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A GENERATING FUNCTION OF THE SQUARES
OF LEGENDRE POLYNOMIALS

WADIM ZUDILIN

Abstract

We relate a one-parametric generating function for the squares of Legendre polynomials to an arithmetic
hypergeometric series whose parametrisation by a level 7 modular function was recently given by Cooper.
By using this modular parametrisation we resolve a subfamily of identities involving 1/π which was
experimentally observed by Sun.
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1. Introduction

In our joint papers [7] with Chan and Wan and [14] with Wan we made use of, but also
extended, the generating functions of Legendre polynomials

Pn(y) = 2F1

(
−n, n + 1

1

∣∣∣∣∣1 − y
2

)
,

originally due to Brafman [3]. Our generalised generating functions have the form∑∞
n=0 unPn(y)zn, where un is a so-called Apéry-like sequence, as well as

∞∑
n=0

(
2n
n

)2

P2n(y)zn and
∞∑

n=0

(3n)!
n!3

P3n(y)zn.

One motivation for the work was a list of formulas for 1/π given by Sun [13]. Because
the preprint [13] is a dynamic survey of continuous experimental discoveries by its
author, a few newer examples for 1/π involving the Legendre polynomials appeared
after acceptance of [7, 14].

Namely, two groups of identities related to the generating functions

∞∑
n=0

Pn(y)3zn and
∞∑

n=0

(
2n
n

)
Pn(y)2zn (1.1)
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are now given as (VI1)–(VI3) and (VII1)–(VII7) on p. 23 of [13]. A search of the
existing literature on the subject reveals no formula which could be useful in proving
Sun’s observations. The closest possibility is Bailey’s

∞∑
n=0

Pn(x)Pn(y)zn =
1

(1 + z(z − 2
√

(1 − x2)(1 − y2) − 2xy))1/2

× 2F1

( 1
2 ,

1
2

1

∣∣∣∣∣ −4
√

(1 − x2)(1 − y2)z

1 + z(z − 2
√

(1 − x2)(1 − y2) − 2xy)

)
, (1.2)

which follows from [2, Eqs. (2.1) and (3.1)] and [1, Eq. (7) p. 81]. The generating
function (1.2) was rediscovered later by Maximon [10]. It admits, in fact, a less radical
form

∞∑
n=0

Pn(x)Pn(y)zn =
1

(1 − 2xyz + z2)1/2 2F1

( 1
4 ,

3
4

1

∣∣∣∣∣4(1 − x2)(1 − y2)z2

(1 − 2xyz + z2)2

)
(1.3)

which is due to Wan (private communication, 27 September 2012). Unfortunately, no
simple generalisation of the result for the terms on the left-hand side twisted by the
central binomial coefficients is known, even in the particular case x = y.

With the help of Clausen’s identity

Pn(y)2 = 3F2

(
−n, n + 1, 1

2
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)

=
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(
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)(
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,

we find that the second generating function in (1.1) is equivalent to

∞∑
n=0

(
2n
n

)
zn

n∑
k=0

(
n
k

)(
n + k

n

)(
2k
k

)
xk, (1.4)

where x = −(1 − y2)/4. In view of [14, Theorem 1], its Clausen-type specialisation [6]
and our identities (1.5), (1.7) below, it is quite likely that the latter generating function
can be written as a product of two arithmetic hypergeometric series, each satisfying a
second-order linear differential equation. In this note we only recover the special case
z = x/(1 + x)2 of the expected identity, the case which is suggested by [13, (VII1),
(VII3)–(VII6)].

T 1.1. For v in a small neighbourhood of the origin, take

x(v) =
v

1 + 5v + 8v2
and z(v) =

x(v)
(1 + x(v))2

=
v(1 + 5v + 8v2)

(1 + 2v)2(1 + 4v)2
.

Then
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z(v)n
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x(v)k =

1 + 2v
1 + 4v

∞∑
n=0

un

( v
(1 + 4v)3

)n

, (1.5)
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where the sequence [12, A183204]

un =

n∑
k=0

(
n
k

)2(n + k
n

)(
2k
n

)
=

n∑
k=0

(−1)n−k

(
3n + 1
n − k

)(
n + k

n

)3

satisfies the Apéry-like recurrence equation

(n + 1)3un+1 = (2n + 1)(13n2 + 13n + 4)un + 3n(3n − 1)(3n + 1)un−1

for n = 0, 1, 2, . . . , u−1 = 0, u0 = 1.

