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Abstract
Future telecommunication systems are set to revolutionize connectivity, driven by advance-
ments in technologies like 6G, artificial intelligence, and the Internet ofThings (IoT).However,
this evolution brings significant challenges. Traditional silicon-based transistors struggle to
meet demands for efficiency and power handling. Indium Phosphide (InP)-based Double
Heterojunction Bipolar Transistors (DHBTs) deliver excellent performance at sub-mm-wave
frequencies while minimizing power loss and heat generation. Additionally, achieving reli-
able large-signal performance in high-frequency applications requires accurate large-signal
modelling and advanced testing techniques, such as load-pull measurements. In this paper, we
report the comparison between two InP/GaAsSb Double Heterojunction Bipolar Transistors
(DHBTs) with different collector epitaxial designs in terms of their small- and large-signal per-
formance. The effect of the epitaxial design on the small- and large-signal performances is
investigated and load-pull measurements in G-band are performed to assess the great power-
handling and efficiency capabilities of the InP/GaAsSb DHBT technology. For both of the
designs, THz cut-off frequencies with Power-Added Efficiency (PAE) > 30% are achieved.
Moreover, the value of PAE= 39.2% reached inG-band represents the highest among any tech-
nology. Finally, the two different epitaxial designs are thermally characterized to investigate the
effect of different layers on the thermal and RF-performances.

Introduction

The rapid growth of data-driven applications and advancements in telecommunication systems
have heightened the demand for faster,more reliable networks, and high-power, high-frequency
circuits beyond the W-band. In this context, Indium Phosphide (InP) plays a pivotal role with
its exceptional electronic and optical properties, positioning it as a key enabler for cutting-edge
6 G communication systems. Its direct bandgap, high electron velocity, and favourable ther-
mal characteristics make it ideal for high-frequency applications. In this context, InP-based
Double Heterojunction Bipolar Transistors (DHBTs) stand out as one of the few technologi-
cal platforms capable of meeting the performance requirements. More specifically, “Type-II”
InP/GaAsSb DHBTs have shown high cut/off frequencies f T [1] and fMAX [2], with break-
down voltage BVCEO > 4.5 V. The excellent small-signal performances of devices fabricated in
“emitter-fin” technology were validated with measurements up to 330 GHz [3]. Furthermore,
W-band InP/GaAsSb DHBT power amplifiers (PAs), fabricated using standard (i.e. non-fin)
technology, can achieve the highest measured power density > 10 mW/µm2 [4] and a record
class-A Power-Added-Efficiency (PAE) = 37.8% [5]. The outstanding performances observed
inW-band demand for further characterization at even higher frequency ranges to explore their
capabilities.

Load-pull large-signal measurements at frequencies beyond the W-band are both challeng-
ing and rare [6], yet they are essential for the comprehensive characterization of PAs or PA cells
designed for operation in higher frequency bands. Load-pull measurements help identifying
the optimal load impedance to achieve the maximum gain, output power and efficiency, which
is critical for designing PAs.They are also fundamental for the validation of large-signal models.
The insights provided by a load-pull characterization are crucial to capture the non-linearity of
the device when it approaches the gain compression region.

In the present work, we report two different (0.25 × 10) µm2 single-finger common-
emitter DHBTs with different collector epitaxial design that show excellent small-signal and
load-pull large-signal performances inG-band (140 to 170GHz).Wewill present the differences
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Table 1. Epitaxial structure A

Material Doping [cm−3] Thickness [nm]

Emitter contact Ga0.47In0.53As → Ga0.25In0.75As Si: 3.8E19 10

Emitter InP Si: 1.5E19 20

InP Si: 2.2E16 5

Ga0.22In0.78P → InP Si: 2.2E16 10

Ga0.22In0.78P Si: 2.2E16 5

Base GaAs0.58Sb0.42 → GaAs0.41Sb0.59 C: 8.5E19 20

Collector InP Si: 9.4E16 125

Sub-collector InP S: 3.1E19 50

Collector contact Ga0.47In0.53As Si: 3.0E19 20

Buffer InP Si: 2.8E19 300

Substrate InP Semi-insulating 350,000

Table 2. Epitaxial structure B

Material Doping [cm−3] Thickness [nm]

Emitter contact Ga0.47In0.53As → Ga0.25In0.75As Si: 3.8E19 10

Emitter InP Si: 1.5E19 20

InP Si: 2.2E16 5

Ga0.22In0.78P → InP Si: 2.2E16 10

Ga0.22In0.78P Si: 2.2E16 5

Base GaAs0.58Sb0.42 → GaAs0.41Sb0.59 C: 8.5E19 20

Collector InP Si: 9.4E16 125

Sub-collector InP S: 3.1E19 0

Collector contact Ga0.38In0.62As Si: 3.0E19 7.5

Buffer InP Si: 2.8E19 300

Substrate InP Semi-insulating 350,000

Figure 1. FIB/SEM cross-section of the (0.25 × 10) µm2 DHBT fabricated on the epitaxial structure A (a) and B (b). In (b) it can be seen how the separation between the base
and the collector contacts is smaller, as highlighted by the arrows.

