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Abstract. The inertial range of incompressible MHD turbulence is most conveniently described 
in terms of counter propagating waves. Shear Alfven waves control the cascade dynamics. Slow 
waves play a passive role and adopt the spectrum set by the shear Alfven waves. Cascades composed 
entirely of shear Alfven waves do not generate a significant measure of slow waves. MHD turbulence 
is anisotropic with energy cascading more rapidly along k± than along k\\. Anisotropy increases with 

2/3 
k±_ such that the excited modes are confined inside a cone bounded by k\\ oc k^'. The opening angle 

of the cone, 0(kj_) oc A:̂  , defines the scale dependent anisotropy. MHD turbulence is generically 
strong in the sense that the waves which comprise it are critically damped. Nevertheless, deep in­
side the inertial range, turbulent fluctuations are small. Their energy density is less than that of the 
background field by a factor 62(kj_) <g 1. MHD cascades are best understood geometrically. Wave 
packets suffer distortions as they move along magnetic field lines perturbed by counter propagating 
wave packets. Field lines perturbed by unidirectional waves map planes perpendicular to the local 
field into each other. Shear Alfven waves are responsible for the mapping's shear and slow waves for 
its dilatation. The former exceeds the latter by 6~ (k±) ^> 1 which accounts for dominance of the 
shear Alfven waves in controlling the cascade dynamics. 

Keywords: MHD, Turbulence 

1. MHD Cascades 

A variety of models have been proposed for MHD turbulence. They share the 
common feature that energy cascades from lower to higher wave number. 

1.1. THE IROSNIKOV-KRAICHNAN MODEL 

The standard model is that due to Iroshnikov (1963) and Kraichnan (1965). Kraich-
nan's derivation of the IK spectrum relies on the fact that only oppositely directed 
waves interact in incompressible MHD. It assumes explicitly that the turbulence 
is isotropic and implicitly that the dominant interactions are those which couple 3 
waves. 

The above assumptions imply that the cascade time across scale X is 

VA\ X 
— - • (1) 
V)J VA 
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Setting vl/tc equal to the dissipation rate per unit mass, e, then yields 

Vk~(€VAk)l/\ (2) 

which corresponds to the 1D power spectrum 

E^k) ~ ~ 1 ^ - - (3) 

Nonlinearity is measured by x ~ (vx/vA), where TV ~ /~ 2 is the number of wave 
periods in tc; 

Since x decreases with decreasing X, only dissipation limits the length of the IK 
inertial range. 

The IK model is flawed because the assumption of isotropy is inconsistent with 
the frequency and wave vector closure relations that resonant triads must satisfy 
(Shebalin et ah, 1983). These take the form 

a>\ + co2 = a>3, (5) 

k , + k 2 = k3. (6) 

But since u> = vA\kz\, equation (5) and the z component of equation (6) yield the 
set 

1*1*1 + 1*2*1 = 1*3*1 (7) 
ku + k2z = k3z (8) 

Because nonlinear interactions can only occur between oppositely directed waves, 
the 3-mode coupling coefficient vanishes unless waves 1 and 2 propagate in oppos­
ite directions. In that case, equations (7) and (8) imply that either k\z or ki- must 
vanish. Since one of incoming waves has zero frequency, 3-wave interactions do 
not cascade energy along kz. 

1.2. INTERMEDIATE MHD TURBULENCE 

Goldreich and Sridhar (1997)* propose an anisotropic MHD cascade based on 
scalings obtained from 3-wave interactions. It represents a new form of turbulence, 
which they term intermediate, because it shares some of the properties of both weak 
and strong turbulence. Although individual wave packets suffer small distortions 
in single collisions, interactions of all orders make comparable contributions to the 
perpendicular cascade.** 

* Hereafter GSII. 
** This is a controversial claim. 
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To derive the scaling relations for the intermediate cascade, we repeat the steps 
carried out in § 1.1 for the IK model, but with A_L in place of A and A|| held constant. 
Thus 

r,~(^V±l. (9) 

Setting e ~ v\ Jt^, we find 

^ ~ ( - ^ I . (10) 
An 

and 
, '/2 

(evAk\\) 
E(k±) ~ V J> . (11) 

Besides being anisotropic, the intermediate MHD cascade differs from the IK 
cascade in another important respect. The strength of nonlinear interactions, as 
measured by 

Vk,h\ I eAjJ 

VA^-XJ \vAk{ 

1/4 

(12) 

increases along the cascade. Thus, even in the absence of dissipation, the interme­
diate cascade has a finite inertial range. This suggests that a strong form of MHD 
turbulence must be the relevant one for most applications in nature. 

