate theKoopman operator
for a fixed lag time g using EDMD. Then an approximation of the generator can be
obtained by computing the matrix logarithm, that is,

!̂ =
1
g

log  ̂ .

The matrix logarithm, however, is not unique, and sufficiently small lag times are
required to ensure that fast timescales are not damped out. This derivative-free
approach can also be used to identify the governing equations of ordinary and
stochastic differential equations.

5.5. Deep learning of reaction coordinates and effective dynamics

In Section 3.3 we discussed the theoretical concepts behind the notion of reaction
coordinates of collective variables. As we have seen, in theory the identification
of good reaction coordinates can be related to the dominant eigenfunctions and
eigenvalues of the transfer operator, the existence of transition manifolds, and the
committor functions between the most important metastable sets of the system
under consideration. Unfortunately, it seems that the computation of these objects
requires us to know the long-term dynamics of the system beforehand or approx-
imating it while computing these objects. In contrast, we want to compute reaction
coordinates and the associated effective dynamics in order to study the long-term
dynamics.
Recent reviews of computational methods for finding reaction coordinates distin-

guish between different types of approaches (see Bhakat 2022): geometric concepts
that extend methods such as principal component analysis (PCA) towards reaction
coordinates, sampling-oriented ones that are tailored towards efficient sampling of
the free energy landscape, and truly dynamics-oriented concepts that seek reaction
coordinates in order to compute the minimally complex yet most predictive aspects
of a given molecular dynamics trajectory and directly obtain associated thermody-
namic and kinetic information. Here we will discuss some algorithmic concepts for
computing reaction coordinates frommolecular simulation data that try to combine
the power of machine learning with the efficiency of algorithms such as MSMs,
TICA, EDMD or VAMP.
Several recent approaches for finding reaction coordinates utilize autoencoders.

An autoencoder (Figure 5.3) is a type of deep neural network that is trained in a
self-supervised way. The layer structure of the network is usually symmetric with
a bottleneck in the middle, and the first half including the bottleneck is called the
encoder while the second half is called the decoder. The input data form some
kind of molecular dynamics time series (GC8 ), 8 = 1, . . . , =, C8 = C0 + 8g, which can
be all-atom coordinates, or some internal distances, or other degrees of freedom.
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GC

input

encoder bC decoder GC+g

output

Figure 5.3. Illustration of the autoencoder network architecture. The encoder and
decoder are multilayer neural networks.

The autoencoder network must learn to encode a high-dimensional vector GC as a
low-dimensional representation bC to pass the information through the bottleneck
and reconstruct the original signal in the decoder.

Time-lagged autoencoder. In the time-lagged autoencoder approach (Wehmeyer
and Noé 2018), the idea is put forward that the autoencoder network is trained to
minimize the data-based regression loss function

min
�,�

L3(�, �), L3(�, �) =
=∑
8=1
‖GC8+1 − �(�(GC8 ))‖2.

Here the autoencoder is employed to learn a nonlinear map � : X → RA , bC =
�(GC ), that reduces dimension in combination with a reconstruction map � : RA →
X, �(bC ) ≈ GC+g . The low-dimensional representations bC are called the latent
variables and are understood to represent reaction coordinates.

Variational autoencoder. Alternatively, the reweighted autoencoded variational
Bayes for enhanced sampling (RAVE) approach (Ribeiro, Bravo, Wang and Tiwary
2018) and its extensions (Wang, Ribeiro and Tiwary 2019) utilize the autoencoder
idea in combination with different loss functionals. In the Bayesian framework,
the prior distribution c(b) on the latent variable space is connected to the joint
distribution by

?(G, b) = ?(G | b)c(b)

with the likelihood ?(G | b) describing the decoder. Theoretically, one would then
describe the encoder by

?(b | G) =
?(G | b)c(b)

?(G)
, ?(G) =

∫
X
?(G | b)c(b) db.

However, sampling of ?(G) is computationally expensive, so the encoder is treated as
being described by another conditional distribution, @(b | G), that is approximated
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by the autoencoder neural net based on data by minimizing the Kullback–Leibler
(KL) divergence3 (Bhakat 2022),

min
@,?

 !(@(b | G) ‖ ?(b | G)).

Minimizing the KL divergence is equivalent to maximising the co-called Evidence
Lower Bound (ELBO) which allows us to avoid the hard task of minimising the
KL divergence between the approximate @(b | G) and the true posterior ?(b | A).
Instead we maximise ELBO,

max
@,?

(E@(log ?(G | b)) −  !(@(b | G) ‖ c(b))),

where the first term describes the expectation value of the decoder log-likelihood
if the latent variable is drawn from the encoder and the second term describes
the Kullback–Leibler distance between the encoder and the probability distribution
c(b) on the latent variable space.
The idea of finding reaction coordinates as latent variables in autoencoders has

recently been extended in the form of iterative schemes, for example, towards en-
hanced sampling simulation in Bonati, Piccini and Parrinello (2021) by combining
it with the on-the-fly probability-enhanced sampling method (OPES) (Invernizzi
and Parrinello 2020) or, similarly, in free energy biasing and iterative learning
with autoencoders (FEBILAE) (Belkacemi, Gkeka, Lelièvre and Stoltz 2022), an
iterative scheme in which, in each iteration, the learned reaction coordinate is used
to perform free energy adaptive biasing to generate new data and learn a new re-
action coordinate. While time-lagged autoencoders are a truly dynamics-oriented
concept, the other approaches are more sampling-oriented.

Learning the effective dynamics. The learning the effective dynamics (LED) ap-
proach (Vlachas et al. 2022) augments the equation-free methodology (Kevrekidis
and Samaey 2009) but takes account of the insight that the effective dynamics will
in general be non-Markovian. It employs a probabilistic mapping between reaction
coordinate (latent) state space and full-scale molecular dynamics using mixture
density network (MDN) autoencoders, and evolves the non-Markovian latent dy-
namics using long short-term memory models (LSTMs). The basic idea of LED is
as follows.

(1) Data from short full-scale MD simulations is passed through the encoder
network.

(2) The output (bC ) of the encoder is used as time-series input to theLSTM, allowing
for the update of its hidden state ℎC that captures non-Markovian effects in the

3 Throughout this paper we use the notation  !( · ‖ · ) and  !( · | · ) to denote the Kullback–Leibler
divergence, also known as relative entropy, between probability measures (see Definition 6.2), or
– assuming they exist – the corresponding Lebesgue densities. Here the double bar between the
arguments is used in order to avoid confusion with conditional probabilities.
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effective dynamics. The output of the LSTM is a parametrization of the
probabilistic non-Markovian latent dynamics ?(bC | ℎC ) based on Gaussian
mixture models.

(3) The LSTM iteratively samples ?(bC | ℎC ) and propagates the low-order latent
dynamics up to a medium timescale (much longer than the short MD trajectory
used to perform step (1)).

The decoder is employed to map the latent state bC at any desired C back to a
high-dimensional representation by sampling ?( · | bC , bC−ΔC , . . .). Propagation
in the low-order latent space is orders of magnitude cheaper than full-scale MD
simulation on the same timescale.

Learning transition manifolds. All the approaches for the identification of reaction
coordinates discussed so far show very promising performance when applied to
small-to-medium-sized biomolecular systems. However, the underlying theory
is rather underdeveloped: we have neither error estimates regarding the quality
of the reaction coordinate or with respect to kinetic information, nor theoretical
justifications for the hope that they overcome the curse of dimensionality. Here
the theory-driven approach via transition manifolds (see Section 3.3.4) is unique
in the sense that it permits the construction of a deep learning approach based
on the variational formulation of reaction coordinates (see Theorem 3.20) via
minimization of the loss functionals F� and F! given in (3.49) and (3.50). In
order to see how this can be realized in a data-based setting, we first rewrite F� as

F� =
∫
X
5 (G)`(G) dG,

with

5 (G) =
1
|Z|

∫
Z

∫
LI (o)

∫
LI (o)

���� ?(G, H(1))
`(H(1))

− ?(G, H(2))
`(H(2))

���� d`I(H(1)) d`I(H(2)) dI,

and then utilize a Monte Carlo sampling scheme to approximate the integral

F (" )
�

=
1
"

"∑
8=1

5 (G8),

based on data points G1, . . . , G" that are distributed according to ` with approxim-
ation error (Bittracher et al. 2021)

E
[��F� − F (" )

�

��] ≤ Var`( 5 )
√
"

, with Var`( 5 ) = E`
[
5 2] − (E` [ 5 ])2. (5.8)

The independence of the convergence rate 1/
√
" of the dimension of state space is

what gives MC methods an edge over conventional methods, but is only effective
if the prefactor Var`( 5 ) does not grow too much with the dimension of state space.
The following theorem from Bittracher et al. (2021) shows that this is not the case.
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Theorem 5.9 (convergence rate does not depend on full dimension). Assume
that the system is Y-lumpable with respect to b : X → Z and the effective density
?! : Z × X→ R. Define 5! : Z→ R by

5!(I) ≔
1
|Z|

∫
Z

∫
LI′ (\)

∫
LI′ (\)

���� ?!(I, H(1))
c(H(1))

− ?!(I, H(2))
c(H(2))

���� d`I(H(1)) d`I(H(2)) dI′.

(5.9)
Then there exists a constant � > 0 that depends only on the dimension of Z and
not on the dimension of X such that

|Var`( 5 ) − Var`( 5! ◦ b)| ≤ Y �‖ 5! ◦ b‖!1
`
+$(Y2).

In words, the variance of 5 is Y-close to the variance of 5! . As 5! is defined on
Z, the variance of 5 cannot depend on the full phase space dimension through the
dimension of its argument. There is also numerical evidence demonstrating that
the variance is quite small. Note, however, that the dimension of X also indirectly
appears in the definition of 5! , via the integration over the (=−A)-dimensional level
sets LI(\); rigorous results on its independence of the level set integration from
dim(X) are still lacking.

The variational principle for reaction coordinates allows us to approximate the
reaction coordinate b by a neural network and learn the network’s parameters from
data (ensembles of short MD trajectories). After parametrization of the network,
the resulting reaction coordinate b is used to learn the (non-Markovian) effective
dynamics via the generalized Langevin equation (GLE) (see Section 3.4.2), as
outlined in Ayaz et al. (2021) and Kappler et al. (2018).

ISOKANN: Learning dominant almost invariant subspaces. ISOKANN (invariant
subspaces of Koopman operators learned by neural networks) (Rabben, Ray and
Weber 2020) tries to approximate membership functions j as introduced in Sec-
tion 3.2.4 for the main metastable sets of a system. A membership function j has
to satisfy  gj ≈ j, where  g 5 (G) = EG [ 5 (-C )] denotes the Koopman operator
with lag time g. ISOKANN utilizes a re-scaled power iteration

j:+1 =
 gj: −min( gj:)
‖ gj: −min( gj:)‖∞

,

where the shifting by min( gj:) guarantees that j:+1 has values in [0, 1] (as
a membership function should) and convergence to the constant function 1 is
avoided. Given some initial function j0 with values 1 within a metastable core
and 0 outside, the re-scaled power iteration converges to the membership function
associated with the associated soft metastable state. Repetition of this scheme for
all < main metastable cores of a system then results in : membership functions
j8 , 8 = 1, . . . , <, which are expected to span the dominant invariant subspace
of the Koopman operator. In ISOKANN each of these j8 is approximated by
a neural network (see Rabben et al. 2020 for details), and available numerical
evidence indicates that the method does not suffer from the curse of dimensionality.
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Furthermore, Rabben et al. (2020) claim that transition pathways starting in the 8th
metastable core can be identified by following the gradient of j8 , and that this can be
used to learn important transitions. This claim is justified by means of the holding
probability ?j8 associated with the membership function j8 (see Section 3.2.4 for
introduction and discussion of ?j8 ): according to Rabben et al. (2020), the local
direction along the transition pathway is given by A(G, C) = ∇?j8 (G, C), which is
proportional to ∇j8 . In Rabben et al. (2020) this claim is supported by applications
to finding important transitions in MD simulations of `-opioid receptors.

6. Rare event simulation
6.1. Statistics of rare events

In this section we address the problem of efficiently estimating quantities related
to the slow MD timescales. To this end, we will first review the basic principles of
rare event simulation (RESIM) and explain why the direct numerical simulation of
rare events in molecular simulation (such as protein folding) is often infeasible.

6.1.1. Crude Monte Carlo estimator for rare events
To illustrate the problem, supposewewant to compute the probabilityo = P(- ∈ �)
of some event � , such as a folding event before time ) or the event of hitting � ⊂ X
before � ⊂ X. We assume that o � 1, and consider theMonte Carlo approximation
of the parameter o: given < independent realizations -(l1), . . . , -(l<) of our
stochastic dynamics, the number

o< =
1
<

<∑
8=1

1{- (l8)∈� } (6.1)

is an unbiased estimator of o that, as < → ∞, converges to o with probability 1
by the law of large numbers. The variance of the estimator is nicely bounded and
decreases with rate 1/< since

Var(o<) =
1
<
o(1 − o) ≤ 1

4<
.

Nevertheless the relative error (or relative standard deviation) is unbounded as a
function of o, for

X< ≔
standard deviation of ô<

mean of ô<
∼ 1
√
<o

as o→ 0. (6.2)

As a consequence, the number of Monte Carlo samples required to obtain an
accurate estimate grows with 1/o when using a standard Monte Carlo sampling as
in (6.1).
The problem of large relative error in RESIM is not restricted to the computation

of small probabilities, but it persists also for quantities that are typically large, such
as mean first passage times, that suffer from huge relative errors. A strategy to
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reduce the error in RESIM is to reduce the variance of the estimator or, equivalently
for unbiased estimators such as (6.1), the second moment.

To understand why the second moment of any quantity associated with a rare
event is typically much larger than the first moment squared, note that by Jensen’s
inequality, (

E
[
ô<

])2 ≤ E
[
ô2
<

]
,

where equality is attained if and only if ô< is almost surely constant (and equal to
o), which is equivalent to the estimator having zero variance. It so happens that the
dynamics depends on some parameter that controls the smallness of the rare event
probability o = of , and the corresponding estimator satisfies a large-deviation
principle. For example, for small noise diffusions such as (2.17), with the squared
noise coefficient f2 being much smaller than the typical energy barrier, Δ+ , the
estimator for the probability of barrier crossing (see Freidlin and Wentzell 1998,
Theorem 1.2, Chapter 4) satisfies

lim
f→0

f2 logE
[
ô<

]
= −U1 (6.3)

and
lim
f→0

f2 logE
[
ô2
<

]
= −U2, (6.4)

where Jensen’s inequality implies that

U2 ≤ 2U1.

Here equality U2 = 2U1 can be attained under weaker conditions than zero vari-
ance, and an estimator with this property is called (logarithmically) asymptotically
efficient or log-efficient (Asmussen, Dupuis, Rubinstein and Wang 2013). Log-
efficiency means that the number of samples required to achieve a fixed relative
error grows subexponentially as f → 0. However, the estimator may still have
unbounded relative error in this case. Even worse, the typical situation is that
U2 is strictly less than 2U1, in which case the necessary sample size < grows
exponentially in the limit f → 0, since (6.3)–(6.4) imply

X< = $

(
exp

(
2U1 − U2

f2

))
. (6.5)

6.1.2. Variance reduction methods for rate computations
There are two major classes of sampling techniques to reduce the variance in
rare event simulation: splitting methods such as RESTART (Villén-Altamirano
and Villén-Altamirano 1994) and adaptive multilevel splitting (Cérou and Guyader
2007), which decompose the state space but are still essentially based on the
underlying probability distribution, and (force) biasingmethods such as importance
sampling (L’Ecuyer,Mandjes and Tuffin 2009), which enhance the rare events under
consideration by perturbing the underlying probability distribution by forcing the
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system and thus altering the rare events statistics; see Juneja and Shahabuddin
(2006) for an overview. We should also mention sequential Monte Carlo (Cérou,
Del Moral, Furon and Guyader 2012), which combines both worlds and can be
embedded into a splitting-like framework.
Popular splitting methods for rate computations in molecular dynamics in-

clude milestoning (West, Elber and Shalloway 2007), transition interface sampling
(Van Erp, Moroni and Bolhuis 2003), forward flux sampling (Allen, Valeriani and
Ten Wolde 2009) and adaptive multilevel splitting (Aristoff, Lelièvre, Mayne and
Teo 2015). An advantage of splitting methods is that they are non-invasive and
relatively easy to parallelize; a disadvantage is that they typically require some
prior knowledge of a low-dimensional reaction coordinate that allows us to monitor
the rare event.
Biasing methods in molecular dynamics that are mostly used to compute (static)

thermodynamic averages or free energy profiles include umbrella sampling (Bartels
and Karplus 1997), metadynamics (Bussi, Laio and Tiwary 2020), adaptive biasing
force (Comer et al. 2015) and conformational flooding (Grubmüller 1995), to
mention just a few prominent examples. While they mostly do not rely on a priori
knowledge of a reaction coordinate, they are invasive in that they require us to alter
the molecular force field.
Methods that combine the best of both worlds (i.e. they are non-invasive and

do not require vast prior knowledge) are replica-based methods, which alter the
underlying probability distribution without changing the drift. Methods that belong
in this class include replica exchange molecular dynamics (Swendsen and Wang
1986), also known as parallel tempering (Earl and Deem 2005), simulated temper-
ing (Marinari and Parisi 1992, Martinsson, Lu, Leimkuhler and Vanden-Eijnden
2019), infinite swapping (Dupuis, Liu, Plattner and Doll 2012) and parallel replica
(Voter 1998, Bris et al. 2012).

6.2. Adaptive importance sampling of rare events

A biasing method that allows for computing path-dependent (or dynamical or
kinetic) properties, is adaptive importance sampling, which was first introduced
by Dupuis and Wang (2004, 2007) in a rather general setting and then formulated
by various authors in the context of small-noise diffusions, e.g. Fleming (2006),
Vanden-Eijnden and Weare (2012) and Dupuis, Spiliopoulos and Zhou (2015).
These methods have in common that they rely on large-deviation techniques and
perform optimally in the asymptotic regime of vanishing rare event probability.
Here we describe a closely related yet non-asymptotic adaptive importance

sampling approach that is based on a stochastic control framework (Hartmann
and Schütte 2012, Hartmann, Richter, Schütte and Zhang 2017). Before we discuss
it, we shall briefly explain the general framework of importance sampling. The key
idea of importance sampling is to do a change of measure. This is done by drawing
the samples from another probability measure, say Q, under which the variance of
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the estimator is reduced and, ideally, the event is no longer rare. (We will see later
that there are many cases in which these are conflicting goals.)

Suppose that - has distribution P and let Q be any measure that is absolutely
continuous with respect to P (i.e. Q � P), so that the likelihood ratio L = dQ/dP
is well-defined. We further assume that L > 0 on the relevant set {- ∈ �}.
Letting

EQ [/] =
∫

/ dQ

denote the expectation of some random variable / with respect to Q, we have

P(- ∈ �) = E[1{- ∈� }] = EQ [1{- ∈� }L −1] . (6.6)

The idea of importance sampling is to replace the sample mean of 1{- ∈� } with the
sample mean of the new random variable / = 1{- ∈� }L −1(-) over independent
draws from the alternative distribution Q. In other words, (6.1) is replaced by the
importance sampling (IS) estimator

ôIS
< =

1
<

<∑
8=1

1{-̃ (l8)∈� }L
−1(-̃(l8)), (6.7)

with independent realizations -̃(l1), . . . , -̃(l<) ∼ Q. It is easy to see that the
new estimator is unbiased. Moreover, the choice Q = Q∗, with

dQ∗

dP
(-) =

1{- ∈� }
o

, that is, Q∗ = P( · | - ∈ �), (6.8)

is optimal in that the resulting IS estimator has zero variance under Q = Q∗, that is,

VarQ∗(ôIS
< ) = 0.