between the two epitaxial designs, highlighting the effect that
they cause on the small-signal performances at different biases,
while maintaining a cut-off frequency fMAX > 1 THz. Then,
a complete load-pull characterization will be provided, fol-
lowed by a thermal characterization of the epitaxial designs.
The reported values of POUT,SAT > 10 dBm and PAE > 30%
for both epitaxial designs over the whole frequency range,

PAE = 39.2% at 140 GHz and 38.6% at 170 GHz repre-
sent the highest ever reported in G-band in any technology.
This confirms the excellent capabilities of InP/GaAsSb DHBTs
as a prime technology for the next generation of high-speed
communications.

An earlier version of this paper was presented at the EuMIC
2024 and was published in its Proceedings [7].
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(a) (b)

Figure 2. Typical gummel characteristics of (0.25 × 10) µm2 DHBT at VCB = 0 v fabricated on the epitaxial structure A (a) and B (b). (Inset) measured breakdown
characteristics, with BVCEO reported at both 1 ka/cm2 and 10 ka/cm2.

(a) (b)

(c) (d)

Figure 3. RF characteristics of a (0.25 × 10) µm2 DHBT. |h21|2, U and MAG/MSG are reported for (a) and (b) best f T bias condition and (c) and (d) best fMAX bias condition for
the epitaxial structure A (a)–(c) and B (b)–(d).
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(a) (b)

(c) (d)

Figure 4. Contours showing the variation of f t (a)–(b) and fmax (c)–(d) with bias superposed over the I-V curves of a (0.25 × 10) µm2 DHBT for the epitaxial structure A (a)–(c)
and B (b)–(d). Each colour contour corresponds to a 2.5% reduction from peak f t and fmax.

Device description

Epitaxial layers

ThetwoDHBTepitaxial layerswere grownbymetal-organic chem-
ical vapour deposition (MOCVD) on 2-inch semi-insulating sub-
strates.The two only differ for the sub-collector design: the first one
features a 50 nmof heavily doped InP and 20 nmof lattice-matched
GaInAs, which operates as the collector contact layer, whereas in
the second one the InP is completely omitted and the GaInAs layer
is thinned to 7.5 nm andmade In-rich.The thermal conductivity of
the GaInAs is lower when it is lattice-matched on InP, but increases
for both Ga-rich and In-rich [8]. In-rich composition has a higher
electron mobility, which helps compensating for the increase in
sheet resistance of the thinner layer [9]. The fraction of Indium in
the layer was set to 62%, due to limits in the MOCVD growth.

The details of the two structures are reported in Tables 1 and 2.
From now on, they will be labelled structure A for the thicker sub-
collector and B for the thinner one.

Device fabrication

The fabrication process begins with the pattering in e-beam lithog-
raphy of the emitter contact, followed by a metal deposition with
an e-beam evaporator. The emitter mesa is partially etched and

the “emitter-fin” of the emitter cathode is patterned and deposited.
This addition to the emitter metal sets the distance between the
emitter mesa side-wall and the yet to be deposited base metal,
also called “base-access-distance”. At the same time, it also allows
for the deposition of a thicker base metal. These two effects com-
bined dramatically decrease the base resistance, thus boosting the
RF-performances of the DHBT [2].

Next, the emitter mesa etching is completed and the base metal
deposited in a self-aligned fashion over the emitter metal. Then,
the emitter mesa side-wall and the base-access-distance are pas-
sivated with aluminum oxide (AlOx). The base-collector mesa is
etched and the collector contact deposited. The devices are iso-
lated one from the other and planarized with Teflon Amorphous
Fluoropolymer (TAF). GSG probing pads conclude the fabrication.
Besides different etching times for the collector, there is no differ-
ence in the fabrication process of the transistors based on the two
epitaxial structures. Details of the fabrication process can be found
in [2, 10]. Figure 1a and 1b show the FIB/SEM cross-section of the
final transistors with the epitaxial structure A and B, respectively.

DC and RF measurements

Figure 2 reports the DC Gummel characteristics of a
(0.25 × 10 µm2) single-finger common-emitter DHBT, with
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Figure 5. Load-pull contours at PIN,SAT for POUT (blue) and PAE (red) of a (0.25 × 10) µm2 DHBT for the epitaxial structure A (a)–(b) and B (c)–(d) at VCE = 1.8 V,
JC = 8.0 ma/µm2 for a and VCE = 2.0 V, JC = 8.0 ma/µm2 for B. The contours reflect measurements done at 140 ghz in (a) and (c) and 170 ghz in (b) and (d).

the open-base common-emitter breakdown voltage characteristics
displayed in the insets for both epitaxial structures A and B. They
both feature a DC gain β ≥ 25 and a BVCEO ≥ 4.5 V.This confirms
the excellent voltage-handling capabilities of this technology.