2. Strong MHD Turbulence 

A cascade for strong MHD turbulence is described by Goldreich and Sridhar 
(1995)*. Its defining property is that MHD waves suffer order unity distortions 
on time scales comparable to their periods. GSI argue that the quantity x defined 
in equation (12) saturates at a value of order unity. They refer to this state as one of 
critical balance. Together with the assumption of a constant energy flux along the 
cascade, as expressed by 

e ~ ^ , (13) 

it implies that correlation lengths parallel and perpendicular to the local field dir­
ection are related by 

A|jOcAf\ (14) 

* Hereafter GSI. 
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Although there is a parallel cascade of energy in strong MHD turbulence, the 
degree of anisotropy increases along the cascade. 

Let us assume vL ~ vA and isotropy on scale outer scale L.** Then the 3-
dimensional energy spectrum of strong MHD turbulence takes the form 

v2 / y t , i L 1 / 3 \ 

*(*i. *II> ~ T T T T W - b r ' ( 1 5 ) 
L ' / 3 * U / J \ k ± i 

where f(u) is a positive symmetric function of u with the properties that /'(«) s» 1 
for \u\ < 1 and f(u) negligibly small for \u\ S> 1. The power spectrum is flat as 
a function of ^ for k\\ < &, L~l/3 because the velocity and magnetic perturba­
tions on transverse scale &J arise from independent wave packets whose lengths 
A.|| ~ Ax Ll/3. The 1-dimensional perpendicular power spectrum obtained from 
equation (15) reads 

E(k±) ~ Z^f • (,6) 

Thus the spectrum of strong MHD turbulence is an anisotropic version of Kolmo-
gorov's spectrum for hydrodynamic turbulence. 

Inertial range velocity differences and magnetic perturbations across perpendic­
ular scale k± satisfy 

vkl ~ VL ~ I Y" j VA- (17) 

Thus even though the turbulence is properly classified as strong, deep in the inertial 
range magnetic field lines are nearly parallel across perpendicular separations k± 
and nearly straight along parallel separations Xf, differential bending angles are of 
order (A.J./L)1/3 ~ (Ay/L)'/2. 

2.1. PARALLEL CASCADE 

It is interesting to examine the frequency changing interactions that drive the par­
allel cascade. Referring back to the intermediate cascade, we know that 3-wave 
interactions do not change frequencies. However, interactions involving more than 
3-waves can. For example, frequency changes arise in 4-wave interactions of the 
form 

CO\ + (&i + 0)3 = ft>4, (18) 

k i + k 2 + k 3 = k 4 , (19) 

** This assumption is motivated by the expectation that the excitation of interstellar turbulence is 
characteristically strong. 
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a. Field line wander b. Wave packet distortion 

Figure I. The left hand panel displays a sample of field lines perturbed by downward propagating 
waves. The distortion of an originally circular bullseye pattern as it moves upward following these 
field lines is shown in the right hand panel. 

where k\z and k-n have the same sign and COT, = vA \kiz | = 0 (Ng and Bhattacharjee, 
1996; GKII). The parallel cascade they give rise to proceeds at a rate which is 
smaller than that of the perpendicular cascade by a factor of order / . Because 
strong MHD turbulence is characterized by / ~ 1, it has a significant parallel 
cascade. 

2.2. FIELD LINE GEOMETRY 

MHD turbulence is best understood geometrically. Field lines perturbed by waves 
propagating in one direction define 2-dimensional mappings between xy planes 
separated by distance z. Shear Alfven waves dominate the shear and slow waves 
the dilatation of these mappings. The magnitude of the shear exceeds that of the 
dilatation by a factor of order Ay/Ax ~ (L/X±)i/3 3> 1. These mappings describe 
the distortion that counterpropagating waves would suffer if they moved at uniform 
speed along the perturbed field lines. The dominance of the shear over the dilatation 
explains why shear Alfven waves control the perpendicular cascades of both types 
of wave. 

The recognition that MHD waves tend to follow field lines is essential to un­
derstanding their turbulent cascades. Figure 1 provides a visual illustration of how 
this works. The left hand panel displays a snapshot of field lines perturbed by 
downward propagating waves. In the right hand panel we follow the evolution of a 
horizontal pattern as it propagates from the bottom to the top following these lines. 
The distortion of the initially circular bullseye is principally due to the shear in the 
two dimensional mapping defined by the perturbed field lines. The cascade time on 
the scale of the initial pattern is that over which the shear grows to order unity. 