As a consequence, we can already get the correct answer for < = 1 if we use the
optimal proposal distribution. The fact that we can write down the optimal IS
distribution explicitly is of limited practical use, however, because the quantity we
want to compute, o, appears as a normalization constant.

An important lesson to learn from the previous considerations is that variance
reduction is goal-oriented in that it takes into account the random variable or
quantity of interest. This observation essentially applies to all variance reduction
techniques even though the optimal sampling strategy will depend on the chosen
method.
Nextwewill discuss a particular formof importance sampling for path-dependent

quantities in which the optimal change of measure has a particular explicit form
that is infeasible from a computational perspective, but that can nevertheless be
exploited to devise systematic approximations of the optimal proposal distribution
within an exponential family.
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6.2.1. A variational formula for the optimal proposal distribution on path space
We now consider continuous path-dependent functionals of the form

((-) =
∫ g

0
5 (-B) dB + 6(-g)1{g<∞}, (6.9)

of - = (-B)B≥C , C ≥ 0, where 5 , 6 : X → R are bounded below and sufficiently
smooth real-valued functions and g is some random or deterministic stopping time.

Definition 6.1. Let \ > 0. We define the free energy of ( with respect to P by

Φ(G, C) = −\−1 logE[exp(−\((-)) | -C = G] . (6.10)

The free energy thus defined is a scaled form of the cumulant generating function
(CGF) of the random variable ( as a function of the initial data. Similarly, we can
interpret exp(−\Φ) as a moment generating function; it includes path-dependent
quantities such as (2.32) or (2.34).

For example, if 5 = 1, 6 = 0 and g is the first hitting time of some set, then
exp(−\Φ(G, C)) = E[exp(−\g) | -C = G] is the moment generating function of
the first hitting time of the process - , conditional on starting at G at time C. By
the strong Markov property, Φ will be independent of C whenever the process is
time-homogeneous.

One of the key properties of the free energy (6.10) is that it contains information
about all moments of the path functional � (provided they exist). By Taylor-
expanding Φ about \ = 0, we find that

Φ ≈ E[(] − \
2
E
[
(( − E[(])2]

for small \, assuming that the remainder is negligible.
The CGF-like form of the free energy thus couples the first and second moments

in a way that has implications when it comes to the question of whether we can
control the first moment while reducing variance so as to allow for some control
over the total computational cost. We will come back to this issue later, as it turns
out to be relevant for the problems that include random stopping times.

Definition 6.2. The relative entropy or Kullback–Leibler divergence of Q with
respect to P is defined as

 !(Q | P) ≔

∫

log
(

dQ
dP

)
dQ if Q � P, log

(
dQ
dP

)
∈ !1(Q),

+∞ otherwise.
(6.11)

By Jensen’s inequality  !(Q | P) ≥ 0, with equality if and only if Q = P except
for sets of Q-measure zero. The fact that the free energy admits a variational form,
known as the Gibbs variational principle, gives rise to a characterization of the
optimal change of measure for computing free energies.
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Theorem 6.3 (Gibbs variational principle I). For every measurable functional
((-) that is bounded below, the free energy Φ of ( satisfies

Φ = inf
{∫

( dQ + \−1 !(Q | P) : Q � P
}
. (6.12)

If ( exp(−\() ∈ !1(P), then the infimum is attained at Q = Q∗ given by
dQ∗

dP
=

exp(−\()
exp(−\Φ)

. (6.13)

We refrain from giving a proof of this classical result (e.g. Ellis 1985, Dai Pra,
Meneghini and Runggaldier 1996), but we mention that the assertion basically
follows once more from an application of Jensen’s inequality: assuming that
 !(Q | P) < ∞, we have

Φ = −\−1 log
∫

exp(−\() dP

= −\−1 log
∫

exp
(
−\( − log

(
dQ
dP

))
dQ

≤
∫

( + \−1 log
(

dQ
dP

)
dQ

=

∫
( dQ + \−1 !(Q | P).

Since the exponential function is strictly convex, Jensen’s inequality states that
equality is attained if and only if the random variable

/ = ( + \−1 log
(

dQ
dP

)
is Q-a.s. constant, which entails that the minimizer Q = Q∗ must satisfy

dQ∗

dP
∝ exp(−\(),

The denominator in (6.13) is obtained from normalization and Definition 6.1,
noting that

exp(−\Φ) =
∫

exp(−\() dP.

It is easy to see that Q∗ enjoys the zero variance property: for -∗ ∼ Q∗, with
probability 1 we have

E[exp(−\()] = exp(−\((-∗))
dP

dQ∗
. (6.14)

Limitations. In almost all situations of practical relevance, the optimal change of
measure must be approximated numerically. Importance sampling can be fragile
with respect to bad approximations of Q∗, and therefore the computational gain
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that can be achieved by importance sampling is very sensitive to the fidelity of the
numerical method. To see this, recall the definition (6.2) of the relative error of the
standard Monte Carlo estimator and call

'2(Q) ≔ X2
IS =

VarQ(exp(−\()L −1)
Ψ2 , Ψ = E[exp(−\()]

the relative importance sampling error per sample point (i.e. for < = 1) and under
a change of measure from P to Q � P, with likelihood ratio L = dQ/dP. We
further assume that Q∗ � Q. Then

'2(Q) =
VarQ(exp(−\()L −1)

Ψ2

= VarQ
(

dQ∗

dQ

)
= EQ

[(
dQ∗

dQ

)2
− 1

]
,

where the rightmost expression,

j2(Q∗ |Q) ≔ EQ
[(

dQ∗

dQ

)2
− 1

]
, (6.15)

is the j2-divergence between Q∗ and Q. Using the fact that the j2-divergence is
an upper bound for the KL divergence, we can prove the following non-asymptotic
upper and lower bounds for the relative error that hold away from the large-deviation
regime (see Hartmann and Richter 2021, Proposition 2.7):

'(Q) ≥
√

exp("− !(Q |Q∗) +  !(Q∗ |Q)) − 1, (6.16a)

'(Q) ≤
√

exp("+ !(Q |Q∗) +  !(Q∗ |Q)) − 1, (6.16b)

where Q � P and the constants "± are given by

"− = inf
� ∈E

Q∗(�)
Q(�)

, "+ = sup
� ∈E

Q∗(�)
Q(�)

. (6.17)

Here E is an appropriate f-algebra of measurable sets over which the infimum and
the supremum are taken. Note that "− ∈ [0, 1] and "+ ∈ [1,∞], which implies
that there is a gap between upper and lower bound whenever "− ≠ "+; if "− = 0
and "+ = ∞, then (6.16) states that√

exp( !(Q∗ |Q)) − 1 ≤ '(Q) ≤ ∞. (6.18)

When P,Q,Q∗ are probability measures with compact support on RN , say, the
constants can assume non-trivial values "− ≠ 0 and "+ ≠ ∞. However, to
our knowledge no such results are known in the infinite-dimensional setting, for
example when P,Q,Q∗ are measures on the space of continuous paths.
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Hartmann and Richter (2021, Section 3) have derived computable upper and
lower error bounds for the relative error when uniform approximations to the
optimal change of measure on path space are available.

Example 6.4 (suboptimal Gaussian change of measure). Equations (6.16) or
(6.18) can be used to systematically derive bounds for a suboptimal change of
measure Q ≈ Q∗. These bounds then show that there is often an exponential
growth of the relative error. For example, when P is a Gaussian law on RN with
mean 0, covariance Σ = f2�N×N and ((-) = " · - for some " ∈ RN , then Q∗ is
the Gaussian tilted measure, with density

dQ∗

dP
(G) = exp

(
−" · G − f

2

2
|" |2

)
,

that is, Q∗ is Gaussian with mean m = −f2" and covariance Σ = f2�=×=. For
simplicity, we have set \ = 1. Now consider a Gaussian measure Q with the same
covariance but with the perturbed mean m n = m + n1. Then, using that the KL
divergence between Gaussians can be explicitly computed,

'(Q) ≥

√
exp

(
N n2

2f2

)
− 1,

showing an exponential growth of the relative error in the (squared) perturba-
tion parameter that becomes even more severe for larger dimension N or lower
‘temperature’ f2.

One can think of the last example as a finite-dimensional version of an import-
ance sampling scheme that works by changing the drift of a system, where the
perturbation comes from an error in the drift term that may render the resulting
importance sampling estimator useless for a high-dimensional system. (Note that
this is the typical situation in MD simulations.)
The curse of dimensionality for importance sampling has been analysed in the

seminal works by Li, Bengtsson and Bickel (2005) and Bengtsson, Bickel and Li
(2008); see also Agapiou, Papaspiliopoulos, Sanz-Alonso and Stuart (2015) and
Sanz-Alonso (2018).

6.2.2. Diffusion processes and exponential change of measure
Depending on the concrete problemunder consideration, theGibbs variational prin-
ciple assumes different forms that then give rise to different computational methods
to approximate the optimal proposal distribution. For example, for Markov chains
or Markov jump processes, the minimization problem in (6.12) turns into a Markov
decision problem (Banisch and Hartmann 2016), whereas it turns into a finite-
dimensional optimization problem for static sampling tasks (Valsson and Parrinello
2014). Interestingly, for small noise diffusions the variational formula turns into
a deterministic control problem that is associated with the Freidlin–Wentzell-type
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large-deviation rate function for the respective rare event probabilities (Boué and
Dupuis 1998); see also Dupuis, Katsoulakis, Pantazis and Rey-Bellet (2020) for a
related variance reduction approach for sensitivity analysis of rare event probabil-
ities.
To spell out the variational formula when the dynamics is diffusive, recall the

definition (2.28) of a generic Itô stochastic differential equation:

d-B = 1(-B) dB + f(-B) d,B . (6.19)

Here and in the following, 1 : X→ RN is a smooth vector field, f : X→ RN×B is
a smooth matrix field and, is an B-dimensional Brownian motion.4 For simplicity
we assume that the coefficients 1 and f are time-homogeneous; the generalization
to time-dependent problems is straightforward. Our standard example will be
(2.17) with 1(G) = −∇+(G) and f(G) =

√
2V−1 being constant, but we stress that

none of the results in this section are tied to the reversible setting.
We regard the distribution P of - as a probability measure on the space Ω =

�([0,∞),X) of continuous trajectories inX ⊂ RN that is induced by the Brownian
motion in (6.19). We call P a path space measure. A change of measure from P
to Q � P then corresponds to a change of drift from 1 to 1D = 1 + fD, where
D = (DC )C≥0 is some RB-valued stochastic process that is adapted to the filtration
generated by the Brownian motion. Now, defining a controlled process -D as the
solution to

d-DB = 1(-DB ) dB + f(-DB )DB dB + f(-DB ) d,B, (6.20)

it turns out that the relevant candidates for a control D to solve the minimization
problem in (6.12) are Markovian, so DB can be written as a function of -DB and B.
Let us suppose that D is adapted and satisfies the Novikov condition (see Krylov
2019)

E

[
exp

(
1
2

∫ ∞

0
|DB |2 dB

)]
< ∞. (6.21)

We call controls D that satisfy (6.21) and for which (6.20) has a unique strong
solution admissible, and we let A denote the class of admissible controls. We
define the controlled Brownian motion

,D
C = ,C −

∫ C

0
DB dB,

and an auxiliary process (/DB )B≥0, with

/DC =

∫ C

0
DB · d,B −

1
2

∫ C

0
|DB |2 dB, (6.22)

4 We assume throughout that drift and diffusion coefficients satisfy suitable Lipschitz and growth
conditions, so that an SDE like (6.19) has a unique strong solution.
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or equivalently

/DC =

∫ C

0
DB · d,D

B +
1
2

∫ C

0
|DB |2 dB. (6.23)

Girsanov’s theorem (e.g. Øksendal 2003, Theorem8.6.4) now states that (,D
B )0≤B≤g

is a standard Brownian motion under the probability measure Q with likelihood
ratio

L D
g ≔

dQ
dP

����
[0,g ]

= exp(/Dg ) (6.24)

with respect to P; the Novikov condition (6.21) guarantees that E[exp(/Dg )] = 1,
i.e. that Q is a probability measure.5 Inserting (6.23)–(6.24) into the variational
formula (6.12), using that ,D

B is a Brownian motion with respect to Q, we obtain
the SDE representation of the right-hand side of (6.12) for D ∈ A:

EQ [((-) + \−1 !(Q | P)]

= EQ

[∫ g

0

(
5 (-B) +

1
2\
|DB |2

)
dB + 6(-g)1{g<∞}

]
.

Using that the law of - under Q is the same as the law of -D under P, we obtain
the following; for a proof, see Boué and Dupuis (1998) or Dai Pra et al. (1996).

Corollary 6.5 (Gibbs variational principle II). Consider the functional ( given
in (6.9) for the process - given by the uncontrolled SDE (6.19) and a random
stopping time g for - . Then, under the Novikov condition (6.21), the Gibbs
variational formula (6.12) for the free energy Φ of ( reads

Φ(G, C) = inf
D∈A
EG,C

[∫ gD

C

(
5 (-DB ) + 1

2\
|DB |2

)
dB + 6(-DgD )1{gD<∞}

]
, (6.25)

where -D is the solution of the controlled SDE (6.20), gD is a stopping time for -D
and we have used the shorthand EG,C [·] = E[· | -DC = G] for the expectation over
realizations of -D starting at -DC = G.

To illustrate the previous statement, we consider two simple examples.

Example 6.6 (exit from a set). Consider the one-dimensional scaled Brownian
motion

-C = G + f,C (6.26)

starting at -0 = G. We let � = (0, 1) for some 0 < 1 and define g = g(�) to be the
first exit time from �. We set 5 = 1 and 6 = 0 in (6.9) such that ((-) = g(�). Let

5 Informally, the restriction of the likelihood ratio to [0, g] denotes the restriction to trajectories of
length g, or more specifically, the restriction to the filtration generated by the Brownian motion
up to time g.
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Φ again be the associated free energy. From (2.36)–(2.37) we conclude that (see
Section 2.3.2)

E[g | -0 = G] =
{
f−2(1 − G)(G − 0) 0 < G < 1,

0 else.
(6.27)

Hence EG,0 [g] is nicely bounded on � for every f ≠ 0 and, as a consequence,
g is almost surely finite. By the Feynman–Kac theorem (see Pham 2009, The-
orem 1.3.17), it follows that the function

Ψ(G) = exp(−\Φ(G)) = E[exp(−\g) | -0 = G], G ∈ R (6.28)

solves the linear elliptic boundary value problem

f2

2
Ψ′′(G) − \Ψ(G) = 0, Ψ(0) = Ψ(1) = 1, (6.29)

with unique positive solution for 0 ≤ G ≤ 1 given by

Ψ(G) = exp(−\Φ(G)) =
4−WG(4W(0+1) + 42WG)

4W0 + 4W1
, W =

√
2\
f2 .

Even though the dynamics is not metastable and P(g < ∞) = 1, the mean first exit
time (6.27) diverges for all G ∈ � as f → 0. Therefore exiting from � (i.e. hitting
the boundary of �) is a rare event when f is small.

It is instructive to take a look at the relative error X< = X<(Ψ̂<;f) of the standard
Monte Carlo estimator Ψ̂< of the moment generating function Ψ = exp(−\Φ). It
has the property

lim sup
f→0

log X< = ∞,

since, for G ∈ �, the second moment diverges at a (strictly) higher exponential
rate than the first moment squared as f → 0. As a consequence, the estimator is
not log efficient (which implies that it has unbounded relative error as f → 0).
Figure 6.1 shows the functionΨ(·; \ = 1) and the relative error for the corresponding
standard Monte Carlo estimator. (The divergence of the relative error for f →
0 can be considered as the infinite-dimensional analogue of the relative error
bound in Example 6.4 that diverges exponentially as f → 0.) On the other hand,
Corollary 6.5 implies that

Φ(G) = −\−1 logE[exp(−\g)] = inf
D∈A
E

[
gD + 1

2\

∫ gD

0
|DC |2 dC

]
, (6.30)

where gD denotes the exit time from �, i.e. the first hitting time of either 0 or 1,
under the controlled process

-DC = G + f,D
C = G + f

(∫ C

0
DB dB +,C

)
.
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Figure 6.1. Moment generating function Ψ( · ; \ = 1) of the first exit time as a
function of the initial condition -0 = G and relative error X= for the corresponding
standard Monte Carlo estimator. For simplicity we have set the sample size to
< = 1 so that the relative error shown can be regarded as the relative error per
sample point.

Therefore a control D∗ that minimizes the right-hand side of (6.30) will seek to
minimize the mean first hitting time of the boundary m�, while controlling the
variance of the estimator. As a consequence, the corresponding optimal change of
measure from P to Q∗ = QD∗ has the zero variance property and the property that
the rare event under consideration (i.e. hitting the boundary of �) is no longer rare.
We will characterize the minimizer of the underlying stochastic optimal control in
the next section.

Example 6.7 (committor probability). Under the assumptions of the previous
example, we let d(�), d(�) be the first hitting times of the sets � = (−∞, 0] and
� = [1,∞), so that g = min{d(�), d(�)}. Further, let

6(G) =

{
+∞ if G ∈ �,
0 else.

Then
E[exp(−\6(-g))] = P(d(�) < d(�)), (6.31)

which implies that

− \−1 logP(d(�) < d(�)) ≤ E
[
6(-gD ) + 1

2\

∫ gD

0
|DC |2 dC

]
. (6.32)

By inspecting the right-hand side of the last inequality, we conclude that a control
D ∈ A that minimizes the right-hand side (assuming it exists) seeks to drive the
process towards stopping at G = 1 rather than G = 0, since the process for D = 0 will
eventually hit one of the boundary points, but hitting the leftmost boundary point
has an infinite penalty. In other words, under the optimal change of measure Q∗,
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all trajectories will almost surely exit from � through m� ⊂ m�, while avoiding
m� ⊂ m�.

We will now discuss importance sampling of rare events in a non-asymptotic
setting, specifically for diffusions with small yet non-vanishing noise. In order
to turn the Gibbs principle into a workable numerical method, we will interpret
the variational principle as a stochastic optimal control problem, with the unique
optimal control force (or bias) generating the zero variance probability measure.

6.2.3. Stochastic optimal control
Let $ ⊂ X be a bounded open set with smooth (at least �3) boundary and let
g = min{d($), )} be the minimum of the first exit time from $ and some finite
terminal time ) ∈ (0,∞). We let -D be the solution of (6.20) with initial condition
-DC = G.6 We consider the cost functional

�(D; G, C) = EG,C
[∫ gD

C

(
5 (-DB ) + 1

2\
|DB |2

)
dB + 6(-DgD )1{gD<∞}

]
, (6.33)

wherewe further assume that the running cost 5 and the terminal cost 6 are bounded
continuous functions on $ ⊂ X. Our aim is to minimize � over D ∈ A and subject
to the controlled dynamics (6.20).
The value function or optimal cost-to-go is defined as

E(G, C) = inf
D∈A

�(D; G, C). (6.34)

It can be shown (e.g. Fleming and Soner 2006, Section IV.3) that the optimal control
is a Markovian feedback control of the form

DC = 2(-DC , C), (6.35)

with 2 being a suitable feedback policy. The following theorem gives suffi-
cient conditions for optimality in terms of the dynamic programming equation
or Hamilton–Jacobi–Bellman (HJB) equation associated with (6.20) and (6.33)–
(6.34); see Fleming and Soner (2006, Theorem 3.1, Section IV.3).