Because y2 = 1 + 4x for the second generating function in (1.1), the equivalent form
of (1.5) is the identity

∞∑
n=0

(
2n
n

)
Pn

(√(1 + v)(1 + 8v)
√

1 + 5v + 8v2

)2( v(1 + 5v + 8v2)
(1 + 2v)2(1 + 4v)2

)n

=
1 + 2v
1 + 4v
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n=0

un

( v
(1 + 4v)3

)n

.

We remark that Cooper constructs in [9, Theorem 3.1] a modular parametrisation
of the generating function

∑∞
n=0 unwn. Namely, he proves that the substitution

w(τ) =
η(τ)4η(7τ)4

η(τ)8 + 13η(τ)4η(7τ)4 + 49η(7τ)8
(1.6)

translates the function into the Eisenstein series (7E2(7τ) − E2(τ))/6. Here η(τ) =

q1/24 ∏∞
m=1(1 − qm) is Dedekind’s eta function, q = e2πiτ, and

E2(τ) =
12
πi

d log η
dτ

= 1 − 24
∞∑

n=1

qn

1 − qn
.

Using this, Cooper derives a general family [9, Eqs. (37), (39)] of related Ramanujan-
type identities for 1/π. It is this result and the ‘translation’ method [15] which
allow us to prove observations [13, (VII1), (VII3)–(VII6)]. Note that this modular
parametrisation and results of Chan and Cooper [4, Lemmas 4.1 and 4.3] lead to the
following hypergeometric forms of the generating function:

1
√

1 + 13h + 49h2
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n=0

un

( h
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)n

=
1

√
1 + 245h + 2401h2

3F2
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1
2 ,

5
6

1, 1

∣∣∣∣∣ 1728h
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)
=

1
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1 + 5h + h2
3F2

( 1
6 ,

1
2 ,

5
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∣∣∣∣∣ 1728h7

(1 + 13h + 49h2)(1 + 5h + h2)3

)
which are valid near the origin.

https://doi.org/10.1017/S0004972713000233 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000233


128 W. Zudilin [4]

T 1.2 (Satellite identity). The identity

∞∑
n=0

(
2n
n

)( x
(1 + x)2

)n n∑
k=0

(
n
k

)(
n + k

n

)(
2k
k

)
xk

×
(
2x(3 + 4x) − n(1 − x)(3 + 5x) + 4k(1 + x)(1 + 4x)

)
= 0 (1.7)

is valid whenever the left-hand side makes sense.

2. Proofs of Theorems 1.1 and 1.2

The identity (1.5) is equivalent to

∞∑
n=0

(
2n
n

)
vn(1 + 5v + 8v2)n

(1 + 2v)2n+1(1 + 4v)2n+1

n∑
k=0

(
n
k

)(
n + k

n

)(
2k
k

)
vk

(1 + 5v + 8v2)k

=

∞∑
n=0

un
vn

(1 + 4v)3n+2
.

It is routine to verify that both sides are annihilated by the differential operator

v2(1 + v)(1 + 8v)(1 + 5v + 8v2)
d3

dv3
+ 3v(1 + 21v + 122v2 + 280v3 + 192v4)

d2

dv2

+ (1 + 50v + 454v2 + 1408v3 + 1216v4)
d
dv

+ 4(1 + 22v + 108v2 + 128v3),

and the proof of Theorem 1.1 follows. A similar routine shows the vanishing in
Theorem 1.2.

3. Sun’s formulas

In Table 1 we list the relevant parametrisations of Sun’s formulas from [13]. The
last column corresponds to the choice of τ in (1.6) such that v/(1 + 4v)3 = w(τ) there.
The general formulas for 1/π in these cases,

∞∑
n=0

(a + bn)unwn =
1

π
√

7
, (3.1)

are given by Cooper in [9, Eq. (37)]. On using (1.5) and its v-derivative
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n

)
z(v)n
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(
n
k

)(
n + k

n

)(
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k

)
x(v)k
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(
n

(1 − 8v2)(1 + 4v + 8v2)
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+ k
1 − 8v2
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)
=

1 + 2v
1 + 4v
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un
vn
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(
n

1 − 8v
v(1 + 4v)

−
2
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)
,

https://doi.org/10.1017/S0004972713000233 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000233


[5] A generating function of the squares of Legendre polynomials 129

T 1. The choice of parameters for observations in [13, p. 23]. The last column corresponds to the
choice of τ such that w(τ) = v/(1 + 4v)3 for the modular function w(τ) defined in (1.6).

