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ON THE ZARISKI TOPOLOGY ON ENDOMORPHISM MONOIDS
OF OMEGA-CATEGORICAL STRUCTURES

MICHAEL PINSKER AND CLEMENS SCHINDLER

Abstract. The endomorphism monoid of a model-theoretic structure carries two interesting topologies:
on the one hand, the topology of pointwise convergence induced externally by the action of the
endomorphisms on the domain via evaluation; on the other hand, the Zariski topology induced within
the monoid by (non-)solutions to equations. For all concrete endomorphism monoids of �-categorical
structures on which the Zariski topology has been analysed thus far, the two topologies were shown to
coincide, in turn yielding that the pointwise topology is the coarsest Hausdorff semigroup topology on
those endomorphism monoids.

We establish two systematic reasons for the two topologies to agree, formulated in terms of the model-
complete core of the structure. Further, we give an example of an �-categorical structure on whose
endomorphism monoid the topology of pointwise convergence and the Zariski topology differ, answering
a question of Elliott, Jonušas, Mitchell, Péresse, and Pinsker.

§1. Introduction.

1.1. Motivation. Given a model-theoretic (relational) structureAwith domain A,
the set End(A) of all endomorphisms of A is closed under composition of functions
and thus forms a semigroup (even a monoid). Inheriting the subspace topology of
the product topology on AA where each copy of A is equipped with the discrete
topology, End(A) additionally carries a topological structure which turns out to
be Polish, i.e., separable and completely metrisable, in particular Hausdorff. In this
topology, a sequence (fn)n∈N converges to f if and only if for every a ∈ A, the
sequence of evaluations (fn(a))n∈N converges to f(a) in the discrete topology,
i.e., if it is eventually constant with value f(a). For this reason, the topology is
called the topology of pointwise convergence or pointwise topology for brevity. These
two types of structures are compatible in the sense that the composition operation
is continuous with respect to the pointwise topology; one says that the topology
is a semigroup topology. For many model-theoretic structures A on a countable
domain, the algebraic (semigroup) structure and the topological (Polish) structure
turn out to be so deeply intertwined that the pointwise topology is the unique Polish
semigroup topology on End(A). Examples include the structure without relations
(whose endomorphism monoid is the full transformation monoid) [9]; the random
(di-)graph, the random strict partial order and the equivalence relation with either
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2 MICHAEL PINSKER AND CLEMENS SCHINDLER

finitely or countably many equivalence classes of countably infinite size [10]; as well
as the rational numbers with the non-strict order [13].

One obvious step in the proofs of these results is to show that the pointwise
topology is the coarsest Polish semigroup topology on End(A). For this purpose,
the authors of [9] transferred a notion from the theory of topological groups to
the realm of semigroups, namely the so-called Zariski topology (or sometimes
verbal topology) (see [7, 8, 12]); roughly speaking, the closed sets in this topology
are given by solution sets to identities in the language of semigroups. Hence, the
Zariski topology is an object associated with the algebraic (semi-)group structure.
Considering End(A) as an abstract semigroup, the Zariski topology can thus be
regarded as an “internal” object. The pointwise topology, in contrast, is defined
from the evaluations at elements of the domain of A and is thus an “external” object
with respect to the abstract semigroup structure of End(A)—precisely speaking, the
pointwise topology is associated with the semigroup action of End(A) on A.

As it turns out, the Zariski topology is necessarily coarser than any Hausdorff
semigroup topology on a given semigroup. In particular, the pointwise topology
on End(A) is always finer than the Zariski topology. If one manages to show that
the Zariski topology on End(A) even coincides with the pointwise topology for
some structure A, one can draw two conclusions: on the one hand, the pointwise
topology can also be understood as an “internal” object with respect to the abstract
semigroup structure; on the other hand, the pointwise topology then indeed is the
coarsest (in particular) Polish semigroup topology on End(A). This technique was
used in [9, 10] as well as, implicitly, in [13]. In each instance, however, the proof
that the topologies coincide has not been particularly systematic but tuned to the
specific situation being considered, based on two sets of rather technical sufficient
conditions established in [9] and the ad hoc notion of so-called arsfacere structures
introduced in [10] for which these conditions always hold. This raises the question
whether there are systematic reasons for equality of the topologies, in other words
general and more structural properties to require forAwhich yield that the pointwise
topology and the Zariski topology on End(A) coincide.