Theorem 6.8 (verification theorem). Let E ∈ �2,1($ × [0, ))) be a classical
solution of the HJB equation

− mE
mC
+H(G,∇E,∇2E) = 0, (G, C) ∈ $ × [0, )) (6.36)

with boundary data

E(G, C) = 6(G), (G, C) ∈ (m$ × [0, ))) ∪ ($ × {)}), (6.37)

6 Following the relevant literature (e.g. Fleming and Soner 2006), we suppose throughout that 1, f
are both continuously differentiable with bounded spatial derivatives on$×[0,∞) ⊂ RN ×[0,∞).

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


630 C. Schütte, S. Klus and C. Hartmann

and

H(G, H, I) = min
ℎ∈RB

{
1
2
ff> : I + 1 · H + (fℎ) · H + 1

2\
|ℎ2 | + 5 (G)

}
. (6.38)

If |∇GE(G, C)| ≤ "(1 + |G |) for some constant " > 0, then

D∗C = −\(f(-DC ))>∇GE(-DC , C) (6.39)

is an optimal control, i.e. �(D∗; G, C) ≤ �(D; G, C) for all admissible controls D ∈ A,
and moreover

E(G, C) = �(D∗; G, C). (6.40)

Sketch of proof. We shall briefly explain the idea behind the verification theorem.
To this end, we note that

−\f>H ∈ arg min
ℎ∈RB

{
1
2
ff> : I + 1 · H + (fℎ) · H + 1

2\
|ℎ2 | + 5 (G)

}
is the unique minimizer of the right-hand side of (6.38). Therefore

D∗C = −\(f(-DC ))>∇GE(-DC , C)

is a candidate for the optimal control. Let

!D =
1
2
0 : ∇2 + 1 · ∇ + (fD) · ∇, with 0 = ff>,

denote the generator of the controlled SDE (6.20), and consider an arbitrary ad-
missible control D ∈ A, where we suppose that Q(gD < ∞) = 1 and

E

[∫ gD

C

(
f>∇G

)
E(-DB , B) · d,B

���� -DC = G] = 0.

Then Itô’s formula applied to the function E yields

E[E(-DgD , g
D) | -DC = G] − E(G, C) = E

[∫ gD

C

(
m

mB
+ !D

)
E(-DB , B) dB

���� -DC = G] .
Using that E(-DgD , g

D) = 6(-DgD ) and substituting −mE/mB by the right-hand side
of the HJB equation (6.36), i.e. the Hamiltonian (6.38), we obtain, after dropping
the minℎ term and setting ℎ = D,

E(G, C) = E
[
−

∫ gD

C

(
m

mB
+ !D

)
E(-DB , B) dB + 6(-DgD )

���� -DC = G]
≤ E

[∫ gD

C

(
5 (-DB ) + 1

2\
|DB |2

)
dB + 6(-DgD )

���� -DC = G]
= �(D; G, C),

which shows that E(G, C) ≤ �(D; G, C) for all controls with finite stopping time
gD . Repeating the calculation with the unique minimizer ℎ = D∗ gives E(G, C) =
�(D∗, G, C), which proves the assertion.
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Interpretation. The combination of Corollary 6.5 and Theorem 6.8 shows that the
free energy Φ(G) = −\−1 logE[exp(−\((-)) | -C = G] of our path functional ( is
identical to the value function E(G, C) = infD∈A �(D; G, C) of the associated stochastic
control problem, with cost function � given by (6.33) and subject to the controlled
SDE (6.20).
The optimal control itself satisfies D∗C = −\(f(-DC ))>∇GΦ(-DC , C). Moreover, it

generates the optimal change of measure, Q∗, on path space (see Hartmann et al.
2017, Theorem 2 and Appendix D for details).

Corollary 6.9 (zero variance property). The likelihood

L ∗
C ,g ≔

dQ∗

dP

����
[C ,g∗ ]

= exp(/D
∗
C ,g∗)

with

/∗C ,g∗ ≔

∫ g∗

C

D∗B · d,B +
1
2

∫ g∗

C

|D∗B |2 dB

has the zero variance property. In particular, it holds with probability 1 that (see
(6.14))

E[exp(−\((-)) | -C = G] = exp
(
−/D∗C ,g∗ − \((-D

∗
)
)
,

or equivalently
Φ(G, C) = ((-D

∗
) + \−1/D

∗
C ,g∗ .

Gradient descent interpretation. Broadly speaking, the optimal control increases
the likelihood of the rare event by adding a possibly time-dependent gradient force
to the dynamics, that is,

1 ↦→ 1 − ff>∇E,

and it does so in such a way that the variance of the corresponding importance
sampling estimator is minimized. The controlled process therefore does a gradient
descent in the free energy landscape Φ = E that is only perturbed by the drift 1
of the uncontrolled dynamics. In the case of diffusive molecular dynamics with
1 = −∇+ and f =

√
2n , the control has the effect of tilting the potential:

+ ↦→ + + 2nE.

Note, however, that the value function E is the quantity of interest, Φ, which means
that the optimal control is not directly available. Numericalmethods to approximate
the value function are discussed in Section 6.5 below.
We first illustrate the idea behind the optimal control formulation by again

considering the previous two toy examples.

Example 6.10 (exit from a set, continued). We again consider the variational
representation of the first exit time from a set. We set$ = � and let ) →∞. Then
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Figure 6.2. Value function E = Φ( · ; \ = 1) of the exit problem and the correspond-
ing optimal control for different temperatures f. In the limit f → 0, the control
converges to a Heaviside-like function.

min{g(�), )} → g(�) ≕ g, and Corollary 6.9 yields

−\−1 logE[exp(−\g)] = E
[
g∗ + 1

2\

∫ g∗

0
|D∗B |2 dB

]
.

Here the optimal control is stationary (i.e. not explicitly time-dependent) since the
CGF

Φ(G) = −\−1 logE[exp(−\g) | -C = G]
is independent of time (by the strong Markov property of the process); it is given
by

D∗B = −\fΦ′(-
∗D
B ).

For f = 0.1, \ = 1 and � = (0, 1), the function Φ and the resulting feedback law
2(G) = −0.1Φ′(G), with a sigmoid-like shape, are shown in Figure 6.2. It can be
observed that by pushing the process to the nearest boundary, the control increases
the likelihood of the rare event while minimizing the variance of the corresponding
importance sampling estimator.

That the likelihood of the rare event (i.e. hitting the boundary of �) is increased
simply follows from the fact that the mean first hitting time is reduced, since the
drift induced by the optimal control is strictly positive for G > 0.5 and strictly
negative for G < 0.5.

Example 6.11 (committor probability, continued). Under the assumptions of
Example 6.7, the committor equation (3.21) has the unique solution

@��(G) =
G − 0
1 − 0 .

Setting @�� = exp(−\E) and inserting the expression into (3.21), it readily fol-
lows that E is a classical solution of the HJB equation (6.36) which after some
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simplifications reads

E′′(G) − \ |E′(G)|2 = 0, 0 < G < 1.

Note that E = −\−1 log @�� satisfies the boundary conditions E(0) = +∞ and
E(1) = 0, so it is the value function of our optimal control problem and thus

− \−1 log @��(G) = min
D∈A
E

[
6(-gD ) + 1

2\

∫ gD

0
|DC |2 dC

]
. (6.41)

The corresponding controlled process

d-∗C = fD∗C dC + f d,C ,

with initial condition -D0 ∈ (0, 1) and under the optimal control

D∗C = −\fE′(-DC ) =
f

-DC − 0
,

has a unique strong solution (see Gyöngy and Martínez 2001) with the property
that the process terminates with probability 1 in finite time by hitting the target
state G = 1. Since the optimal control generates the repulsive force that pushes the
particle to the target boundary m� = {1} while avoiding m� = {0}, the control
not only increases the likelihood of the rare event {d(�) < d(�)} and minimizes
the variance, but it also reduces the average length g = E[min{d(�), d(�)}] of the
sampled trajectories.

Limitations. The last example reveals a phenomenon that is in some sense char-
acteristic of problems that involve unbounded random stopping times (see Awad,
Glynn and Rubinstein 2013) and that will be analysedmore closely in Section 6.4.1.
Under the original probability measure P, the process can exit in finite time and
with positive probability through either m� or m�, that is, for any ) > 0 we have

P(d(�) < )) > 0 and P(d(�) < )) > 0.

On the other hand, the controlled process cannot leave its domain through m�, so
we obtain

Q∗(d(�) < )) = 0 for all ) > 0.

As a consequence, P is not absolutely continuous with respect to Q∗, even when
restricted to paths of finite length ) . For the problem at hand, however, the loss of
absolute continuity does not lead to a breakdown of IS because in

@��(G) = EQ∗
[
exp(−\6(-∗g∗))

dP
dQ∗

]
we almost surely have g∗ = d(�) under Q∗, and therefore the events for which
the inverse likelihood ratio is singular have zero probability under the measure Q∗
from which the IS samples are drawn. Nevertheless, the fact that the inverse likeli-
hood ratio becomes singular indicates that the importance weights (i.e. the inverse
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likelihood ratios), which have to be estimated using a numerical approximation of
the controlled process, may have a large variance, which may render IS difficult in
some situations.

6.3. Duality of control and estimation

TheHJBequation (6.36)–(6.38) associatedwith theGibbs variational principle, Co-
rollary 6.5, has a straightforward interpretation in terms of the celebrated Feynman–
Kac formula (e.g. Del Moral 2004). Assuming sufficient regularity of the solution,
the semilinear HJB equation is equivalent to a linear partial differential equation
where the two equations are related by a logarithmic transformation.
To show the equivalence, recall the definition of the second-order differential

operator (2.30) associated with the uncontrolled dynamics (6.19):

! =
1
2
0 : ∇2

G + 1 · ∇G , with 0 = ff>,

Assumption 6.12. For any ) ∈ [0,∞) and bounded open set$ ⊂ Xwith smooth
boundary m$, the exit time

g = inf{B ≥ C : (-B, B) ∉ &}, C ≥ 0

of the set & = $ × [0, )) is almost surely finite.

Assumption 6.13. There exists a function k : X × [0, )] → R that is �2,1(&),
bounded on& and strictly positive on&, and that is a solution of the linear parabolic
equation (

m

mC
+ !

)
k = \ 5 k in &,

k = exp(−\6) on m&+,
(6.42)

where m&+ = (m$× [0, )))∪($×{)}) is the terminal set of the augmented process
(-B, B)B≥C .

By the Feynman–Kac theorem (e.g. Fleming and Soner 2006, Appendix D), the
function k is equal to the exponential of the free energy (or moment generating
function), i.e. k = Ψ with

Ψ(G, C) ≔ exp(−\Φ(G, C)) = E[exp(−\((-)) | -C = G] . (6.43)

Logarithmic transformation. To show that (6.42) is equivalent to (6.36)–(6.37), we
introduce the logarithmic transformation of k by

q(G, C) = −\−1 logk(G, C),

which is well-defined since k > 0 on &. Moreover, by the chain rule,

−\−1k−1
(
m

mC
+ !

)
k =

(
m

mC
+ !

)
q + \

2
|∇Gq |20,
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where |H |20 = H>0H, 0 = ff> denotes a weighted Euclidean norm. As a con-
sequence, (6.42) is equivalent to the nonlinear parabolic equation(

m

mC
+ !

)
q + \

2
|∇Gq |20 + 5 = 0 in &,

q = 6 on m&+.
(6.44)

Noting that

−\
2
|H |20 = min

ℎ∈R:

{
(fℎ) · H + 1

2\
|ℎ|2

}
,

it follows that (6.44) is equivalent to (6.36)–(6.37). Moreover q is a classical
solution that is equal to the free energy, that is, we have q = Φ. We briefly discuss
two notable special cases.

Stochastic control with indefinite time horizon. Letting ) →∞, we have

g = min{), g($)} → g($)

with probability 1, where g($) = inf{B ≥ 0: -B ∉ $} is the first exit time of the
set $ ⊂ X. Since the uncontrolled process - is time-homogeneous, so is the value
function, and therefore (6.44) turns into the boundary value problem

!� − \
2
|∇� |20 + 5 = 0 in $,

� = 6 on m$,
(6.45)

for the value function � associated with a stochastic control problemwith indefinite
time horizon:

inf
D∈A
E

[∫ dD

0
5 (-DB ) + 1

2\
|DB |2 dB + 6

(
-DdD

)]
. (6.46)

Here we let gD = gD($) denote the first exit time with respect to the controlled pro-
cess. In this case the value function � = �(G) is time-independent; the stochastic
control representations of the exit problem, Example 6.6, and the committor prob-
lem, Example 6.7, belong to this category.

Stochastic control with finite time horizon. We let A > 0 denote the maximum
radius of any open ball BA (·) ⊂ $ contained in $. If we keep ) < ∞ fixed while
letting A grow, such that $ ↑ RN , it follows that with probability 1

g = min{), g($)} → ).

In this case the solution to (6.44) converges to the solution of the backward evolution
HJB equation

−m�
mC

= !� − \
2
|∇G� |20 + 5 , (G, C) ∈ RN × [0, )),

�(G, )) = 6(G), G ∈ RN
(6.47)
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which is associated with the finite-time stochastic control problem:

inf
D∈A
E

[∫ )

0
5 (-DB ) + 1

2\
|DB |2 dB + 6

(
-D)

)]
. (6.48)

Here the value function� = �(G, C)will typically be time-dependent, even for time-
homogeneous processes; problems involving occupation measures of measurable
sets � ⊂ RN and expressions such as

6(-) ) = 1�(-) ),
∫ )

C

1�(-B) dB, 6(-) ) = -) , 6(-) ) = -2
) , . . . ,

some ofwhich appear in connectionwith the estimation ofMSM transitionmatrices
(see Section 4.2.3), belong in this category.

6.3.1. Nonlinear Feynman–Kac formula and backward SDE
The representation of the solution to a semilinear HJB equation in terms of a
free energy or cumulant generating function is sometimes called the nonlinear
Feynman–Kac formula. We will now discuss yet another representation in terms of
a pair of forward and backward stochastic differential equations. For simplicity, we
confine the subsequent discussion to the finite-time horizon case; we will comment
on the random stopping time case whenever it is necessary.
A backward SDE (BSDE) is an equation of the form

d.B = −ℎ(-B, .B, /B) dB + /B · d,B, .) = 6(-) ) (6.49)

for a pair of processes (., /) = (.B, /B)C≤B≤) . Here ℎ is some suitable function,
called the driver or generator, and - = (-B)C≤B≤) is the solution of the uncontrolled
SDE (6.19); the role of the auxiliary process / will be explained below.
Our aim is to derive a BSDE representation for the classical solution � ∈

�2,1([0, )) × RN ) of the semilinear HJB equation (6.47). To this end, we define
the processes

.B = �(-B, B), /B = \(f(-B))>∇G�(-B, B). (6.50)

By Itô’s formula,

d�(-B, B) =
(
m

mB
+ !

)
�(-B, B) dB + (f>∇G�)(-B, B) · d,B, (6.51)

which upon inserting (6.47) and (6.50) yields the forward–backward SDE (FBSDE)
system

d-B = 1(-B) dB + f(-B) · d,B, -C = G,

d.B = − 5 (-B) dB + 1
2\
|/B |2 dB + \−1/B · d,B , .) = 6(-) )

(6.52)

for the triple (-,., /). Note that, by definition, . is continuous and adapted to the
filtration generated by the Brownian motion, (like -). Moreover, the process / is
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predictable and square-integrable, in accordancewith the interpretation of /B = −D∗B
as a control.
Further, note that the equation for . in (6.52) must be understood as a backward

SDE rather than a time-reversed SDE, since, by definition, .B at time B ∈ [C, )]
is measurable with respect to the filtration generated by the Brownian motion
(,A )0≤A ≤B, whereas a time-reversed version of .B would depend on ,) via the
terminal condition .) = 6(-) ), which would require a larger filtration. The
solution to (6.52) is therefore a triplet (-,., /), and since . is adapted, it follows
that .C is a deterministic function of the initial data -C = G only, that is,

.C = �(G, C) = Φ(G, C).

We summarize the observations in the following lemma (e.g. Pham 2009).

Lemma 6.14 (FBSDE representation of the free energy). Let the function� ∈
�2,1([0, )) × RN ) ∩ �([0, )] × RN ) denote the solution of (6.47) such that

|∇G�(G, C)| ≤ �(1 + |G |A )

for some �, A > 0 uniformly in C ∈ [0, )]. Then (., /) defined by

.B = �(-B, B), /B = \(f(-B))>∇G�(-B, B), C ≤ B ≤ ),

is the solution to the BSDE

d.B = − 5 (-B) dB + 1
2\
|/B |2 dB + \−1/B · d,B , .) = 6(-) ). (6.53)

In particular, .C = �(G, C).

The representation of semilinear PDEs by BSDEs goes back to the seminal work
of Pardoux and Peng (1990), who have even shown that the equivalence between
BSDEs and HJB equations extends to the case when the HJB equation has only
a viscosity solution; see Pham (2009, Theorem 6.3.3). When the terminal data 6
and the driver satisfy some Lipschitz condition, existence and uniqueness of the
BSDE can be proved by standard fixed-point arguments; see e.g. Pardoux and Tang
(1999).
Under suitable regularity assumptions, the statement of the theorem remains valid

when the finite time ) is replaced by a random stopping time g, e.g. the first exit
time from a bounded set. Existence and uniqueness of FBSDEs with unbounded
stopping time and bounded terminal costs have been studied in Kobylanski (2000),
whereas the case of unbounded terminal cost has been treated in Delbaen, Hu and
Richou (2011).

Remark 6.15. A remark on the role of the control variate / is in order, since
(6.52) has<+1 equations but<+ : +1 unknowns. In (6.49), let ℎ = 0 and consider
the BSDE

d.B = /B · d,B, .) = -) .
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Then both (., /) = (-C , 0) and (.̃ , /̃) ≡ (-) , 0) satisfy the equation, and in fact
there are infinitely many possible pairs with this property. Clearly, .̃ is not adapted
to the filtrationF = (FC )0≤C≤) generated by the Brownianmotion, because .̃C = -)
is not measurable with respect to FC ⊂ F) for C < ) . An adapted version of .
can be obtained by replacing .̃C = -) with its best approximation in !2, i.e.
.̃C ↦→ E[.̃C | FC ]. Since

.C = E[.C | FC ] = E
[
-) −

∫ )

C

bB · d,B
���� FC ] = E[-) | FC ]

for any square-integrable and adapted process b, we conclude that . with .C =
E[.̃C | FC ] is a martingale.
As a consequence, the martingale representation theorem (e.g. Øksendal 2003,

Chapter 4.3) states that there exists a unique predictable process / such that

.C = .0 +
∫ C

0
/B · d,B,

which implies

.C = .) −
∫ )

C

/B · d,B = -) −
∫ )

C

/B · d,B .