The small-signal performances of the transistors weremeasured
from 0.2 to 50 GHz. Figure 3 shows |h21|2, U, MAG/MSG and the
corresponding cut-off frequencies f T/fMAX for the epitaxial struc-
tures A and B at (a), (b) peak f T bias point and (c), (d) peak
fMAX.

The epitaxial structure A shows f T = 0.48 THz at VCE = 1.0 V,
JC = 10.3 mA/µm2 and fMAX = 1.13 THz at VCE = 1.1 V,

JC = 12.4 mA/µm2. The epitaxial structure B shows f T = 0.51
THz at VCE = 1.0 V, JC = 9.4 mA/µm2 and fMAX = 1.16 THz at
VCE = 2.0 V, JC = 11.7 mA/µm2.

Both structures have excellent small-signal performances, but
to better understand their dependence on the applied bias, it is
useful to look at the evolution of the cutoff frequencies f T/fMAX
over different biases. Figure 4 shows the I-V curves of a (0.25 × 10)
µm2 DHBT with f T and fMAX superposed on them for the epitax-
ial structure A (Fig. 4a and 4c) and B (Fig. 4b and 4d). It is clear
how for the epitaxial structure B the range of high small-signal
performance is extended both in IC and VCE with respect to the
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(a) (b)

Figure 6. Gain and PAE versus POUT at different frequencies of a (0.25 × 10) µm2 DHBT for the epitaxial structure A (a) and B (b). The load is matched for maximum output
power.

structure A. This feature is highly attractive for a PA design, as it
gives great flexibility in the PA cell biasing. Having such high and
stable cut-off frequencies enables to reach very high POUT and PAE
without compromising on small-signal RF performances.

Large-signal load-pull measurements

In order to investigate the power performances of InP/GaAsSb
DHBTs and to properly highlight the differences between the epi-
taxial structures A and B, the devices were characterized at Vertigo
Technologies, by means of an active vector-modulation solution
[6].

Thebias choice is of paramount importance in large-signalmea-
surements, as it affects dramatically figures of merit such as POUT,
GOP andPAE. Transistors used in PAs are usually biased in different
conditions than those at which they reach their best small-signal
performance. In order to achieve class-A operation, we used a col-
lector current density of JC = 8.0 mA/µm2, around 70% of the
density of current needed for peak fMAX, and half of the value
JMAX for which there is the onset of thermal effects in the I-V
curves. This value of JC allows an active load line without the risk
of current-clipping.

The transistors of both epitaxial structures were measured
with the collector-emitter voltage starting from VCE = 1.2 V
and increased until degradation. For structure A, the degradation
happened after VCE = 1.8 V, whereas for B after VCE = 2.0 V.
From now on, we will only focus on the results for these bias
points.

The load-pullmeasurementswere done at four frequencies, 140,
150, 160 and 170 GHz. First, the optimal load for different input
power PIN was found. Figure 5 shows the measured POUT and PAE
contours at 140 and 170 GHz for the epitaxial structure A (Fig. 5a
and 5b) and B (Fig. 5c and 5d). For the structure A, the contours
do not fully close at 140 GHz, but they do at 170 GHz. For both
structures, POUT and PAE contours do not coincide, yet they show
a good overlap. Loading a transistor close to the optimum load for
both POUT and PAE is a desirable feature, because it allows a good
compromise between output power and efficiency. It is also clear
that the optimum load ZL for both structures at both 140 GHz
and 170 GHz is close to the centre of the Smith chart. This is an

Table 3. Measured gain at –1 dB compression, output power at –3 dB com-
pression and PAE at different frequencies for the epitaxial structure A

Frequency [GHz] GOP, −1dB [dB] POUT,SAT [dBm] PAE [%]

140 10.5 11.1 39.2

150 10.2 10.8 38.8

160 9.6 10.5 35.2

170 8.5 10.1 30.7

Table 4. Measured gain at –1 dB compression, output power at –3 dB com-
pression and PAE at different frequencies for the epitaxial structure B

Frequency [GHz] GOP, −1dB [dB] POUT,SAT [dBm] PAE [%]

140 11.9 10.9 38.2

150 11.5 10.9 38

160 10.9 11.0 38.5

170 10.5 10.7 38.6

appealing feature when designing a power amplifier, because the
output impedance of the transistor requires a low impedance trans-
formation ratio to a 50 Ω system, a valuable quality in application
requiring a low-loss broadband impedance match.