Furthermore, for each �-categorical structure A explicitly considered thus far,
it was possible to show that the pointwise topology and the Zariski topology on
End(A) coincide, leading to the authors of [10] asking the following question which
formed another essential motivation for the present work:

Question 1.1 [10, Question 3.1]. Is there an �-categorical relational structure A

such that the topology of pointwise convergence on End(A) is strictly finer than the
Zariski topology?

1.2. Our work. We establish two new sets of sufficient conditions on a structure
A under which the Zariski topology and the pointwise topology on End(A)
coincide—so, in particular, under which the pointwise topology is the coarsest Polish
(Hausdorff) semigroup topology on End(A). To this end, we give a new application
of so-called model-complete cores which have proved to be a helpful tool not only in
the algebraic theory of constraint satisfaction problems [3] but also—of independent
purely mathematical interest—in the universal algebraic study of polymorphism
clones of�-categorical structures [1, 4] as well as in the Ramsey-theoretic analysis of
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ZARISKI TOPOLOGY ON ENDOMORPHISM MONOIDS 3

�-categorical structures [6]. We introduce structures with mobile core—a weakening
of the standard notion of transitive structures—and show that for an �-categorical
structure without algebraicity whose core is mobile such that the model-complete
core of the structure is either finite or has no algebraicity itself, the Zariski topology
and the pointwise topology on its endomorphism monoid coincide.

These two cases leave a middle ground open—namely structures whose model-
complete core is infinite but has algebraicity. Thus, this is where a positive answer to
Question 1.1 could be found. And indeed, we give an example of an �-categorical
structure without algebraicity whose core is mobile for which the pointwise topology
on the endomorphism monoid is strictly finer than the Zariski topology. Being
transitive as well as homogeneous in a finite relational language, this structure shows
that even these additional standard well-behavedness assumptions are insufficient to
guarantee that the two topologies coincide. This indicates that the structure of the
model-complete core really contains the systematic reason for the two topologies to
be equal.

In Section 2, we formally introduce the relevant notions, in particular the Zariski
topology as well as model-complete cores. In Section 3, we prove the positive results
about finite cores and cores without algebraicity stated above. Finally, Section 4
contains our counterexample.

§2. Preliminaries.

2.1. Structures, homomorphisms, embeddings, and automorphisms. For a function
f : A→ B between arbitrary sets A,B and a tuple ā = (a1, ... , an) in A, we denote
the tuple1 (f(a1), ... , f(an)) of evaluations by f(ā) for notational simplicity. A
(relational) structure A = 〈A, (Ri)i∈I 〉 is a domain A (in the following always finite
or countably infinite) equipped with mi -ary relations Ri ⊆ Ami . If B = 〈B, (Si)i∈I 〉
is another structure such that Si also has arity mi , we call a function f : A→ B
a homomorphism and write f : A → B if f is compatible with all Ri and Si , i.e., if
ā ∈ Ri implies f(ā) ∈ Si . A homomorphism f : A → A is called an endomorphism
of A. We denote the set of all endomorphisms of A by End(A); it forms a monoid
with the composition operation and the neutral element idA. An embedding of A
into B is an injective homomorphism f : A → B which is additionally compatible
with the complements of Ri and Si , equivalently if f(ā) ∈ Si also implies ā ∈ Ri .
The set of all self -embeddings of A, i.e., of all embeddings of A into A, is denoted by
Emb(A); it also forms a monoid. An isomorphism between A and B is a surjective
embedding fromA intoB. The set of all automorphisms ofA, i.e., of all isomorphisms
between A and itself, is denoted by Aut(A); it forms a group with the composition
operation, the neutral element idA, and the inversion operation. In the special case
that A is the structure without any relations, the endomorphism monoid is the
full transformation monoid AA, the self-embedding monoid is the set Inj(A) of
all injective maps A→ A, and the automorphism group is the set Sym(A) of all
permutations on A. A weakening of isomorphic structures is given by the following

1In contrast to some related works (like [9, 10]), we denote the evaluation of the function f at
the element a by f(a) and write compositions of functions from right to left, i.e., fg := f ◦ g :=
(a �→ f(g(a))).
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4 MICHAEL PINSKER AND CLEMENS SCHINDLER

notion: Two structures A and B are called homomorphically equivalent if there exist
homomorphisms g : A → B and h : B → A.