Hence we can think of the auxiliary process / as a control that guarantees that
. is adapted, where the number of components of / agrees with the number of
independent components of the Brownian motion.

Zero variance property. The role of the process / in the FBSDE representation of
the HJB equation is not only to guarantee that . is adapted, but it can be literally
interpreted as a control since

/B = \(f(-B))>∇�(-B, B),

even though it is evaluated along the uncontrolled process - rather than the con-
trolled process -D . Here the control /B plays the role of a control variate that
produces a zero variance estimator. To see this, consider the solution (-,., /) of
(6.52) and set

L −/
C,) = −

∫ )

C

/B · d,B −
1
2

∫ g

C

|/B |2 dB.

Using (6.52), the last expression can be recast as

\−1L −/
C,) = .C −

∫ )

C

5 (-B) dB − 6(-) )

where we have used that .) = 6(-) ). Therefore, using the identification of .C with
the free energy Φ(G, C), we have with probability 1

Φ(G, C) = ((-) + \−1L −/
C,) . (6.54)
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Later we will explain how (6.54) can be used to systematically devise robust free
energy estimators when a numerical approximation of / is available.

Importance sampling for FBSDEs. Even though L −/ has the form of the optimal
log-likelihood in (6.14), it is important to realize that equation (6.54) does not
involve any control, in that all quantities depend on the uncontrolled forward
process - . This may be advantageous when the existence of the Radon–Nikodým
derivative is not guaranteed. However, from a computational perspective there
may be situations in which it is difficult to sample the terminal condition 6(-g) by
forward trajectories, in which case it may be advantageous to bias (i.e. control) the
forward dynamics.
Specifically, we consider a change of drift of the form

1 ↦→ 1 + fF (6.55)

for some adapted, square-integrable process F = (FB)C≤B≤) that may or may not
depend on the state of the process -F with the new drift. Under this change of
drift, using the identification

.FB = �(-FB , B), /FB = \(f(-FB ))>∇G�(-FB , B),

the original FBSDE (6.52) turns into

d-FB = 1(-FB ) dB + f(-FB )FB dB + f(-FB ) d,B, -FC = G,

d.FB = −ℎF (-FB , .FB , /FB ) dB + \−1/FB · d,B, .F) = 6(-F) ),
(6.56)

with the driver

ℎF (G, H, I) = − 1
2\
|I |2 − \−1I · F + 5 (G). (6.57)

It can be readily seen that (6.56)–(6.57) and (6.52) represent the sameHJB equation
(6.47). The change of drift furnishes an exponential change ofmeasure in the BSDE
solution (i.e. in the free energy functional). As a consequence, every estimator
based on the expression

Φ(G, C) = ((-F ) + \−1L −/F
C ,) − \−1F · /F (6.58)

has zero variance under the probabilitymeasureQ = QF generated by the controlled
process -F , where F is any adapted and square-integrable process.
The main conclusion is that we can change the drift of the forward SDE by

modifying the control without affecting the variance of the free energy estimator
(Kebiri, Neureither and Hartmann 2019, Hartmann, Kebiri, Neureither and Richter
2019). Having a zero variance estimator is of course only useful under the assump-
tion that it is possible to (approximately) solve the BSDE associated with (6.52) or
(6.56). Similar ideas along these lines have been suggested by Bender and Moseler
(2010), who use a change of drift with the aim of reducing the variance of the
BSDE simulation.
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6.3.2. Conditioning and Doob’s ℎ-transform
Wesawon page 620 that the optimal change ofmeasure has the formof a conditional
probability. We will now argue that the zero variance IS estimator, conditioned on
the rare event, is consistent with the optimal control point of view.
For simplicity we confine our attention to deterministic stopping times and

terminal costs only and thus set 5 = 0. Specifically, we consider only events of the
form {- ∈ �} = {-) ∈ �} for some measurable set � ⊂ X deterministic terminal
time ) > 0. (See Theorem 6.26 below for a generalization.) We call

PG,C ( · ) = P( · | -C = G),

and we define the function (see Section 4.2.3)

ℎ(G, C) = PG,C (-) ∈ �). (6.59)

Then, for any B ∈ (C, )], it follows by the Markov property of - that

ℎ(G, C) =
∫
X
PG,C (-) ∈ � | -B = H) dPG,C (-B = H)

=

∫
X
PH,B(-) ∈ �) dPG,C (-B = H)

= EG,C [ℎ(-B, B)],
where EG,C [·] = E[ · | -C = G] denotes the expectation over all paths starting at
-C = G. As a consequence,(

m

mC
+ !

)
ℎ(G, C) = lim

B↘C

1
B − C (EG,C [ℎ(-B, B)] − ℎ(G, C)) = 0, (6.60)

in other words, ℎ is space–time harmonic. Itô’s formula implies that the process
!B = ℎ(-B, B) is a positive (local)martingale that can be interpreted as the likelihood
ratio of a change of measure; we refrain from going into details and refer to Rogers
and Williams (2000, Chapter IV.39–40) for further reading.

Herewe shall only provide some intuition and explain the connection to stochastic
optimal control. To this end, we call Q = P( · | -) ∈ �) the conditioning of the
reference measure P, and define the expectation of some bounded and measurable
function 6 conditional on {-) ∈ �} as

EQ [6(-B) | -C = G] = E[6(-B) | -) ∈ �, -C = G] . (6.61)

We seek an explicit expression for the associated semigroup. To this end, we
suppose that - has a transition density that for simplicity, but with a slight abuse
of the notation in (2.1), is denoted by ?:

P(-B ∈ � | -C = G) =
∫
�

?(B − C, G, H) dH, B > C,

where � is any measurable set. Calling @ = @(C, B, G, H) the density of the condi-
tioned process (assuming it exists for any B > C), it follows after disintegration and
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using the Markov property that

P(-B ∈ � | -) ∈ �, -C = G) =
P(-B ∈ �, -) ∈ � | -C = G)
P(-) ∈ � | -C = G)

=
1

ℎ(G, C)

∫
�

?(B − C, G, H)ℎ(B, H) dH.

In other words,

@(C, B, G, H) =
?(C − B, G, H)ℎ(H, B)

ℎ(G, C)
(6.62)

is the transition density associated with the conditioned process with law Q. This
implies

EQ [6(-B) | -C = G] =
EG,C [6(-B)ℎ(-B, B)]

ℎ(G, C)
,

and we can formally compute the generator of the conditioned semigroup at time C:

(�C6)(G) = lim
B↘C

1
B − C (EQ [6(-B) | -C = G] − 6(G))

= lim
B↘C

1
(B − C)

E[6(-B)ℎ(-B, B) | -C = G] − ℎ(G, C)6(G)
ℎ(G, C)

=
1

ℎ(G, C)

(
m

mC
+ !

)
(ℎ(G, C)6(G)).

Using that ℎ is space–time harmonic, the last equality implies that

�C6 = !6 + (ff>∇G log ℎ) · ∇6. (6.63)

The above construction is called Doob’s ℎ-transform. The corresponding SDE
reads

d-ℎB = 1ℎ(-ℎB , B) dB + f(-ℎB ) d,B, -ℎC = G (6.64)

with drift
1ℎ = 1 + ff>∇G log ℎ. (6.65)

Zero variance property revisited. Under an additional uniform integrability con-
dition, the previous considerations can be generalized to rare events of the form
{- ∈ �} = {-g ∈ �}, where g is some random stopping time; this includes com-
mittor probabilities or the probability of reaching a target set before some finite
time ) ; for example, when g = min{d(�), d(�)}, then

ℎ(G) = P(d(�) < d(�) | -C = G)

does not depend on C. As a consequence ℎ(G) = @��(G) is the committor probability
of hitting � before �, and the controlled dynamics (6.64) with drift

1ℎ = 1 + ff>∇ log @��(G)

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


642 C. Schütte, S. Klus and C. Hartmann

agreeswith the solution to the optimal control problem for the committor probability
(see Example 6.7). This observation can be turned into the statement that

L) ≔
dQ
dP

����
[0,) ]

=
ℎ(-) )
ℎ(-0)

is the likelihood ratio between P and its conditioned version Q = P( · | -g ∈ �)
when restricted to paths of length ) < g. Since ℎ(-ℎg ) = 1, because all controlled
paths end up in �, the somewhat trivial consequence is that an IS estimator based
on the reweighted expectation

P(d(�) < d(�) | -0 = G) = EG [1{-g ∈�}] = EG [1{{-ℎg ∈�}L
−1
g ] = ℎ(G)

is a zero variance estimator. We summarize the last steps.

Lemma 6.16. Let Q be the law of paths of the process (6.64) with drift 1ℎ =
1 + ff>∇Gℎ, where ℎ(G, C) = P(-g ∈ � | -C = G) for some measurable set � and
some a.s. finite stopping time g. Then

Q(-g ∈ � | -0 = G) = 1 for all G ∈ X. (6.66)

Moreover, the law of -ℎ is the law of - conditioned on stopping in � in finite time,
that is,

Q = P( · | -g ∈ �).

6.4. Connections and equivalences

In the last two subsections we have touched upon several formulations of the central
RESIM problem: compute the free energy Φ of a path functional

((-) =
∫ g

0
5 (-B) dB + 6(-g)1{g<∞},

as defined in (6.10) with respect to a reference probability measure P by a change
of measure to Q � P. We will now review several equivalent computational tasks,
all of which characterize the zero variance measure Q∗ that, under appropriate
integrability conditions on exp(−\(), is defined by

dQ∗

dP
(-) = exp(\Φ − \((-)).

Problem 6.17 (exponential change of measure). Find an admissible D∗ ∈ A
such that the path measure QD∗ induced by (6.20) on the space of continuous
curves coincides with Q∗.

Problem 6.18 (variance minimization). Find D∗ ∈ A such that

Var
(

exp(−\((-D
∗
))

dP
dQ∗

)
= inf
D∈A

Var
(

exp(−\((-D))
dP

dQD

)
.
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Problem 6.19 (optimal control). Find D∗ ∈ A that minimizes the cost functional
� defined by (6.33):

�(D∗) = inf
D∈A

�(D). (6.67)

Problem 6.20 (dynamic programming equation). Find a solution E to the HJB
equation (or dynamic programming PDE)

−mE
mC
+H(G,∇E,∇2E) = 0.

Problem 6.21 (Feynman–Kac representation). Solve the FBSDE

d-B = 1(-B) dB + f(-B) · d,B, -C = G

d.B = − 5 (-B) dB + 1
2\
|/B |2 dB + \−1/B · d,B , .) = 6(-) ).

The connections between Problems 6.17–6.21 are summarized in the following
theorem, which goes back to Nüsken and Richter (2021) and which we state in a
slightly modified form.

Theorem 6.22 (connections and equivalences). Problems 6.17–6.21 are equi-
valent in the following sense: let E ∈ �2,1($ × [0, ))) be a classical solution to
Problem 6.20 and define

D∗B = −\(f>∇GE)(-DB , B).

Then we have the following.

(i) ThemeasureQD∗ induced by (6.20) with the control D = D∗ coincides withQ∗,
that is, D∗ is an admissible control that yields the solution to Problem 6.17.
Moreover,

exp(−\E(G, C)) = E[exp(−\((-) | -C = G]

is the normalization constant for Q∗. Thus the solution to Problem 6.20 also
yields a solution to Problem 6.17.

(ii) The measure Q∗ is a zero variance measure for Problem 6.18. The random
variable

exp(−\((-D
∗
))

dP
dQ∗

is Q∗-a.s. constant. In other words, the solution to Problem 6.17 also solves
Problem 6.18.

(iii) There is an admissible control determined by Q∗ (via the likelihood ratio
dQ∗/dP and Girsanov’s theorem) that almost surely agrees with D∗ and that
minimizes the cost functional of Problem 6.19:

E(G, C) = �(D∗; G, C).
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This is equivalent to E solving the HJB equation of Problem 6.20. Hence
variance minimization (Problem 6.18) provides the solution to Problem 6.19
and, equivalently, Problem 6.20.

(iv) The pair of processes

.B = E(-B, B), /B = \(f>∇GE)(-B, B)

is a solution to Problem 6.21. Conversely, the BSDE solution (., /) defines
the unique viscosity solution of the HJB equation in Problem 6.20 via the
relation

.C = E(G, C).

Under Assumptions 6.12 and 6.13, the viscosity solution agrees with the
classical solution. As a consequence, the solution to Problem 6.20 provides
the solution to Problem 6.21 and vice versa.

We will argue below in Section 6.5 that solving any of Problems 6.17–6.21 can
be reduced to approximating a path space probability measure with respect to an
appropriate divergence.

6.4.1. Further duality relations
Theorem 6.22 is strongly tied to the logarithmic scale in the free energy. The duality
between control and estimation, however, basically relies on convexity arguments,
first and foremost Jensen’s inequality. Following Dai Pra et al. (1996), a variational
characterization of expected values similar to Theorem 6.3 holds for non-negative
random variables ( = ((-) ≥ 0.

Lemma 6.23. Let ( be non-negative and measurable. Then, for all ? ∈ [1,∞), it
holds that

(E[(((-))?])1/? = sup
{
EQ

[
((-)

(
dQ
dP

)−1/?]
: Q � P

}
. (6.68)

If the expectation on the left is finite and if ( is not (almost surely) identically zero,
then the supremum in (6.68) is attained at

dQ∗

dP
=

(((-))?

E[(((-))?] . (6.69)

Proof. The proof due to Dai Pra et al. (1996, Proposition 2.5) is along the lines of
the proof of the Gibbs variational principle; we give it for the reader’s convenience.
In order to avoid trivial statements, we assume (? ∈ !1(P) and ( ≠ 0 (almost

surely). Again using the shorthand L = dQ/dP for the likelihood ratio and
applying Jensen’s inequality, it readily follows that

(E[(((-))?])1/? = (EQ [(((-))?L −1])1/? ≥ EQ [((-)L −1/?] .
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To show the reverse inequality, we assume that there exists =0 ∈ N such that the
truncated observable

(=(-) = ((-)1{((- )<=}, = ≥ =0

is strictly positive on a set of positive P-measure, and we define a probability
measure Q= by

L= ≔
dQ=
dP

=
((=(-))?

E[((=(-))?] .

By definition, Q=(0 < ( < =) = 1 for all = ≥ =0, and therefore

EQ= [((-)L −1/?
= ] =

∫
{0<(<=}

(E[((=(-))?])1/? dQ= = (E[((=(-))?])1/? .

Then, by monotone convergence,

sup
=≥=0

EQ= [((-)L −1/?
= ] ≥ lim

=→∞
(E[((=(-))?])1/? = (E[(((-))?])1/?,

which implies that

sup
{
EQ

[
((-)

(
dQ
dP

)−1/?]
: Q � P

}
≥ (E[(((-))?])1/? .

Inserting the expression (6.69) shows that equality is attained when (? ∈ !1(P)
and Q = Q∗.

Zero variance property. It is again a straightforward consequence of Jensen’s
inequality and the strict convexity of the power function 5 (G) = |G |? for ? > 1
that Q∗ defines a zero variance change if ? > 1. If ? = 1, a zero variance
change of measure can be characterized by the following theorem, which is a slight
variation of Awad et al. (2013, Theorem 4). Before we state the theorem, we adjust
Assumption 6.13 according to our needs.

Assumption 6.24. Let & be defined as in Assumption 6.12. We suppose there
exists a function ℎ ∈ �2,1(&) ∩ �(&) that is a solution to(

m

mC
+ !

)
ℎ = − 5 in &,

ℎ = 6 on m&+,
(6.70)

where 5 , 6 ≥ 0 are continuous and m&+ = (m$ × [0, )))× ($ × {)}) is the terminal
set of (-B, B)B≥C .

Assumption 6.25. Let ℎ satisfy Assumption 6.24. We further assume that ℎ is
strictly positive inside &, and that for any X > 0 the function

G ↦→ (f(G))>∇G log ℎ(G, C)

is bounded on the set � X = {(G, C) ∈ & : ℎ(G, C) > X}.
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The next statement is due to Awad et al. (2013).

Theorem 6.26 (zero variance estimator for ? = 1). Let

[(G, C) = E
[∫ g

C

5 (-B) dB + 6(-g)
���� -C = G] ,

where g is a bounded stopping time according to Assumption 6.12. If ℎ satisfies
Assumptions 6.24 and 6.25, then ℎ = [. Furthermore, letting Q∗ be the path space
measure generated by the SDE

d-ℎB = 1ℎ(-ℎB , B) dB + f(-ℎB ) d,B, -ℎC = G (6.71)

with drift
1ℎ = 1 + ff>∇G log ℎ, (6.72)

then

[(G, C) =
∫ g

C

5 (-ℎB )L −1
C ,B dB + 6(-ℎg )L −1

C ,g Q∗-a.s.,

where L denotes the likelihood ratio

LC ,B = exp
(∫ B

C

D∗B · d,B +
1
2

∫ B

C

|D∗B |2 dB
)
,

with
D∗B = (f(-ℎB ))>∇G log ℎ(-ℎB , B), B ≥ C.

Theorem 6.26 is essentially a generalization of the ℎ-transform trick discussed in
Section 6.3.2 to functionals that involve a non-zero running cost term 5 . Note that
in this case the likelihood ratio of the running cost term appears inside the integ-
ral. Under additional integrability assumptions (e.g. Awad et al. 2013, Section 4,
Assumption 3) it is possible to pass to the limit ) → ∞ and obtain a problem
with a random time horizon. Neither the formulation of Theorem 6.26 nor the
corresponding hitting time problem for ) → ∞ have a straightforward stochastic
control interpretation when 5 ≠ 0.

6.4.2. Issues for unbounded random stopping times
One important feature of the control representation of the free energy is that it
allows for the control of several moments at once. For example, the cost functional
associated with the sampling of ((-) = g when g is the potentially long first exit
time from a metastable set involves the minimization of EQ [g] under the controlled
dynamics while minimizing sample variance.
The importance sampling estimator associated with Theorem 6.26 shows a rather

different behaviour when it comes to problems that involve unbounded random
stopping times, such as first exit or hitting times. In extreme cases, the importance
sampling estimator may even have infinite simulation time, as has been argued by
Awad et al. (2013) and is shown by the following example.
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Example 6.27 (exit from a set, continued). Weagain consider the Brownianmo-
tion, -C = G + f,C starting at G and exiting from the set � = (0, 1). The boundary
value problem

f2

2
ℎ′′(G) = −1, ℎ(0) = ℎ(1) = 0, (6.73)

for the mean first exit time (MFET), ℎ(G) = E[g | -0 = G], has the unique solution

ℎ(G) =
G(1 − G)
f2 . (6.74)

According to Theorem 6.26, the zero variance importance sampling measure &∗ is
generated by the Doob-transformed SDE with drift 1ℎ(G) = f2(log ℎ(G))′:

¤-ℎB = f2 1 − 2-ℎB
-ℎB (1 − -ℎB )

+ f ¤,B, -ℎ0 = G. (6.75)

The extra drift is singular at the domain boundaries G ∈ {0, 1}, which implies that
g = ∞ with probability 1 (under Q∗). In other words, the controlled process cannot
exit from the domain �. Even worse, since for any ) > 0 the event {g < )} has
positive probability under % but zero probability underQ∗, the reference measure is
not absolutely continuous with respect to the newmeasureQ∗, even when restricted
to paths of finite length.
Note that, formally, Q∗ is nevertheless a zero variance change of measure, but at

the expense of generating paths that are Q∗-a.s. infinitely long, that is, gℎ is almost
surely constant (i.e. it has zero variance) but with the constant being equal to +∞.