# in [13] x z v w = v/(1 + 4v)3 τ

(VII1) − 1
14

14
225 1 1

53
2i
√

7

(VII2) 9
20 − 5

196

(VII3) − 1
21

21
484 1 +

√
14
4

188−42
√

14
223

i
√

6
√

7

(VII4) − 1
45

45
2116

5
2 + 7

√
2

4

( 8−3
√

2
46

)3 i
√

10
√

7

(VII5) 1
7 − 7

36 − 3
4 −

√
7

4
−34+14

√
7

63
i
√

3
√

7

(VII6) 1
175 − 175

30276 − 45
4 −

17
√

7
4

(−13+7
√

7
174

)3 i
√

19
√

7

(VII7) − 576
3025

3025
188356

the equalities (3.1) together with the related specialisations of (1.7) (to eliminate the
linear term in k) imply Sun’s identities (VII1), (VII3)–(VII6) by translation [15].

Note that Cooper’s [9, Table 1] involves two more examples corresponding to the
choices −1/43 and −1/223 for v/(1 + 4v)3; the values of x and z in these cases are zeros
of certain irreducible cubic polynomials though. There are also several examples when
x and z are taken from a quadratic field. For instance, taking τ = i

√
11/
√

7, one gets

x =
23 − 8

√
11

175
and z =

83 − 32
√

11
1100

in (1.5) and (1.7); the corresponding v1 = −6.798 . . . and v2 = −0.018 . . . solve the
quartic equation 64v4 + 448v3 + 96v2 + 56v + 1 = 0. As such identities are only of
theoretical importance, we do not derive them here.

4. Generating functions of other special polynomials

It is apparent that there is a variety of formulas similar to (1.5) and (1.7) designed
for generating functions of other polynomials. For example, Sun’s list contains five
identities involving values of the polynomials

An(x) =

n∑
k=0

(
n
k

)2(n + k
n

)
xk, n = 0, 1, 2, . . . .

By examining the entries (2.1)–(2.3) on [13, p. 3] one notices that the parameters x
and z of the generating function

∞∑
n=0

(
2n
n

)
An(x)zn (4.1)
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are related by z = x/(1 − 4x), while the entries (6.1) and (6.2) on [13, p. 15] there
correspond to the relation z = 1/(x + 1)2. With some work we find that those
specialisations indeed lead to third-order arithmetic linear differential equations which
can be then identified with the known examples [5, 8]:

∞∑
n=0

(
2n
n

)
vn(1 − v)n(1 − 4v)n

(1 − 2v + 4v2)2n+1

n∑
k=0

(
n
k

)2(n + k
n

)
vk(1 − v)k(1 − 4v)k

(1 − 4v2)2k+1

=

∞∑
n=0

n∑
k=0

(
n
k

)2(n + k
n

)2 vn(1 − 2v)n(1 − 4v)2n

(1 − v)n+1(1 + 2v)n+1

=

∞∑
n=0

n∑
k=0

(
n
k

)2(2k
k

)(
2n − 2k

n − k

)
(−1)nvn(1 − v)n(1 − 4v2)n

(1 − 4v)2n+2

=

∞∑
n=0

(3n)!
n!3

(
2n
n

)
vn(1 − v)n(1 − 4v2)n(1 − 4v)4n

(1 + 4v − 8v2)2n+2

and

∞∑
n=0

(
2n
n

)
v2n

(1 + 10v + 27v2)2n+1

n∑
k=0

(
n
k

)2(n + k
n

)
(1 + 9v + 27v2)k

vk

=

∞∑
n=0

(3n)!
n!3

(
2n
n

)
vn(1 + 9v + 27v2)n

(1 + 9v)6n+2
,

respectively. Additionally, there are satellite identities for each of the specialisations,
both similar to (1.7). These identities, the known Ramanujan-type formulas for
the right-hand sides and the translation technique can be then used to prove Sun’s
observations.

On the other hand, as already mentioned at the beginning, it is natural to expect
the existence of Bailey–Brafman-like identities [7, 14] for the two-variate generating
functions (1.4), (4.1).

5. A question

Given an (arithmetic) generating function
∑∞

n=0 Anzn which satisfies a second-order
linear differential equation (with regular singularities), is it true that

∑∞
n=0

(
2n
n

)
Anzn can

be written as the product of two arithmetic series, each satisfying (its own) second-
order linear differential equation?

Here, of course, we allow An to depend on some other parameters; the example

of such a product decomposition for An = An(x) =
∑

k

(
n
k

)2(2k
n

)
xk has been given

recently by Rogers and Straub [11, Theorem 2.3]. An affirmative answer to the
question would give one an arithmetic parametrisation of the generating function∑∞

n=0

(
2n
n

)
Pn(x)Pn(y)zn (see (1.2) or (1.3)).
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Note that there are some other generating functions in [13], like the first one in (1.1),
which are not of the form

∑∞
n=0

(
2n
n

)
Anzn. We believe, however, that they can be reduced

to the latter form by a suitable algebraic transformation.
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