After performing the load-pull measurements, power sweeps
were carried out with optimum load impedance ZL,OPT to deter-
mine the highest POUT and PAE. Figure 6 reports the operational
gainGOP and PAE against the output power POUT between 140 and
170 GHz, in steps of 10 GHz, for the epitaxial structure A (a) and
B (b), respectively, for a (0.25 × 10) µm2 DHBT.

The two structures exhibit quite different behaviours. By
increasing the frequency, the transistor realized with the epitax-
ial structure A shows decreasing GOP, PAE and POUT. Instead, the
transistor realized with the structure B exhibits decreasing gain,
but almost unchanged PAE and POUT. The results are summarized
in Tables 3 and 4.

Epitaxial structure B shows a higher gain, due to the superior
small-signal gain at the bias point for which the best large-signal
performances are observed, as reported in Fig. 4c and 4d.
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(a) (b)

Figure 7. Thermal resistance RTH (a) and junction temperature TJ (b) for the epitaxial structures A (blue) and B (red) measured at VCE = 1.1 V and JC = 10 mA/µm2.

Both structures offer good saturated output power and very
high efficiency. This demonstrates the excellent power perfor-
mance of Type-II InP-DHBTs. To the best of the authors’ knowl-
edge, these results represent a record in terms of PAE for the entire
G-band.

Thermal characterization

In order to further characterize and understand the differences
between the two epitaxial structures and thus, the effect that a
thinner subcollector has on the performances of a InP-DHBT, the
transistors were thermally characterized. It was reported [11–14]
how engineering the emitter and collector epitaxial layers can
offer significant advantages to the thermal resistance of a bipolar
transistor.

In a DHBT, the majority of the heat is generated in the collec-
tor.The thermal conductivity of InP andGaInAs, if lattice matched
to InP, is κ = 68 W/mK and κ = 5 W/mK, respectively. Thus, the
removal of the 50 nm thick InP and the thinning of the GaInAs
layer for the epitaxial structure B, is expected to bring great benefits
to the transistor performance.

The thermal resistance RTH is a metric of self-heating in a
DHBT. When high, it indicates that the generated heat is not
properly shunted, which then leads to an increased junction tem-
perature T J. An elevated T J causes an earlier degradation of the
device performances.

In any bipolar transistor a rise in T J leads to a reduction of the
base-emitter voltage VBE required to achieve a given current den-
sity JC. The thermal-electric feedback coefficientΦ takes this effect
into account, and is defined as [15, 16]:

Φ= −𝜕VBE
𝜕T ∣

(IC=const)
(1)

This coefficient is obtained fromGummel plotsmeasured at dif-
ferent temperatures. Then, it can be used to calculate the thermal
resistance RTH of the device as:

RTH = ΔVBE
ΔVCE ⋅ IC ⋅ Φ (2)

where ΔVBE is the voltage difference in the base-emitter voltage
for a fixed collector current IC when the collector-emitter voltage
is changed by a fixed amount ΔVCE. After RTH is calculated, the
junction temperature T J can be derived by using:

TJ = TA + RTH ⋅ VCE ⋅ IC (3)

where TA is the ambient temperature. Figure 7 shows the results of
the extracted thermal resistance and the calculated junction tem-
perature of both epitaxial structures for different emitter lengths
and for an emitter width WE = 0.25 µm. The results are reported
for VCE = 1.1 V and JC = 10 mA/µm2.

The epitaxial structure B shows, for the emitter length LE = 10
µm, an improvement ofmore than 10% in thermal resistance, com-
pared with the structure A and a similar reduction in junction
temperature.These results are in agreementwithwhatwas reported
in [11].

Conclusion

In this work, we reported a detailed small-, large-signal and
thermal analysis of two different (0.25 × 10) µm2 single-finger
common-emitter InP/GaAsSbDHBTs, both fabricated in “emitter-
fin” technology, but with different collector designs.

Both designs exhibit f T close or above 500 GHz and THz-class
fMAX over a wide range of bias points, especially for the optimized
collector design.The load-pull large-signal characterization shows
very good power-handling capabilities together with outstanding
efficiency, with an optimum load impedance ZL,OPT close to the
centre of the Smith chart. The PAE reported in this work repre-
sents a record in the whole G-band for any technology, reaching
39.2 % at 140 GHz and 38.6 % at 170 GHz.

Finally, it was demonstrated how a wise design of the sub-
collector layer reduces the thermal resistance of the transistor,
broadening the biasing range to achieve close-to-peak small-signal
performance and delaying the degradation during large-signal
measurements. This work further demonstrates the potential of
emitter-fin InP/GaAsSb DHBTs for highly-efficient high-power
PAs at G-band and above.
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