Possible fixes. A simple resolution of the problem in Example 6.27 is to penalize
long trajectories by adding a terminal cost 6. In the example here, we can just add
a constant 6 = 2 > 0, so that we replace the MFET with ℎ2(G) = E[g + 2 | -0 =
G] = ℎ(G)+ 2. By this simple trick, the MFET remains almost surely finite, because
the term in the denominator in (6.75) is bounded away from 0.
The original control and the control resulting from the penalized sampling prob-

lem are shown in Figure 6.3(a). It can be observed that the control force remains
finite at the set boundaries, which implies that the MFET stays finite for all initial
values G ∈ �. Under Q∗2 , all trajectories almost surely terminate in finite time.
Since the extra terminal cost 6 = 2 simply shifts the quantity of interest by a
constant that can be trivially removed, Q∗2 also generates a zero variance estimator
for ℎ.
As an alternative, we can replace the mean with its certainty-equivalence, i.e.

the free energy

Φ(G; \) ≔ −\−1 logE[exp(−\g) | -0 = G] .

Note that we have dropped the second argument C, since our process is time-
homogeneous.
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It is possible to extract moments of g from the free energy by using the properties
or the associated moment generating function: if there exists an n > 0 such that

Ψ(G, \) ≔ E[exp(−\g) | -0 = G]

is finite for all \ ∈ (−n, n), then all moments of g exist and

E[g: | -0 = G] =
d

d\
Ψ(G; \)

����
\=0
.

Note that Ψ = exp(−\E) can be expressed in terms of the value function E of our
control problem. In principle it is possible to approximate the derivatives with
respect to \ by finite differences or more elaborate techniques from sensitivity
analysis (e.g. Dupuis, Katsoulakis, Pantazis and Plecháč 2016, Dupuis et al. 2020,
Tsourtis, Pantazis, Katsoulakis and Harmandaris 2015), yet the control becomes
heavily penalized for small \ as equations (6.33) and (6.39) show. As a consequence
the control converges to zero as \ → 0 and hence no longer leads to a reduction of
the simulation time.

Remark 6.28. The reader may wonder whether the optimal control for the mo-
ment generating function can be used to directly control the variance of the estimator
of the first moment for finite values of \ > 0. Unfortunately the answer is negative.
To see this, let

g∗ = g
dP

dQ∗
,

and suppose we want to estimate E[g] by sampling g∗ under the controlled dynam-
ics. Using that the optimal likelihood ratio L ∗ = dQ∗/dP, for which equality in
(6.12) is attained, can be recast as

L ∗ =
4−\g

Ψ
, Ψ = E[exp(−\g)],

it follows that

Var(g∗) = E&∗
[(
g

dP
dQ∗

)2]
− (E[g])2

= E

[
g2 dP

dQ∗

]
− (E[g])2

= E[exp(−\g)] E[g2 exp(\g)] − (E[g])2.

Now, since the random variables *(g) = exp(−\g) and +(g) = g2 exp(\g) are
anticorrelated, for* is decreasing whereas + is increasing, it follows that

E[g2] = E[*(g)+(g)]
≤ E[*(g)] E[+(g)]
= E[exp(−\g)] E[g2 exp(\g)] .
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As a consequence,
Var(g∗) ≥ Var(g),

where equality is attained for \ = 0, in which case the optimal control vanishes.
By an analogous argument (see Badowski 2016), it can be shown that

Var(g∗)E[g∗] ≥ Var(g)E[g],

which implies that the reduction of the mean trajectory length due to the control
does not compensate for the increase of the variance.

6.4.3. Control variate limit of the IS estimator
From a control perspective, the limit dynamics as \ → 0 is not particularly relevant,
since the control vanishes in the limit. Nevertheless the IS estimator has a non-
trivial limit as a control variate estimator, which we will briefly discuss with our
standard example.

Example 6.29 (exit from a set, continued). Recall from the proof of Theorem 6.3
that by the strict convexity of the exponential function, equality is attained if and
only if the optimal control generates a zero variance change of measure Q∗ that
leaves the random variable g + \−1 log dQ∗/dP almost surely constant, in which
case

Ψ(G; \) = 4−\g
∗ dP
dQ∗

Q∗-a.s. (6.76)

for all \ > 0, where g∗ denotes the stopping time under the optimal control D∗.
Taking logarithms on both sides and letting \ → 0, we obtain a zero variance
estimator for the mean that has the form

EG [g] = g +
d

d\

����
\=0

log L ∗. (6.77)

Inserting the likelihood ratio L ∗ = L D∗
g∗ under the optimal control D∗ = $(\) and

taking the limit \ → 0, we obtain

EG [g] = g + f−1
∫ g

0
(2-C − 1) d,C , (6.78)

where the expression inside the Itô integral is exactly −fℎ′(G), with ℎ being the
MFET as defined in (6.74). This should be compared to the result of the Doob
ℎ-transform, for which an extra term proportional to (log ℎ(G))′ is causing the drift
to become singular at the boundaries of the domain.
Figure 6.3(b) shows a comparison of crude Monte Carlo (CMC) and control

variate estimators of themean first exit time, which illustrates the variance reduction
by the additive control variate term.
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Figure 6.3. (a) Naive optimal drift for zero variance importance sampling (blue)
and its regularized version including a small terminal cost (red). (b) Comparison
of crude Monte Carlo (blue) and control variate (red) estimators of the mean first
exit time EG [g] of the set � = (0, 1) for # = 100 independent realizations. The
observed small bias of the control variate estimator can be attributed to the time
discretization error of the underlying Euler–Maruyama discretization, which leads
to an overestimation of g.

The main conclusion of the last example is that while the control disappears
from the equation in the limit \ → 0, and hence can no longer lead to a reduction
of the average simulation time, the IS estimator turns into a zero variance control
variate estimator.
This behaviour is what one would generally expect from the fact that the nonlin-

earity in the associated HJB equation vanishes as \ → 0, which leads to a linear
equation for the first moment. Assuming sufficient regularity of the coefficients,
the convergence of the estimator then follows from the convergence of the control,
i.e. the derivative of the value function. To our knowledge, this connection has not
yet been discussed in the literature on variance reduction methods for SDEs (e.g.
Graham and Talay 2013).

6.5. Computational aspects

For realistic scenarios, solving the nonlinear HJB equations to compute optimal
controls that can be used in an adaptive IS framework is not an option. There are
twomain lines of attack to approximate either the value function (i.e. the free energy
or cumulant generating function) or the corresponding optimal control. Roughly,
one can distinguishmethods based on stochastic optimization of an appropriate loss
(e.g. the cost functional or an auxiliary entropy-based functional) or time-stepping
methods using the probabilistic FBSDE representation of the HJB equation. It
turns out that the two approaches are intimately connected, because loss functions
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also play a key role as regularization terms in the FBSDE approach, as has been
pointed out in Nüsken and Richter (2021) and Richter (2022).

6.5.1. Path space approximations for finite time horizon
What the stochastic optimization methods and the FBSDE approach have in com-
mon is that they can be thought of approximation problems for the optimal path
space measureQ∗ (see Theorem 6.22). Given a parametric family {Q̂(") : " ∈ R=}
of path space measures Q̂("), these approximation problems can then be solved
by standard optimization routines, including stochastic gradient descent schemes
in connection with approximations by deep neural networks (e.g. Hartmann et al.
2019, Richter 2022).
Before we point out further connections, we shall briefly introduce the key con-

cepts regarding loss functions based on divergences between probability measures.

Divergences and loss functions. We callM1 the set of probability measuresQ � P
on the space of continuous curves - : [0, )] → X, and notice that the controlled
SDE (6.20) induces a map

A 3 D ↦→ QD ∈M1,

which can be made explicit in terms of Radon–Nikodým derivatives via Girsanov’s
theorem (6.24). As a consequence, we can elevate divergences between path
measures to loss functions on vector fields. Namely, let � : M1 ×M1 → [0,∞]
be a divergence, that is,

�(P,Q) ≥ 0 and �(P,Q) = 0 if and only if P = Q,

where it is in most cases sufficient that the rightmost equality holds only up to Q-
null sets. Prominent examples include the KL divergence (6.11) or, more generally,
5 -divergences such as the j2-divergence (6.15).
Using the shorthand Q = QD and setting

R�(D) = �(Q,Q∗), D ∈ A, (6.79)

we immediately see that R� ≥ 0 and R�(D) = 0 if and only if D = D∗. It is
therefore plausible that an approximation of the optimal control vector field D∗ can
be found by minimizing the loss function R� over the set of admissible controls
D ∈ A.

Definition 6.30 (loss functions). For Q,Q∗ ∈M1, equivalent to P, we define

(i) the relative entropy lossRRE =  !(Q |Q∗),
(ii) the cross-entropy loss RCE =  !(Q∗ |Q),

(iii) the variance lossRVar(D) = Var
(

dQ∗

dQ

)
,

(iv) the log-variance loss Rlog
Var(D) = Var

(
log

dQ∗

dQ

)
.
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The above loss functions can be explicitly expressed in terms of the original IS
control problem. We highlight two notable special cases and confine ourselves to
finite stopping times ) , for which all loss functions are well-defined.

Cross-entropy loss. To establish a connection between optimal control and cross-
entropy minimization, note that (6.14) and (6.43) together with Theorem 6.8 imply
that

( − log
(

dP
dQ

dQ
dQ∗

)
= �(D∗).

Taking the expectationwith respect toQ and using that bothQ andQ∗ are absolutely
continuous with respect to P and vice versa yields

�(D) = �(D∗) +  !(Q |Q∗) (6.80)

where D is any admissible control, D∗ is the optimal control, and Q = QD and
Q∗ = QD

∗ are the corresponding path space measures. In other words, �(D) equals
the relative entropy lossRRE(D) up to an additive constant.

The idea now is to seek a minimizer of  !(Q |Q∗) in the set of probability
measures Q̂ = Q̂(") ∈ M1 that are generated by a parametric family of controls
D̂ = D̂("), " ∈ R=. By (6.14) the optimal change of measure is known up to a
normalizing factor, which enters (6.80) only as an additive constant (i.e. a function
of the initial data (G, C) but that does not depend on the realizations of the process).
Nevertheless, minimizing RRE(") =  !(Q̂(") |Q∗) over " ∈ R= is not easily
achieved since the functional may have several local minima.
With a little trick, however, we can turn the minimization of (6.80) into a feasible

minimization problem, simply by flipping the arguments. To this end, we define

RCE(") =  !(Q∗ | Q̂(")). (6.81)

Clearly, the relation (6.80) does not hold with arguments in the Kullback–Leibler
(or KL) divergence term reversed, since  !(· | ·) is not symmetric; nevertheless,

RRE(") ≥ 0, RCE(") ≥ 0 and RRE(") = 0 if and only ifRCE(") = 0,
(6.82)

where the minimum is attained if and only if Q̂ = Q∗. Hence, by continuity of the
relative entropy, we may expect that by minimizing the ‘wrong’ functionalRCE we
get close to the optimal change of measure, provided that the optimal Q∗ can be
approximated by our parametric family Q̂.

Ignoring additive constants, the cross-entropy minimization problem is readily
seen to be equivalent to the maximization of the functional (Zhang et al. 2014):

CE(") = E[log L (") exp(−((-))], (6.83)

where log L = log(dQ̂/dP) denotes the the log likelihood ratio between controlled
and uncontrolled trajectories. If D̂ is a linear combination of suitable basis functions
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q1, . . . , q= : X × [0,∞)→ R, for example

D̂B(") = −\f(-B)>
=∑
8=1

U8∇Gq8(-B, B), (6.84)

then by Girsanov’s theorem CE(") is quadratic in the unknown " = (U1, . . . , U=).
This then implies that the necessary optimality condition is of the form

 " = A, (6.85)

where  = ( 8 9)1≤8, 9≤# and A = (A8)1≤8≤# are given by

 8 9 = E

[
exp(−((-))

∫ )

0
(f>∇Gq8)(-B, B)(f>∇Gq 9)(-B, B) dB

]
,

A8 = −E
[
exp(−((-))

∫ )

0
(f>∇Gq8)(-B, B) · d,B

]
.

(6.86)

Remark 6.31 (iterative sampling scheme). Note that the average in equation
(6.86) is over the uncontrolled realizations - . It is easy to see that the matrix ( is
positive definite if the basis functions q8 are linearly independent, which implies
that equation (6.85) has a unique solution and our necessary condition is in fact
sufficient. Nevertheless it may happen in practice that the coefficient matrix  is
badly conditioned, in which case it may be advisable to evaluate the coefficients
using importance sampling or a suitable annealing strategy; see Zhang et al. (2014)
and Hartmann, Schütte and Zhang (2016) for further details.

Log-variance loss. The log-variance loss has an interpretation in terms of the
solution to the BSDE (6.53), as has been noted in Nüsken and Richter (2021)
and Richter (2022). The idea is to replace the auxiliary variable /B = −D∗B by
an arbitrary parametric auxiliary variable /̂B = −D̂ with a Markovian control
D̂B(") = 2(-B, B;") and interpret the BSDE solution

.C − H0 = −
∫ C

0
5 (-B) dB − 1

\

∫ C

0
2(-B, B) · d,B +

1
2\

∫ C

0
|2(-B, B)|2 dB (6.87)

as a controlled forward process for any given initial condition.0 = H0. Here, unlike
the previous linear regression formulation in the cross-entropy method, the para-
metrization of the control can be most efficiently done using deep neural networks
and automatic differentiation tools; see E, Han and Jentzen (2017), Hartmann et al.
(2019) and Nüsken and Richter (2021). (Nonetheless, we use the same parameter
" to denote the parametric family.)
Clearly .) = 6(-) ) if D̂ = D∗ is the optimal control; for an arbitrary admissible

control D̂B(") = 2(-B, B,"), using (6.87), Girsanov’s theorem and the explicit form
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(6.14) of the optimal change of measure, we obtain

Rlog
Var(") = Var

(
log

(
dQ∗

dQ̂

))
= Var

(
log

(
dQ̂
dP

dP
dQ∗

))
= Var

(
\

(
H0 − .) −

∫ C

0
5 (-B) dB

)
+ \(((-) +Φ)

)
= \2 Var(.) − 6(-) )),

As a consequence, ignoring the multiplicative constant \2 > 0,

Rlog
Var(") ≔ Var(.) − 6(-) )), (6.88)

Note that the log-variance loss does not depend on H0, since the variance of a
random variable is independent of constant shifts, in contrast to the quadratic loss

R2(", H0) = E[(.) − 6(-) ))2]

that has been used in E et al. (2017) to compute FBSDE solutions using deep neural
network approximations and that has an explicit dependence on H0.

Remark 6.32 (importance sampling for FBSDEs). The variance and the log-
variance losses are computed by taking averages over the reference measure P, in
accordance with the fact that forward process - in the FBSDE (6.52) is uncon-
trolled. There may be situations, however, in which it is advisable to bias the
forward dynamics and sample the terminal condition from a controlled forward
process -F as in (6.56)–(6.57).
For example, the log-variance under a controlled forward process -F reads

Rlog
VarF (") = VarPF

(
log

dQ∗

dQ̂

)
= VarPF (.F) − 6(-F) )),

with PF being the path measure induced by -F , and

.F) −H0 = −
1
\

∫ )

0
FB ·2B dB−

∫ )

0
5B dB−1

\

∫ )

0
2B ·d,B+

1
2\

∫ )

0
|2B |2 dB, (6.89)

where we have used the abbreviations 2B = 2(-FB , B) and 5B = 5 (-FB ). Using an
additional bias F can be useful in situations in which the terminal condition is
difficult to sample, resulting in a large sample variance of the loss function or its
gradient (see Kebiri et al. 2019, Hartmann et al. 2019).

(Non-)robustness of loss functions. Even though the aforementioned loss functions
can all be used inside a regression scheme to approximate FBSDE solutions, and
even though they share many variational properties, their Monte Carlo estimators
have rather different properties.
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One of the key observations in Nüsken and Richter (2021) is that the derivatives
of the log-variance loss and the relative entropy are equivalent when the former is
evaluated at F = D. Letting

XR(D) · Z ≔ d
dn

R(D + nZ)
����
n=0

(6.90)

denote the directional (Gâteaux) derivative of the loss R at D along the test func-
tions Z ∈ U (e.g. square-integrable and adapted to the filtration generated by the
Brownian motion), and further letting

Rlog
VarF (D) = VarPF

(
log

dQ∗

dQ

)
denote the log-variance loss under the reference measure PF (see Remark 6.32), it
holds that

1
2
XRlog

VarF (D) · Z
��
F=D

= XRRE(D) · Z, (6.91)

assuming that D, F ∈ A are admissible and the two loss functions are Gâteaux-
differentiable.
The last equation complements the observation that the relative entropy loss

equals the cost functional (6.33) up to an additive constant, in that it establishes
a connection between the minimization of the cost functional and the variational
(forward) formulation of the FBSDE in terms of the log-variance loss. The sur-
prising bit is not that both uniquely determine the optimal control D = D∗, but
that the gradients of the corresponding loss functions agree for D ≠ D∗ (up to a
multiplicative factor).
Note, moreover, that computing the derivatives of the relative entropy loss re-

quires differentiating both the SDE solution, -D , and running and terminal costs, 5
and 6, whereas differentiating 5 and 6 is not necessary to compute the derivative of
the log-variance loss. This opens the door to gradient-free implementations when
using the log-variance loss, as has been pointed out in Richter (2022).
The log-variance loss has other remarkable properties, one of which is that the

variance of the gradient of the Monte Carlo estimator vanishes at the optimum; the
next lemma, with slight modifications, is taken from Nüsken and Richter (2021).

Lemma 6.33 (robustness of log-variance estimator). Calling R̂log,<
VarE the crude

Monte Carlo estimator of the log-variance loss based on< independent realizations
of -F

)
and .F

)
as given by (6.89), then, independently of F ∈ A,

Var
(
XR̂log,<

VarF (D∗) · Z
)
= 0 for all Z ∈ U . (6.92)

Intriguingly, cross-entropy and relative entropy losses do not have this property.
The log-variance loss estimator moreover has the feature that its relative error is
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uniformly bounded in the state space dimension, N , if the target measure Q∗ is
a product measure – a property that is again not shared by the cross-entropy loss
(Nüsken and Richter 2021, Section 5).

Related work. We should mention that the connection between HJB equations and
FBSDEs is not new and not specific to the situation here; see e.g. E et al. (2017),
Sirignano and Spiliopoulos (2018), Huré, Pham, Bachouch and Langrené (2021)
and Bachouch, Huré, Langrené and Pham (2022) for a treatment of semilinear
partial differential equations of HJB type, with a focus on the approximation by
deep neural networks, or Beck et al. (2019) and Pham, Warin and Germain (2021)
for the fully nonlinear case; see also E, Han and Jentzen (2021) for a review.
Regarding the backward time discretization of uncoupled FBSDE on finite time-

horizon, like the ones considered here, we refer to the rich literature on least-squares
Monte Carlo, e.g. Gobet, Lemor and Warin (2005), Bender and Moseler (2010),
Bender and Steiner (2012), Turkedjiev (2013) and Gobet and Turkedjiev (2016).