This geometrical picture requires two qualification. The first is that the propaga­
tion speed of MHD waves is not exactly constant but varies with the strength of 
the local magnetic field. Pressure perturbations associated with slow waves are 
balanced by perturbations of magnetic pressure. The resulting perturbations in 
propagation speed, of order v-A±, contribute to the nonlinear cascade. Over one 
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wave period they lead to fractional distortions of order V\L/VA ~ ^±Au ^ '• 
Thus they are properly ignored. The second qualification is that MHD waves do 
not exactly follow field lines. The extent to which this effects their cascade remains 
to be quantified. 

The parallel cascade may also be viewed in geometrical terms. Consider an 
upward propagating wave packet of length X\\ and width X± which is being distorted 
by downward moving wave packets of similar scale. Correlations along the parallel 
direction are shortened because the front and back of the wave packet undergo 
different 2-dimensional mappings. This happens because the upward propagating 
packet distorts each downward going packet as it passes through it. This distortion 
is of order x • For strong MHD turbulence x ~ 1 which accounts for its significant 
parallel cascade. 

Incidentally, the geometrical picture also aids the interpretion of results from 
perturbation theory. For example, the 3-wave resonant interactions which dominate 
the perpendicular cascade and the 4-wave resonant interactions which cause the 
lowest order frequency changes each depend upon the amplitudes of modes with 
kz = 0. This is because the shear in the mapping between xy planes separated 
by Az is proportional to the displacement amplitudes of modes with kz < 1/Az. 
Perturbation theory corresponds to the limit of vanishing cascade strength in which 
shears of order unity are achieved in the limit of infinite separation along the z-axis. 

3. Application To Interstellar Scattering 

My contribution is not intended to cover astronomical applications. Yoram Lith-
wick's presentation describes the relation of MHD turbulence to ISS. However, 
since his talk is not written up, I'll make a few relevant comments. 

Most of the baryonic matter in the universe has such high electrical conduct­
ivity that magnetic fields diffuse very slowly through it. Thus fluid motions and 
motions of magnetic field lines are closely coupled. Large scale fluid motions are 
generally turbulent, and incompressible MHD is the simplest approximation under 
which we can study these complex coupled motions. But why should astronomers 
be concerned with the inertial range of MHD turbulence? Motions on the largest 
scale, the energy bearing eddies, dominate the transport of momentum and energy. 
Inertial range eddies play only a minor role in transport. Below I offer one example 
with the inertial range of interstellar turbulence is relevant to observations. 

The spectrum of interstellar electron density fluctuations probably reveals an 
underlying turbulent cascade. Elliptical, scatter-broadened images imply the dens­
ity spectrum is anisotropic, presumable due to the presence of a large scale mag­
netic field. Shear Alfven waves, which control the cascade, cannot be directly 
responsible for density fluctuations since they do not produce pressure perturb­
ations. However, there is ample reason to believe that they passively mix both 
specific entropy and slow waves, and that this forces the power spectra of these 

https://doi.org/10.1017/S0252921100000622 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100000622


MHD TURBULENCE 23 

fields to ape that of the shear Alfven waves. Density fluctuations might then be 
due to either isobaric fluctuations of specific entropy or to pressure fluctuations 
associated with slow waves. The former has a close analogy in the Earth's atmo­
sphere where specific entropy mixed by hydrodynamic turbulence gives rise to 
the refractivity variations that cause optical scintillations. Each of these proposals 
for generating density fluctuations suffers from unresolved difficulties which are 
briefly described the following paragraph. 

The bulk of the ionized interstellar gas is found in HII regions. Thus it is 
natural to look to these as the prime sites for ISS. However, specific entropy is 
not conserved during large scale motions in HII regions. Thermal relaxation of 
the gas temperature occurs on much shorter timescales than these motions. Only 
small scale motions conserve entropy. This poses a serious problem for matching 
the magnitude of the ISS with entropy fluctuations. Slow waves might appear to 
provide a better solution. But they are strongly damped in collisionless plasmas, 
and the ionized gas in HII regions is effectively collisionless on the scales implic­
ated in diffractive scintillations. There are plausible resolutions to each of these 
difficulties, but they lie outside the scope of this paper. 
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