6.5.2. Stochastic gradient descent for unbounded stopping times
The cross-entropy method and the FBSDE-based approach have their merits when
the stopping time is bounded. For problems with unbounded random time horizon,
sampling of the terminal condition can be difficult, especially when the stopping
time distribution is very broad. (Backward time-stepping schemes such as least-
squares Monte Carlo can be even more problematic.)
In this case the minimization of the cost functional can be a viable alternative

(Hartmann and Schütte 2012). We describe the core idea. To this end, we use the
notation of Section 6.3 assuming that g = d($) is some possibly unbounded random
stopping time (e.g. a first hitting time). We further assume that the dynamics is
time-homogeneous which, by the strong Markov property, implies that the value
function does not depend on C. We suppose that E can be approximated in some
suitable norm by the Galerkin ansatz

Ê(G) =
=∑
8=1

U8q8(G), (6.93)

where q1, . . . , . . . , q= : $ → R are smooth basis functions whose choice depends
on the problem at hand. The optimal control can then be approximated by the linear
combination of the f>∇q8:

D̂B = −\f(-DB )>
=∑
8=1

U8∇q8(-DB ). (6.94)

Plugging the above representation into (6.33) yields the following finite-dimen-
sional optimization problem: minimize

�(D̂) = E
[∫ ĝ

0

(
5 (- D̂B ) + 1

2\
|D̂B |2

)
dB + 6(- D̂ĝ )1{ ĝ<∞}

]
(6.95)

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 657

over the controls D̂, where - D̂ is the solution of the SDE (6.20) with control D = D̂
and ĝ = gD̂ denotes the stopping time under the controlled dynamics.
Let us define �̂(") = �(D̂(")), with the shorthand " = (U1, . . . , U=) ∈ R=.

Because of the dependence of the process -" and the random stopping time
ĝ = gD̂(") on the parameter ", the functional �̂ is not quadratic in ", but it has
been shown (Lie 2016) that it is strongly convex if the ansatz functions q8 are
non-overlapping. In this case �̂ has a unique minimum, which suggests doing a
gradient descent in the parameter ":

"(<+1) = "(<) − ℎ<∇�̂("(<)). (6.96)

Here (ℎ<)<≥0 is a sequence of step sizes (or learning rates) that go to zero as
< → ∞, and the gradient ∇�̂(") must be interpreted in the sense of (6.90). Then
the gradient ∇�̂(") has the components

m�̂

mU:
= −X�(D̂(")) · (\f>∇q:). (6.97)

Gradient computation. The explicit expression for the gradient can be computed
by Girsanov’s theorem. To this end, we assume that Q(ĝ < ∞) = 1 and introduce
the shorthand

ℓ(- D̂ , D̂) =
∫ ĝ

0

(
5 (- D̂B , B) +

1
2\
|D̂B |2

)
dB + 6(- D̂ĝ ).

Then there exists Qn � P, such that

d
dn
�(D̂ + nZ)

����
n=0

=
d
dn
E[ℓ(- D̂+n Z , D̂ + nZ)]

����
n=0

=
d
dn
E

[
ℓ(-, D̂ + nZ)

dQn

dP

] ����
n=0
,

where
dQn

dP

����
[0,g ]

= exp(/D+n Zg ).

If we formally differentiate under the expectation and then switch back to the
controlled process - D̂ under the reference measure P, we obtain (see Lie 2021 for
details)

X�(D̂) · Z = E
[
ℓ(- D̂ , D̂)

∫ ĝ

0
ZB · d,B +

1
\

∫ ĝ

0
D̂B · ZB dB

]
.

Under the optimal control D∗, we have (see Hartmann et al. 2017, Lemma 1)

X�(D∗) · Z = 0 for all Z ∈ U .
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Finally, we get the explicit expression for the gradient from (6.97):

m�̂

mU:
= −E

[
\ℓ(- D̂ , D̂)

∫ ĝ

0
(f>∇q:)(- D̂B ) · d,B +

∫ ĝ

0
D̂B · (f>∇q:)(- D̂B ) dB

]
.

(6.98)

Hartmann and Schütte (2012) have derived a discrete representation of the gradient
for diffusive molecular dynamics using Euler’s method.

Limitations. In principle the gradient can be estimated byMonte Carlo. In practice,
however, controlling the sample variance is extremely tricky for path functionals
that involve very long or even unbounded stopping times (Birrell and Rey-Bellet
2020, Birrell, Katsoulakis and Rey-Bellet 2021). Therefore the robust estimation of
the gradient (6.98) requires suitable variance reduction techniques for the estimation
of the gradient (see Arampatzis, Katsoulakis and Rey-Bellet 2016).
Another difficulty is the choice of basis functions. Even though the cost func-

tional (6.95) has nice convexity properties when the basis functions have non-
overlapping supports, the canonical choice for high-dimensional problems is radial
basis functions, such as Gaussians (Hartmann and Schütte 2012, Quer, Donati,
Keller and Weber 2018). In this case, due to a lack of convexity, one cannot
expect convergence of the gradient flow (6.96) to the global minimizer, even with
sophisticated control strategies for the learning rate. This explains why a good
initial guess for the discretized control (6.94) is crucial for the convergence of the
method. Methods to generate good initial guesses can be based on biased MD sim-
ulations (e.g. using metadynamics (Bussi et al. 2020) or variational autoencoders
(Belkacemi et al. 2022)) that generate bias potentials from simulation data in an
automated fashion; see Lie and Quer (2017) and Borrell, Quer, Richter and Schütte
(2022) for an application of biasing methods to generate initial guesses for path
space importance sampling.

7. Concluding remarks
We have seen how the timescale gap in molecular dynamics can be tackled when
switching from long direct MD simulations in atomistic simulation to the level of
transfer operators and linear evolution equations, where long timescales are ac-
cessible via dimension reduction and techniques based on variational formulations.
Moreover, we have discussed how these dimension reduction techniques can be
combined with modern machine learning strategies to yield efficient algorithms
suitable for realistic molecular systems and biologically relevant timescales.

In addition, we have also approached rare event simulation from another angle
by asking how to optimally reduce the variance of direct numerical simulation
techniques. Here we have seen that several approaches (importance sampling,
optimal control, forward–backward SDEs, etc.) have equivalent variational formu-
lations too, and that, again, modern machine learning techniques can be used to find
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efficient algorithms. This family of low-variance rare event simulation techniques is
not as prominent in molecular dynamics as the transfer operator-based approaches,
but the connections between the two fields are inspiring and promising.

Acknowledgements

This work has been partially funded by the Deutsche Forschungsgemeinschaft
(DFG) through grant CRC 1114 Scaling Cascades in Complex Systems (project no.
235221301) and under Germany’s Excellence Strategy through grant EXC-2046
The Berlin Mathematics Research Center MATH+ (project no. 390685689).

References
S. Agapiou, O. Papaspiliopoulos, D. Sanz-Alonso and A. M. Stuart (2015), Importance

sampling: Computational complexity and intrinsic dimension, Statist. Sci. 32, 405–431.
D. J. Alford-Lago, C. W. Curtis, A. T. Ihler and O. Issan (2022), Deep learning enhanced

dynamic mode decomposition, Chaos 32, 033116.
R. J. Allen, D. Frenkel and P. R. Ten Wolde (2006), Forward flux sampling-type schemes

for simulating rare events: Efficiency analysis, J. Chem. Phys. 124, 194111.
R. J. Allen, C. Valeriani and P. R. Ten Wolde (2009), Forward flux sampling for rare event

simulations, J. Phys. Condensed Matter 21, 463102.
M. R. Allshouse and T. Peacock (2015), Lagrangian based methods for coherent structure

detection, Chaos 25, 097617.
G. Andrew, R. Arora, J. Bilmes andK. Livescu (2013), Deep canonical correlation analysis,

in Proceedings of the 30th International Conference on Machine Learning, Vol. 28 of
Proceedings of Machine Learning Research, PMLR, pp. 1247–1255.

G. Arampatzis, M. A. Katsoulakis and L. Rey-Bellet (2016), Efficient estimators for like-
lihood ratio sensitivity indices of complex stochastic dynamics, J. Chem. Phys. 144,
104107.

D. Aristoff, T. Lelièvre, C. G. Mayne and I. Teo (2015), Adaptive multilevel splitting in
molecular dynamics simulations, ESAIM Proc. Surveys 48, 215–225.

S. Asmussen, P. Dupuis, R. Y. Rubinstein and H. Wang (2013), Rare event simulation, in
Encyclopedia of Operations Research and Management Science (S. I. Gass and M. C.
Fu, eds), Springer, pp. 1264–1279.

A. M. Avila and I. Mezić (2020), Data-driven analysis and forecasting of highway traffic
dynamics, Nature Commun. 11, 2090.

H. P. Awad, P. W. Glynn and R. Y. Rubinstein (2013), Zero-variance importance sampling
estimators for Markov process expectations, Math. Oper. Res. 38, 358–388.

C. Ayaz, L. Scalfi, B. A. Dalton and R. R. Netz (2022), Generalized Langevin equa-
tion with a nonlinear potential of mean force and nonlinear memory friction from a
hybrid projection scheme, Phys. Rev. E 105, 054138.

C. Ayaz, L. Tepper, F. N. Brünig, J. Kappler, J. O. Daldrop and R. R. Netz (2021), Non-
Markovian modeling of protein folding, Proc. Nat. Acad. Sci. USA 118, e2023856118.

A. Bachouch, C. Huré, N. Langrené and H. Pham (2022), Deep neural networks algorithms
for stochastic control problems on finite horizon: Numerical applications, Methodol.
Comput. Appl. Probab. 24, 143–178.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


660 C. Schütte, S. Klus and C. Hartmann

T. Badowski (2016), Adaptive importance sampling via minimization of estimators of
cross-entropy, mean square, and inefficiency constant. Doctoral thesis, Freie Universität
Berlin.

R. Banisch and C. Hartmann (2016), A sparse Markov chain approximation of LQ-type
stochastic control problems, Math. Control Related Fields 6, 363–389.

R. Banisch and P. Koltai (2017), Understanding the geometry of transport: Diffusion maps
for Lagrangian trajectory data unravel coherent sets, Chaos 27, 035804.

R. Banisch, N. D. Conrad and C. Schütte (2015), Reactive flows and unproductive cycles
for random walks on complex networks, Eur. Phys. J. Spec. Top. 224, 2369–2387.

C. Bartels and M. Karplus (1997), Multidimensional adaptive umbrella sampling: Ap-
plications to main chain and side chain peptide conformations, J. Comput. Chem. 18,
1450–1462.

K. A. Beauchamp, G. R. Bowman, T. J. Lane, L. Maibaum, I. S. Haque and V. S. Pande
(2011), MSMBuilder2: Modeling conformational dynamics at the picosecond to milli-
second scale, J. Chem. Theory Comput. 7, 3412–3419.

S. Beccara, T. Skrbic, R. Covino and P. Faccioli (2012), Dominant folding pathways of a
WW domain, Proc. Nat. Acad. Sci. USA 109, 2330–2335.

C. Beck, A. Jentzen et al. (2019), Machine learning approximation algorithms for high-
dimensional fully nonlinear partial differential equations and second-order backward
stochastic differential equations, J. Nonlinear Sci. 29, 1563–1619.

Z. Belkacemi, P. Gkeka, T. Lelièvre and G. Stoltz (2022), Chasing collective variables
using autoencoders and biased trajectories, J. Chem. Theory Comput. 18, 59–78.

J. Bello-Rivas and R. Elber (2015), Exact milestoning, J. Chem. Phys. 142, 094102.
J. Beltran and C. Landim (2010), Tunneling and metastability of continuous time Markov

chains, J. Statist. Phys. 140, 1065–1114.
J. Beltran and C. Landim (2013), A martingale approach to metastability, Probab. Theory

Related Fields 161, 267–307.
C. Bender and T. Moseler (2010), Importance sampling for backward SDEs, Stoch. Anal.

Appl. 28, 226–253.
C. Bender and J. Steiner (2012), Least-squares Monte Carlo for backward SDEs, in Nu-

merical Methods in Finance (R. A. Carmona et al., eds), Springer, pp. 257–289.
T. Bengtsson, P. Bickel and B. Li (2008), Curse-of-dimensionality revisited: Collapse of

the particle filter in very large scale systems, in Probability and Statistics: Essays in
Honor of David A. Freedman, Institute of Mathematical Statistics, pp. 316–334.

A.M. Berezhkovskii and A. Szabo (2019), Committors, first-passage times, fluxes, Markov
states, milestones, and all that, J. Chem. Phys. 150, 054106.

N. Berglund (2013), Kramers’ law: Validity, derivations and generalisations, Markov
Process. Related Fields 19, 459–490.

S. Bhakat (2022), Collective variable discovery in the age of machine learning: Reality,
hype and everything in between, RSC Adv. 12, 25010–25024.

A. Bianchi and A. Gaudillière (2016), Metastable states, quasi-stationary distributions and
soft measures, Stoch. Process. Appl. 126, 1622–1680.

J. Birrell and L. Rey-Bellet (2020), Uncertainty quantification for Markov processes via
variational principles and functional inequalities, SIAM/ASA J. Uncertain. Quantif. 8,
539–572.

J. Birrell, M. A. Katsoulakis and L. Rey-Bellet (2021), Quantification of model uncertainty
on path-space via goal-oriented relative entropy, ESAIMMath. Model. Numer. Anal. 55,
131–169.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 661

A. Bittracher and C. Schütte (2020), A weak characterization of slow variables in stochastic
dynamical systems, in Advances in Dynamics, Optimization and Computation (SON
2020) (O. Junge et al., eds), Springer, pp. 132–150.

A. Bittracher, P. Koltai, S. Klus, R. Banisch, M. Dellnitz and C. Schütte (2018), Transition
manifolds of complex metastable systems, J. Nonlinear Sci. 28, 471–512.

A. Bittracher, M. Mollenhauer, P. Koltai and C. Schütte (2021), Optimal reaction
coordinates: Variational characterization and sparse computation. Available at
arXiv:2107.10158 (to appear in SIAM J. Multiscale Model. Simul.).

P. G. Bolhuis and D. W. H. Swenson (2021), Transition path sampling as Markov chain
Monte Carlo of trajectories: Recent algorithms, software, applications, and future
outlook, Adv. Theory Simul. 4, 2000237.

P. G. Bolhuis, D. Chandler, C. Dellago and P. Geissler (2002), Transition path sampling:
Throwing ropes over mountain passes, in the dark, Annu. Rev. Phys. Chem. 59, 291–318.

L. Bonati, G. Piccini and M. Parrinello (2021), Deep learning the slow modes for rare
events sampling, Proc. Nat. Acad. Sci. USA 118, e2113533118.

S. D. Bond, B. B. L. Benedict and J. Leimkuhler (1999), The Nosé–Poincaré method for
constant temperature molecular dynamics, J. Comput. Phys. 151, 114–134.

E. R.Borrell, J. Quer, L. Richter andC. Schütte (2022), Improving control based importance
sampling strategies for metastable diffusions via adapted metadynamics. Available at
arXiv:2206.06628.

N. Bou-Rabee and E. Vanden-Eijnden (2010), Pathwise accuracy and ergodicity of Metro-
polized integrators for SDEs, Commun. Pure Appl. Math. 63, 655–696.

M. Boué and P. Dupuis (1998), A variational representation for certain functionals of
Brownian motion, Ann. Probab. 26, 1641–1659.

A. Bovier and F. Den Hollander (2016), Metastability: A Potential-Theoretic Approach,
Vol. 351 of Grundlehren der mathematischen Wissenschaften, Springer.

A. Bovier, M. Eckhoff, V. Gayrard and M. Klein (2002a), Metastability and low lying
spectra in reversible Markov chains, Comm. Math. Phys. 228, 219–255.

A. Bovier, M. Eckhoff, V. Gayrard and M. Klein (2002b), Metastability in reversible
diffusion processes I: Sharp asymptotics for capacities and exit times, J. Eur. Math. Soc.
6, 399–424.

A. Bovier, V. Gayrard and M. Klein (2002c), Metastability in reversible diffusion pro-
cesses II: Precise asymptotics for small eigenvalues, J. Eur. Math. Soc. 7, 69–99.

G. R. Bowman, V. S. Pande and F. Noé, eds (2014), An Introduction to Markov State
Models and Their Application to Long Timescale Molecular Simulation, Vol. 797 of
Advances in Experimental Medicine and Biology, Springer.

G. R. Bowman, V. Volez and V. S. Pande (2011), Taming the complexity of protein folding,
Curr. Opinion Struct. Biol. 21, 4–11.

C. L. Bris, T. Lelièvre, M. Luskin and D. Perez (2012), A mathematical formalization of
the parallel replica dynamics, Monte Carlo Methods Appl. 18, 119–146.

S. L. Brunton, J. L. Proctor and J. N. Kutz (2016), Discovering governing equations from
data by sparse identification of nonlinear dynamical systems, Proc. Nat. Acad. Sci. USA
113, 3932–3937.

G. Bussi, A. Laio and P. Tiwary (2020), Metadynamics: A unified framework for acceler-
ating rare events and sampling thermodynamics and kinetics, in Handbook of Materials
Modeling – Methods: Theory and Modeling (W. Andreoni and S. Yip, eds), Springer,
pp. 565–595.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://arxiv.org/abs/2107.10158
https://arxiv.org/abs/2206.06628
https://doi.org/10.1017/S0962492923000016


662 C. Schütte, S. Klus and C. Hartmann

J. D. Carroll and J. J. Chang (1970), Analysis of individual differences in multidimensional
scaling via an N-way generalization of ‘Eckart–Young’ decomposition, Psychometrika
35, 283–319.

F. Cérou and A. Guyader (2007), Adaptive multilevel splitting for rare event analysis, Stoch.
Anal. Appl. 25, 417–443.

F. Cérou, P. Del Moral, T. Furon and A. Guyader (2012), Sequential Monte Carlo for rare
event estimation, Statist. Comput. 22, 795–808.

D. Chandler (1998), Finding Transition Pathways: Throwing Ropes Over Rough Mountain
Passes, in the Dark, World Scientific.

J. D. Chodera, W. C. Swope, J. W. Pitera and K. A. Dill (2006), Long-time protein folding
dynamics from short-time molecular dynamics simulations, Multiscale Model. Simul.
5, 1214–1226.

A. J. Chorin, O. H. Hald and R. Kupferman (2000), Optimal prediction and the Mori–
Zwanzig representation of irreversible processes, Proc. Nat. Acad. Sci. USA 97, 2968–
2973.

J. Comer, J. C. Gumbart, J. Hénin, T. Lelièvre, A. Pohorille and C. Chipot (2015), The
adaptive biasing force method: Everything you always wanted to know but were afraid
to ask, J. Phys. Chem. B 119, 1129–1151.

N. D. Conrad, M. Sarich and C. Schütte (2012), Estimating the eigenvalue error of Markov
state models, Multiscale Model. Simul. 10, 61–81.

N. D. Conrad, M. Weber and C. Schütte (2015), Finding dominant structures of nonrevers-
ible Markov processes, SIAM J. Mult. Model. Simul. 14, 1319–1340.

G. Crooks (1999), Entropy production fluctuation theorem and the nonequilibrium work
relation for free energy differences, Phys. Rev. E 60, 2721–2726.

P. Dai Pra, L. Meneghini and W. Runggaldier (1996), Connections between stochastic
control and dynamic games, Math. Control Signals Systems 9, 303–326.

E. B. Davies (1982a), Metastable states of symmetric Markov semigroups I, Proc. London
Math. Soc. s3-45, 133–150.

E. B. Davies (1982b), Metastable states of symmetric Markov semigroups II, J. London
Math. Soc. s2-26, 541–556.

C. Davis andW. M. Kahan (1970), The rotation of eigenvectors by a perturbation III, SIAM
J. Numer. Anal. 7, 1–46.

P. Del Moral (2004), Feynman–Kac Formulae: Genealogical and Interacting Particle
Systems with Applications, Probability and its Applications, Springer.

F. Delbaen, Y.Hu andA.Richou (2011), On the uniqueness of solutions to quadratic BSDEs
with convex generators and unbounded terminal conditions, Ann. Inst. H. Poincaré
Probab. Statist. 47, 559–574.

M. Dellnitz and O. Junge (1998), An adaptive subdivision technique for the approximation
of attractors and invariant measures, Comput. Vis. Sci. 1, 63–68.

M.Dellnitz andO. Junge (1999), On the approximation of complicated dynamical behavior,
SIAM J. Numer. Anal. 36, 491–515.

P. Deuflhard and M. Weber (2005), Robust Perron cluster analysis in conformation dynam-
ics, Linear Algebra Appl. 398, 161–184.

P. Deuflhard, M. Dellnitz, O. Junge and C. Schütte (1999), Computation of essential
molecular dynamics by subdivision techniques, inComputational Molecular Dynamics:
Challenges, Methods, Ideas, Vol. 4 of Lecture Notes in Computational Science and
Engineering, Springer, pp. 98–115.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 663

G. Di Gesu, T. Lelièvre, D. Peutrec and B. Nectoux (2016), Jump Markov models and
transition state theory: The quasi-stationary distribution approach, Faraday Discuss.
195, 469–495.

L. Donati, M. Heida, B. G. Keller and M. Weber (2018), Estimation of the infinitesimal
generator by square-root approximation, J. Phys. Condensed Matter 30, 425201.

L. Donati, M. Weber and B. G. Keller (2021), Markov models from the square root
approximation of the Fokker–Planck equation: Calculating the grid-dependent flux,
J. Phys. Condensed Matter 33, 115902.

M. D. Donsker and S. R. S. Varadhan (1975), On a variational formula for the principal
eigenvalue for operators with maximum principle, Proc. Nat. Acad. Sci. USA 72, 780–
783.

J. L. Doob (1984), Classical Potential Theory and its Probabilistic Counterpart, Vol. 262
of Grundlehren der Mathematischen Wissenschaften, Springer.

D. Down, S. P. Meyn and R. L. Tweedie (1995), Exponential and uniform ergodicity of
Markov processes, Ann. Probab. 23, 1671–1691.

P. Dupuis and H. Wang (2004), Importance sampling, large deviations, and differential
games, Stochastics 76, 481–508.

P. Dupuis and H. Wang (2007), Subsolutions of an Isaacs equation and efficient schemes
for importance sampling, Math. Oper. Res. 32, 723–757.

P. Dupuis, M. A. Katsoulakis, Y. Pantazis and P. Plecháč (2016), Path-space information
bounds for uncertainty quantification and sensitivity analysis of stochastic dynamics,
SIAM/ASA J. Uncertain. Quantif. 4, 80–111.

P. Dupuis, M. A. Katsoulakis, Y. Pantazis and L. Rey-Bellet (2020), Sensitivity analysis
for rare events based on Rényi divergence, Ann. Appl. Probab. 30, 1507–1533.

P. Dupuis, Y. Liu, N. Plattner and J. D. Doll (2012), On the infinite swapping limit for
parallel tempering, Multiscale Model. Simul. 10, 986–1022.

P. Dupuis, K. Spiliopoulos and X. Zhou (2015), Escaping from an attractor: Importance
sampling and rest points I, Ann. Appl. Probab. 25, 2909–2958.

W. E and E. Vanden-Eijnden (2004), Metastability, conformation dynamics, and transition
pathways in complex systems, in Multiscale Modelling and Simulation, Vol. 39 of
Lecture Notes in Computational Science and Engineering, Springer, pp. 35–68.

W. E and E. Vanden-Eijnden (2006), Towards a theory of transition paths, J. Statist. Phys.
123, 503–523.

W. E and E. Vanden-Eijnden (2010), Transition-path theory and path-finding algorithms
for the study of rare events, Annu. Rev. Phys. Chem. 61, 391–420.

W. E, J. Han and A. Jentzen (2017), Deep learning-based numerical methods for high-
dimensional parabolic partial differential equations and backward stochastic differential
equations, Commun. Math. Statist. 5, 349–380.

W. E, J. Han and A. Jentzen (2021), Algorithms for solving high dimensional PDEs: From
nonlinear Monte Carlo to machine learning, Nonlinearity 35, 278–310.

D. J. Earl and M. W. Deem (2005), Parallel tempering: Theory, applications, and new
perspectives, Phys. Chem. Chem. Phys. 7, 3910–3916.

R. S. Ellis (1985), Entropy, Large Deviations and Statistical Mechanics, Springer.
H. Eyring (1935), The activated complex in chemical reactions, J. Chem. Phys. 3, 107–115.
P. Faccioli, A. Lonardi and H. Orland (2010), Dominant reaction pathways in protein

folding: A direct validation against molecular dynamics simulations, J. Chem. Phys.
133, 045104.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


664 C. Schütte, S. Klus and C. Hartmann

A. K. Faradjian and R. Elber (2004), Computing time scales from reaction coordinates by
milestoning, J. Chem. Phys. 120, 10880–10889.

H. Federer (1969), Geometric Measure Theory, Springer.
W. H. Fleming (2006), Risk sensitive stochastic control and differential games, Commun.

Inf. Syst. 6, 161–177.
W. H. Fleming and H. M. Soner (2006), Controlled Markov Processes and Viscosity

Solutions, Springer.
A.-S. Frank, A. Sikorski and S. Röblitz (2022), Spectral clustering of Markov chain

transition matrices with complex eigenvalues. Available at arXiv:2206.14537.
M. Freidlin and A. D. Wentzell (1998), Random Perturbations of Dynamical Systems,

Springer.
G. Froyland (2013), An analytic framework for identifying finite-time coherent sets in

time-dependent dynamical systems, Phys. D 250, 1–19.
G. Froyland and O. Junge (2018), Robust FEM-based extraction of finite-time coherent

sets using scattered, sparse, and incomplete trajectories, SIAM J. Appl. Dyn. Syst. 17,
1891–1924.

G. Froyland, G. Gottwald and A. Hammerlindl (2013), A computational method to extract
macroscopic variables and their dynamics in multiscale systems, SIAM J. Appl. Dyn.
Syst. 13, 1816–1846.

Y. Ge and V. A. Voelz (2021), Markov state models to elucidate ligand binding mechanism,
Methods Mol. Biol. 2266, 239–259.

P. Gelß (2017), The tensor-train format and its applications: Modeling and analysis of
chemical reaction networks, catalytic processes, fluid flows, and Brownian dynamics.
Doctoral thesis, Freie Universität Berlin.

E. Gobet and P. Turkedjiev (2016), Linear regression MDP scheme for discrete backward
stochastic differential equations under general conditions,Math. Comp. 85, 1359–1391.

E. Gobet, J.-P. Lemor and X. Warin (2005), A regression-based Monte Carlo method to
solve backward stochastic differential equations, Ann. Appl. Probab. 15, 2172–2202.

H. Grabert (1982), Projection Operator Techniques in Nonequilibrium Statistical Mechan-
ics, Springer Tracts in Modern Physics, Springer.

C. Graham andD. Talay (2013), Stochastic Simulation andMonte CarloMethods, Springer.
H. Grubmüller (1995), Predicting slow structural transitions in macromolecular systems:

Conformational flooding, Phys. Rev. E 52, 2893.
I. Gyöngy and T. Martínez (2001), On stochastic differential equations with locally un-

bounded drift, Czechoslovak Math. J. 51, 763–783.
W. Hackbusch (2014), Numerical tensor calculus, Acta Numer. 23, 651–742.
D. Hamelberg, J. Mongan and J. A. McCammon (2004), Accelerated molecular dynamics:

A promising and efficient simulation method for biomolecules, J. Chem. Phys. 120,
11919.

J. Han, J. Lu and M. Zhou (2020), Solving high-dimensional eigenvalue problems using
deep neural networks: A diffusion Monte Carlo like approach, J. Comput. Phys. 423,
109792.

C. Hartmann and L. Richter (2021), Nonasymptotic bounds for suboptimal importance
sampling. Available at arXiv:2102.09606.

C. Hartmann and C. Schütte (2012), Efficient rare event simulation by optimal nonequilib-
rium forcing, J. Statist. Mech. Theory Exp. 2012, P11004.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://arxiv.org/abs/2206.14537
https://arxiv.org/abs/2102.09606
https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 665

C. Hartmann, O. Kebiri, L. Neureither and L. Richter (2019), Variational approach to rare
event simulation using least-squares regression, Chaos 29, 063107.

C. Hartmann, L. Neureither and U. Sharma (2020), Coarse graining of nonreversible
stochastic differential equations: Quantitative results and connections to averaging,
SIAM J. Math. Anal. 52, 2689–2733.

C. Hartmann, L. Richter, C. Schütte and W. Zhang (2017), Variational characterization of
free energy: Theory and algorithms, Entropy 19, 626.

C. Hartmann, C. Schütte and W. Zhang (2016), Model reduction algorithms for optimal
control and importance sampling of diffusions, Nonlinearity 29, 2298.

M. Heida (2018), Convergences of the squareroot approximation scheme to the Fokker–
Planck operator, Math. Models Methods Appl. Sci. 28, 2599–2635.

F. Hérau, M. Hitrik and J. Sjöstrand (2008), Tunnel effect for Kramers–Fokker–Planck type
operators: Return to equilibrium and applications, Int. Math. Res. Not. 2008, rnn057.

F. Hérau, M. Hitrik and J. Sjöstrand (2010), Tunnel effect and symmetries for Kramers–
Fokker–Planck type operators. Available at arXiv:1007.0838v1 [math.SP].

C. Hijón, P. Español, E. Vanden-Eijnden andR.Delgado-Buscalioni (2010), Mori–Zwanzig
formalism as a practical computational tool, Faraday Discuss. 144, 301–322.

M. Hoffmann, M. Scherer, T. Hempel, A. Mardt, B. de Silva, B. E. Husic, S. Klus, H. Wu,
N. Kutz, S. L. Brunton and F. Noé (2021), Deeptime: A Python library for machine
learning dynamical models from time series data,Mach. Learn. Sci. Technol. 3, 015009.

H. Hotelling (1936), Relations between two sets of variates, Biometrika 28, 321–377.
J. Hua, F. Noorian, D.Moss, P. H.W. Leong andG.H.Gunaratne (2017), High-dimensional

time series prediction using kernel-based Koopmanmode regression,Nonlinear Dynam.
90, 1785–1806.

X. Huang, Y. Yao, G. Bowman, J. Sun, L. J. Guibas, G. Carlsson and V. Pande (2010),
Constructing multi-resolution Markov state models (MSMs) to elucidate RNA hairpin
folding mechanisms, in Pacific Symposium on Biocomputing 2010 (PSB 2010) (R. B.
Altman et al., eds), World Scientific, pp. 228–239.

W. Huisinga (2001), Metastability of Markovian systems: A transfer operator approach in
application to molecular dynamics. Doctoral thesis, Freie Universität Berlin.

W. Huisinga and B. Schmidt (2002), Metastability and dominant eigenvalues of transfer
operators, in Advances in Algorithms for Macromolecular Simulation (C. Chipot et al.,
eds), Vol. 49 of Lecture Notes in Computational Science and Engineering, Springer.

W.Huisinga, S.Meyn andC. Schütte (2004), Phase transitions&metastability inMarkovian
and molecular systems, Ann. Appl. Probab. 14, 419–458.

C. Huré, H. Pham, A. Bachouch and N. Langrené (2021), Deep neural networks algorithms
for stochastic control problems on finite horizon: Convergence analysis, SIAM J. Numer.
Anal. 59, 525–557.

B. E. Husic and V. S. Pande (2018), Markov state models: From an art to a science, J. Amer.
Chem. Soc. 140, 2386.

S. Hussain and A. Haji-Akbari (2020), Studying rare events using forward-flux sampling:
Recent breakthroughs and future outlook, J. Chem. Phys. 152, 060901.

M. Invernizzi and M. Parrinello (2020), Rethinking metadynamics: From bias potentials
to probability distributions, J. Phys. Chem. Lett. 11, 2731–2736.

C. Jarzynski (1997), Nonequilibrium equality for free energy differences, Phys. Rev. Lett.
78, 2690–2693.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://arxiv.org/abs/1007.0838v1
https://doi.org/10.1017/S0962492923000016


666 C. Schütte, S. Klus and C. Hartmann

S. Juneja and P. Shahabuddin (2006), Rare-event simulation techniques: An introduction
and recent advances, in Simulation (S. G. Henderson and B. L. Nelson, eds), Vol. 13 of
Handbooks in Operations Research and Management Science, Elsevier, pp. 291–350.

J. Kappler, J. O. Daldrop, F. N. Brünig, M. D. Boehle and R. Netz (2018), Memory-induced
acceleration and slowdown of barrier crossing, J. Chem. Phys. 148, 014903.

I. Karatzas and S. E. Shreve (1991), Brownian Motion and Stochastic Calculus, Graduate
Texts in Mathematics, Springer.

T. Kato (1995), Perturbation Theory for Linear Operators, Springer.
O. Kebiri, L. Neureither and C. Hartmann (2019), Adaptive importance sampling with

forward–backward stochastic differential equations, in Stochastic Dynamics Out of Equi-
librium (IHPStochDyn 2017) (G. Giacomin et al., eds), Vol. 282 of Proceedings in
Mathematics & Statistics, Springer, pp. 265–281.

B. Keller, J.-H. Prinz and F. Noé (2011), Markov models and dynamical fingerprints:
Unraveling the complexity of molecular kinetics, Chem. Phys. 396, 92–107.

I. G. Kevrekidis and G. Samaey (2009), Equation-free multiscale computation: Algorithms
and applications, Annu. Rev. Phys. Chem. 60, 321–344.

S. Klus and N. D. Conrad (2022), Koopman-based spectral clustering of directed and
time-evolving graphs, J. Nonlinear Sci. 33, 8.

S. Klus, A. Bittracher, I. Schuster and C. Schütte (2018a), A kernel-based approach to
molecular conformation analysis, J. Chem. Phys. 149, 244109.

S. Klus, B. E. Husic, M. Mollenhauer and F. Noé (2019a), Kernel methods for detecting
coherent structures in dynamical data, Chaos 29, 123112.

S. Klus, P. Koltai and C. Schütte (2016), On the numerical approximation of the Perron–
Frobenius and Koopman operator, J. Comput. Dyn. 3, 51–79.

S. Klus, F. Nüske and B. Hamzi (2020a), Kernel-based approximation of the Koopman
generator and Schrödinger operator, Entropy 22, 722.

S. Klus, F. Nüske and S. Peitz (2022), Koopman analysis of quantum systems, J. Phys. A
Math. Theor. 55, 314002.

S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte and F. Noé (2018b),
Data-driven model reduction and transfer operator approximation, J. Nonlinear Sci. 28,
985–1010.

S. Klus, F. Nüske, S. Peitz, J.-H.Niemann, C. Clementi andC. Schütte (2020b), Data-driven
approximation of the Koopman generator: Model reduction, system identification, and
control, Phys. D 406, 132416.

S. Klus, I. Schuster and K. Muandet (2019b), Eigendecompositions of transfer operators
in reproducing kernel Hilbert spaces, J. Nonlinear Sci. 30, 283–315.

M. Kobylanski (2000), Backward stochastic differential equations and partial differential
equations with quadratic growth, Ann. Probab. 28, 558–602.

P. Koltai, H. Wu, F. Noé and C. Schütte (2018), Optimal data-driven estimation of gener-
alized Markov state models for non-equilibrium dynamics, Computation 6, 22.

I. Kontoyiannis and S. P.Meyn (2003), Spectral theory and limit theorems for geometrically
ergodic Markov processes, Ann. Appl. Probab. 13, 304–362.

I. Kontoyiannis and S. P. Meyn (2012), Geometric ergodicity and the spectral gap of
non-reversible Markov chains, Probab. Theory Related Fields 154, 327–339.

M. Korda and I. Mezić (2018a), Linear predictors for nonlinear dynamical systems: Koop-
man operator meets model predictive control, Automatica 93, 149–160.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 667

M.Korda and I.Mezic (2018b), On convergence of extended dynamicmode decomposition
to the Koopman operator, J. Nonlinear Sci. 28, 687–710.

D. Kressner (2006), Block algorithms for reordering standard and generalized Schur forms,
ACM Trans. Math. Softw. 32, 521–532.

S. V. Krivov (2018), Protein folding free energy landscape along the committor: The
optimal folding coordinate, J. Chem. Theory Comput. 14, 3418–3427.

N. V. Krylov (2019), A few comments on a result of A. Novikov and Girsanov’s theorem,
Stochastics 91, 1186–1189.

O. F. Lange and H. Grubmüller (2006), Collective Langevin dynamics of conformational
motions in proteins, J. Chem. Phys. 124, 214903.

A. Lasota and M. C. Mackey (1994), Chaos, Fractals and Noise, Vol. 97 of Applied
Mathematical Sciences, second edition, Springer.

J. Latorre, P. Metzner, C. Hartmann and C. Schütte (2011), A structure-preserving numer-
ical discretization of reversible diffusions, Commun. Math. Sci. 9, 1051–1072.

P. L’Ecuyer, M. Mandjes and B. Tuffin (2009), Importance Sampling in Rare Event Simu-
lation, Wiley, pp. 17–38.

F. Legoll and T. Lelièvre (2010), Effective dynamics using conditional expectations, Non-
linearity 23, 2131.

B. Li, T. Bengtsson and P. Bickel (2005), Curse-of-dimensionality revisited: Collapse of
importance sampling in very high-dimensional systems. Technical report 696, Depart-
ment of Statistics, UC Berkeley.

H. C. Lie (2016), On a strongly convex approximation of a stochastic optimal control prob-
lem for importance sampling of metastable diffusions. Doctoral thesis, Freie Universität
Berlin.

H. C. Lie (2021), Fréchet derivatives of expected functionals of solutions to stochastic
differential equations. Available at arXiv:2106.09149.

H. C. Lie and J. Quer (2017), Some connections between importance sampling and en-
hanced sampling methods in molecular dynamics, J. Chem. Phys. 147, 194107.

J. Lu and E. Vanden-Eijnden (2014), Exact dynamical coarse-graining without time-scale
separation, J. Chem. Phys. 141, 044109.

M. Lücke and F. Nüske (2022), tgEDMD: Approximation of the Kolmogorov operator in
tensor train format, J. Nonlinear Sci. 32, 44.

A. Mardt, L. Pasquali, H. Wu and F. Noé (2018), VAMPnets for deep learning of molecular
kinetics, Nature Commun. 9, 5.

E. Marinari and G. Parisi (1992), Simulated tempering: A new Monte Carlo scheme,
Europhys. Lett. 19, 451.

N. Marrouch, J. Slawinska, D. Giannakis and H. L. Read (2020), Data-driven Koopman
operator approach for computational neuroscience, Ann. Math. Artif. Intell. 88, 1155–
1173.

A. Martinsson, J. Lu, B. Leimkuhler and E. Vanden-Eijnden (2019), The simulated tem-
pering method in the infinite switch limit with adaptive weight learning, J. Statist. Mech.
Theory Exp. 2019, 013207.

J. C. Mattingly, A. M. Stuart and D. J. Higham (2002), Ergodicity for SDEs and approxim-
ations: Locally Lipschitz vector fields and degenerate noise, Stoch. Process. Appl. 101,
185–232.

A. Mauroy and J. Goncalves (2016), Linear identification of nonlinear systems: A lifting
technique based on the Koopman operator, in 2016 IEEE 55th Conference on Decision
and Control (CDC), IEEE, pp. 6500–6505.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://arxiv.org/abs/2106.09149
https://doi.org/10.1017/S0962492923000016


668 C. Schütte, S. Klus and C. Hartmann

T. Melzer, M. Reiter and H. Bischof (2001), Nonlinear feature extraction using generalized
canonical correlation analysis, in Artificial Neural Networks (ICANN 2001) (G. Dorffner
et al., eds), Springer, pp. 353–360.

P. Metzner (2007), Transition path theory for Markov processes: Application to molecular
dynamics. Doctoral thesis, Freie Universität Berlin.

P. Metzner, F. Noé and C. Schütte (2009a), Estimating the sampling error: Distribution of
transition matrices and functions of transition matrices for given trajectory data, Phys.
Rev. E 80, 021106.

P. Metzner, C. Schütte and E. Vanden-Eijnden (2006), Illustration of transition path theory
on a collection of simple examples, J. Chem. Phys. 125, 084110.

P. Metzner, C. Schütte and E. Vanden-Eijnden (2009b), Transition path theory for Markov
jump processes, Multiscale Model. Simul. 7, 1192–1219.

P. Metzner, M.Weber and C. Schütte (2010), Observation uncertainty in reversible Markov
chains, Phys. Rev. E 82, 031114.

S. Meyn and R. Tweedie (1993), Markov Chains and Stochastic Stability, Springer.
L. Molgedey and H. G. Schuster (1994), Separation of a mixture of independent signals

using time delayed correlations, Phys. Rev. Lett. 72, 3634–3637.
M. Mollenhauer (2022), On the statistical approximation of conditional expectation oper-

ators. Doctoral thesis, Freie Universität Berlin.
M. Mollenhauer and P. Koltai (2020), Nonparametric approximation of conditional expect-

ation operators. Available at arXiv:2012.12917.
M. Mollenhauer, N. Mücke and T. J. Sullivan (2022), Learning linear operators: Infinite-

dimensional regression as a well-behaved non-compact inverse problem. Available at
arXiv:2211.08875.

H. Mori (1965), Transport, collective motion, and Brownian motion, Prog. Theor. Phys.
33, 423–455.

D.Moroni, T. van Erp and P. Bolhuis (2004), Investigating rare events by transition interface
sampling, Phys. A 340, 395–401.

F. Noé (2008), Probability distributions of molecular observables computed from Markov
models, J. Chem. Phys. 128, 244103.

F.Noé and F.Nüske (2013), A variational approach tomodeling slowprocesses in stochastic
dynamical systems, Multiscale Model. Simul. 11, 635–655.

F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich and T. Weikl (2009), Constructing the full
ensemble of folding pathways from short off-equilibrium trajectories, Proc. Nat. Acad.
Sci. USA 106, 19011–19016.

F. Nüske, P. Gelß, S. Klus and C. Clementi (2021), Tensor-based computation of metastable
and coherent sets, Phys. D 427, 133018.

F. Nüske, R. Schneider, F. Vitalini and F. Noé (2016), Variational tensor approach for
approximating the rare-event kinetics of macromolecular systems, J. Chem. Phys. 144,
054105.

F. Nüske, H. Wu, J.-H. Prinz, C. Wehmeyer, C. Clementi and F. Noé (2017), Markov state
models from short non-equilibrium simulations: Analysis and correction of estimation
bias, J. Chem. Phys. 146, 094104.

N. Nüsken and L. Richter (2021), Solving high-dimensional Hamilton–Jacobi–Bellman
PDEs using neural networks: Perspectives from the theory of controlled diffusions and
measures on path space, Partial Differ. Equ. Appl. 2, 48.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://arxiv.org/abs/2012.12917
https://arxiv.org/abs/2211.08875
https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 669

B. Øksendal (2003), Stochastic Differential Equations: An Introduction with Applications,
Springer.

E. Olivieri and M. E. Vares (2005), Large Deviations and Metastability, Encyclopedia of
Mathematics and its Applications, Cambridge University Press.

I. Oseledets (2011), Tensor-train decomposition, SIAM J. Sci. Comput. 33, 2295–2317.
I. Oseledets and E. Tyrtyshnikov (2010), TT-cross approximation for multidimensional

arrays, Linear Algebra Appl. 432, 70–88.
V. Pande, K. Beauchamp and G. Bowman (2010), Everything you wanted to know about

Markov state models but were afraid to ask, Methods 52, 99–105.
E. Pardoux and S. Peng (1990), Adapted solution of a backward stochastic differential

equation, Systems Control Lett. 14, 55–61.
E. Pardoux and S. Tang (1999), Forward–backward stochastic differential equations and

quasilinear parabolic PDEs, Probab. Theory Related Fields 114, 123–150.
F. Paul, C. Wehmeyer, E. T. Abualrous, H. Wu, M. D. Crabtree, J. Schöneberg, J. Clarke,

C. Freund, T. R. Weikl and F. Noé (2017), Protein–peptide association kinetics beyond
the seconds timescale from atomistic simulations, Nature Commun. 8, 1095.

S. Peitz and S. Klus (2019), Koopman operator-based model reduction for switched-system
control of PDEs, Automatica 106, 184–191.

G. Perez-Hernandez, F. Paul, T. Giorgino, G. De Fabritiis and F. Noé (2013), Identification
of slow molecular order parameters for Markov model construction, J. Chem. Phys. 139,
015102.

D. Pfau, J. S. Spencer, A. G. D. G. Matthews and W. M. C. Foulkes (2020), Ab initio
solution of the many-electron Schrödinger equation with deep neural networks, Phys.
Rev. Res. 2, 033429.

H. Pham (2009), Continuous-Time Stochastic Control and Optimization with Financial
Applications, Vol. 61 of Stochastic Modelling and Applied Probability, Springer.

H. Pham, X. Warin and M. Germain (2021), Neural networks-based backward scheme for
fully nonlinear PDEs, SN Partial Differ. Equ. Appl. 2, 16.

G. Pinamonti, J. Zhao, D. E. Condon, F. Paul, F. Noé, D. H. Turner and G. Bussi (2017),
Predicting the kinetics of RNA oligonucleotides using Markov state models, J. Chem.
Theory Comput. 13, 926–934.

F. Pinski and A. Stuart (2010), Transition paths in molecules: Gradient descent in path
space, J. Chem. Phys. 132, 184104.

R. G. Pinsky (1985), On the convergence of diffusion processes conditioned to remain in
a bounded region for large time to limiting positive recurrent diffusion processes, Ann.
Probab. 13, 363–378.

J. H. Prinz, B. Keller and F. Noé (2011), Probing molecular kinetics with Markov mod-
els: Metastable states, transition pathways and spectroscopic observables, Phys. Chem.
Chem. Phys. 13, 16912–16927.

J. Quer, L. Donati, B. G. Keller and M. Weber (2018), An automatic adaptive import-
ance sampling algorithm for molecular dynamics in reaction coordinates, SIAM J. Sci.
Comput. 40, A653–A670.

R. J. Rabben, S. Ray and M. Weber (2020), ISOKANN: Invariant subspaces of Koopman
operators learned by a neural network, J. Chem. Phys. 153, 114109.

W. Ren and E. Vanden-Eijnden (2002), String method for the study of rare events, Phys.
Rev. B 66, 052301.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


670 C. Schütte, S. Klus and C. Hartmann

J. Ribeiro, P. Bravo, Y. Wang and P. Tiwary (2018), Reweighted autoencoded variational
Bayes for enhanced sampling (RAVE), J. Chem. Phys. 149, 072301.

L. Richter (2022), Solving high-dimensional PDEs, approximation of path space measures
and importance sampling of diffusions. Doctoral thesis, BTU Cottbus–Senftenberg.

H. Risken (1996), The Fokker–Planck Equation, second edition, Springer.
S. Röblitz and M. Weber (2013), Fuzzy spectral clustering by PCCA+: Application to

Markov state models and data classification, Adv. Data Anal. Classif. 7, 147–179.
K. Röder and D. J. Wales (2022), The energy landscape perspective: Encoding structure

and function for biomolecules, Front. Molecular Biosci. 9, 820792.
L. C. G. Rogers and D. Williams (2000), Diffusions, Markov Processes and Martingales,

Vol. 2: Itô Calculus, Cambridge University Press.
B. Roux (2021), String method with swarms-of-trajectories, mean drifts, lag time, and

committor, J. Phys. Chem. A 125, 7558–7571.
B. Roux (2022), Transition rate theory, spectral analysis, and reactive paths, J. Chem. Phys.

156, 134111.
D. Sanz-Alonso (2018), Importance sampling and necessary sample size: An information

theory approach, SIAM/ASA J. Uncertain. Quantif. 6, 867–879.
M. Sarich (2011), Projected transfer operators. Doctoral thesis, Freie Universität Berlin.
M. Sarich, F. Noé and C. Schütte (2010), On the approximation quality of Markov state

models, Multiscale Model. Simul. 8, 1154–1177.
M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Pérez-Hernández, M. Hoffmann,

N. Plattner, C. Wehmeyer, J.-H. Prinz and F. Noé (2015), PyEMMA 2: A software
package for estimation, validation, and analysis of Markov models, J. Chem. Theory
Comput. 11, 5525.

P. J. Schmid (2010), Dynamic mode decomposition of numerical and experimental data,
J. Fluid Mech. 656, 5–28.

B. Schölkopf and A. J. Smola (2001), Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond, MIT Press.

C. Schütte (1998), Conformational dynamics: Modelling, theory, algorithm, and applica-
tion to biomolecules. Habilitation thesis, Freie Universität Berlin.

C. Schütte and W. Huisinga (2000), On conformational dynamics induced by Langevin
processes, in EQUADIFF 99: International Conference on Differential Equations
(K. Fiedler, Gröger and J. Sprekels, eds), World Scientific, pp. 1247–1262.

C. Schütte and M. Sarich (2014), Metastability and Markov State Models in Molecular
Dynamics: Modeling, Analysis, Algorithmic Approaches, Vol. 32 of Courant Lecture
Notes, American Mathematical Society.

C. Schütte, A. Fischer, W. Huisinga and P. Deuflhard (1999), A direct approach to con-
formational dynamics based on hybrid Monte Carlo, J. Comput. Phys. 151, 146–168.

C. Schütte, W. Huisinga and S. Meyn (2003), Metastability of diffusion processes, in
IUTAM Symposium on Nonlinear Stochastic Dynamics (N. S. Namachchivaya and Y. K.
Lin, eds), Springer, pp. 71–81.

C. Schütte, F. Noé, J. Lu, M. Sarich and E. Vanden-Eijnden (2011), Markov state models
based on milestoning, J. Chem. Phys. 134, 204105.

C. Schwantes and V. Pande (2013), Improvements in Markov state model construction
reveal many non-native interactions in the folding of NTL9, J. Chem. Theory Comput.
9, 2000–2009.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 671

C. R. Schwantes and V. S. Pande (2015), Modeling molecular kinetics with tICA and the
kernel trick, J. Chem. Theory Comput. 11, 600–608.

M. Senne, B. Trendelkamp-Schroer, A. Mey, C. Schütte and F. Noé (2012), EMMA: A
software package for Markov model building and analysis, J. Chem. Theory Comput. 8,
2223–2238.

J. Shawe-Taylor and N. Cristianini (2004),Kernel Methods for Pattern Analysis, Cambridge
University Press.

H. Sidky, W. Chen and A. L. Ferguson (2020), Machine learning for collective variable
discovery and enhanced sampling in biomolecular simulation, Molecular Phys. 118,
e1737742.

A. Sikorski (2015), PCCA+ and its application to spatial time series clustering. Bachelor
thesis, Freie Universität Berlin.

A. Sikorski (2023), Reduced dynamics of high dimensional stochastic systems. Doctoral
thesis, Freie Universität Berlin.

N. Singhal and V. S. Pande (2005), Error analysis in Markovian state models for protein
folding, J. Chem. Phys. 123, 204909.

J. Sirignano and K. Spiliopoulos (2018), DGM: A deep learning algorithm for solving
partial differential equations, J. Comput. Phys. 375, 1339–1364.

I. Steinwart and A. Christmann (2008), Support Vector Machines, first edition, Springer.
E. Suarez, R. P. Wiewiora, C. Wehmeyer, F. Noé, J. D. Chodera and D. M. Zuckerman

(2021), What Markov state models can and cannot do: Correlation versus path-based
observables in protein-folding models, J. Chem. Theory Comput. 17, 3119–3133.

R. H. Swendsen and J.-S. Wang (1986), Replica Monte Carlo simulation of spin-glasses,
Phys. Rev. Lett. 57, 2607–2609.

D. W. H. Swenson and P. G. Bolhuis (2014), A replica exchange transition interface
sampling method with multiple interface sets for investigating networks of rare events,
J. Chem. Phys. 141, 044101.

W. Tian and H. Wu (2021), Kernel embedding based variational approach for low-
dimensional approximation of dynamical systems, Comput. Methods Appl. Math. 21,
635–659.

A. Tsourtis, Y. Pantazis, M. A. Katsoulakis and V. Harmandaris (2015), Parametric sens-
itivity analysis for stochastic molecular systems using information theoretic metrics,
J. Chem. Phys. 143, 014116.

L. R. Tucker (1964), The extension of factor analysis to three-dimensional matrices, in
Contributions to Mathematical Psychology (H. Gulliksen and N. Frederiksen, eds),
Holt, Rinehart & Winston, pp. 110–127.

P. Turkedjiev (2013), Numerical methods for backward stochastic differential equations of
quadratic and locally Lipschitz type. Doctoral thesis, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät II.

O. Valsson and M. Parrinello (2014), Variational approach to enhanced sampling and free
energy calculations, Phys. Rev. Lett. 113, 090601.

T. S. Van Erp, D. Moroni and P. G. Bolhuis (2003), A novel path sampling method for the
calculation of rate constants, J. Chem. Phys. 118, 7762–7774.

E. Vanden-Eijnden and J. Weare (2012), Rare event simulation of small noise diffusions,
Commun. Pure Appl. Math. 65, 1770–1803.

M. Villén-Altamirano and J. Villén-Altamirano (1994), Restart: A straightforward method
for fast simulation of rare events, in Proceedings of the 26th Conference on Winter
Simulation (WSC ’94), Society for Computer Simulation International, pp. 282–289.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016


672 C. Schütte, S. Klus and C. Hartmann

P. R. Vlachas, J. Zavadlav, M. Praprotnik and P. Koumoutsakos (2022), Accelerated sim-
ulations of molecular systems through learning of effective dynamics, J. Chem. Theory
Comput. 18, 538–549.

A. F. Voter (1998), Parallel replica method for dynamics of infrequent events, Phys. Rev. B
57, R13985–R13988.

D. J. Wales (2003), Energy Landscapes, Cambridge University Press.
D. J. Wales (2005), Energy landscapes and properties of biomolecules, Phys. Biol. 2,

S86–S93.
Y. Wang, J. M. L. Ribeiro and P. Tiwary (2019), Past–future information bottleneck

for sampling molecular reaction coordinate simultaneously with thermodynamics and
kinetics, Nature Commun. 10, 3573.

M. Weber and N. Ernst (2017), A fuzzy-set theoretical framework for computing exit rates
of rare events in potential-driven diffusion processes. Available at arXiv:1708.00679.

M. Weber and K. Fackeldey (2014), Computing the minimal rebinding effect included in a
given kinetics, Multiscale Model. Simul. 12, 318–334.

C. Wehmeyer and F. Noé (2018), Time-lagged autoencoders: Deep learning of slow
collective variables for molecular kinetics, J. Chem. Phys. 148, 241703.

A. West, R. Elber and D. Shalloway (2007), Extending molecular dynamics time scales
with milestoning: Example of complex kinetics in a solvated peptide, J. Chem. Phys.
126, 145104.

E. Wigner (1938), The transition state method, Trans. Faraday Soc. 34, 29–41.
M. O. Williams, I. G. Kevrekidis and C. W. Rowley (2015a), A data-driven approximation

of the Koopman operator: Extending dynamic mode decomposition, J. Nonlinear Sci.
25, 1307–1346.

M. O. Williams, C. W. Rowley and I. G. Kevrekidis (2015b), A kernel-based method for
data-driven Koopman spectral analysis, J. Comput. Dyn. 2, 247–265.

H. Wu and F. Noé (2020), Variational approach for learning Markov processes from time
series data, J. Nonlinear Sci. 30, 23–66.

H. Wu, F. Nüske, F. Paul, S. Klus, P. Koltai and F. Noé (2017), Variational Koopman
models: Slow collective variables and molecular kinetics from short off-equilibrium
simulations, J. Chem. Phys. 146, 154104.

Z. Yang, Y. Zang, H. Wang, Y. Kang, J. Zhang, X. Li, L. Zhang and S. Zhang (2022),
Recognition between CD147 and cyclophilin A deciphered by accelerated molecular
dynamics simulations, Phys. Chem. Chem. Phys. 24, 18905–18914.

E. Yeung, S. Kundu and N. Hodas (2019), Learning deep neural network representations
for Koopman operators of nonlinear dynamical systems, in 2019 American Control
Conference (ACC), IEEE, pp. 4832–4839.

Y. Yu, T. Wang and R. J. Samworth (2015), A useful variant of the Davis–Kahan theorem
for statisticians, Biometrika 102, 315–323.

W. Zhang and C. Schütte (2017), Reliable approximation of long relaxation timescales in
molecular dynamics, Entropy 19, 367.

W. Zhang, C. Hartmann and C. Schütte (2016), Effective dynamics along given reaction
coordinates, and reaction rate theory, Faraday Discuss. 195, 365–394.

W. Zhang, T. Li and C. Schütte (2022), Solving eigenvalue PDEs of metastable diffusion
processes using artificial neural networks, J. Comput. Phys. 465, 111377.

W. Zhang, H. Wang, C. Hartmann, M. Weber and C. Schütte (2014), Applications of the
cross-entropy method to importance sampling and optimal control of diffusions, SIAM
J. Sci. Comput. 36, A2654–A2672.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://arxiv.org/abs/1708.00679
https://doi.org/10.1017/S0962492923000016


Overcoming the timescale barrier in molecular dynamics 673

D.-X. Zhou (2008), Derivative reproducing properties for kernel methods in learning
theory, J. Comput. Appl. Math. 220, 456–463.

Y. Zhuang, H. R. Bureau, S. Quirk and R. Hernandez (2021), Adaptive steered molecular
dynamics of biomolecules, Molecular Simul. 47, 408–419.

R. Zwanzig (1973), Nonlinear generalized Langevin equations, J. Statist. Phys. 9, 215–220.

https://doi.org/10.1017/S0962492923000016 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492923000016

	Introduction
	Dynamical systems in molecular dynamics
	Statistical mechanics of slow processes
	Numerical analysis of transfer operators
	Data-driven methods
	Rare event simulation
	Concluding remarks
	References