If C ⊆ A, then the induced substructure C of A on C is the structure with domain
C where each relationRi is replaced byRi ∩ Cmi . Iff : A → B is a homomorphism,
we will in a slight abuse of notation denote the substructure of B on the domain
f(A) by f(A).

2.2. Topologies. If S is a semigroup, we call a topology T on S a semigroup
topology (and (S, T ) a topological semigroup) if the operation · : S × S → S is a
continuous map with respect to T (where S × S carries the product topology).

A natural topology on End(A) (and also on Emb(A),Aut(A), Inj(A), Sym(A)) is
given by the subspace topology of the product topology on AA where each copy of
A is equipped with the discrete topology, the so-called pointwise topology which we
denote by Tpw (or Tpw |End(A) etc. if misunderstandings are possible). In the sequel, we
will need to consider the topological closure of Aut(A) with respect to the pointwise
topology withinAA (or, equivalently, within End(A) since the latter is itself closed in
AA) which we will call the Tpw-closure of Aut(A) for brevity. We remark that for an
�-categorical structure A, this closure consists precisely of the so-called elementary
self -embeddings of A (see [11]).

The standard topological basis of Tpw is given by the sets{
s ∈ End(A) : s(ā) = b̄

}
, ā, b̄ finite tuples in A.

It is easy to see that Tpw is a Polish semigroup topology on End(A).
Now we define the Zariski topology central to this paper. For notational simplicity,

we will restrict to monoids.

Definition 2.1. Let S be a monoid.

(i) For k, � ∈ N, � < k, and for p0, ... , pk, q0, ... , q� ∈ S as well as ϕ(s) :=
pkspk–1s ... sp0 and �(s) := q�sq�–1s ... sq0 (if � = 0, then �(s) = q0 for all
s ∈ S), we define

Mϕ,� := {s ∈ S : ϕ(s) �= �(s)} .

(ii) The Zariski topology on S, denoted by TZariski, is the topology generated by
all setsMϕ,�. Explicitly, the TZariski-basic open sets are the finite intersections
of setsMϕ,�.

In general, the Zariski topology need not be a Hausdorff topology or a semigroup
topology, but suitable weakenings do hold. On the one hand, it always satisfies the
first separation axiom T1: every singleton set {s0} is TZariski-closed (pick ϕ(s) =
s = 1s1, where 1 denotes the neutral element of S, and �(s) = s0). On the other
hand, the left and right translations, �t : S → S, s 	→ ts and �t : S → S, s 	→ st
(where t ∈ S is fixed) are continuous with respect to the Zariski topology: To see
this, take arbitrary ϕ(s) := pkspk–1s ... sp0 and �(s) := q�sq�–1s ... sq0 as above
and note that �–1

t (Mϕ,�) =Mϕ̃,�̃ where ϕ̃(s) := (pkt)s(pk–1t)s ... s(p1t)s(p0) and
�̃(s) := (q�t)s(q�–1t)s ... s(q1t)s(q0); similarly for �t .

By a straightforward argument, the Zariski topology is coarser than any
Hausdorff semigroup topology T on S: One has to show that Mϕ,� is T -open.
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ZARISKI TOPOLOGY ON ENDOMORPHISM MONOIDS 5

If s ∈Mϕ,�, then ϕ(s) �= �(s), so there exist U,V ∈ T with ϕ(s) ∈ U , �(s) ∈ V
and U ∩ V = ∅ since T is Hausdorff. Then O := ϕ–1(U ) ∩ �–1(V ) is a T -open set
(by continuity of the semigroup operation) such that s ∈ O ⊆Mϕ,�.

2.3. Homogeneity, transitivity, and algebraicity. Several important properties of
a structure A can be defined from the canonical group action of Aut(A) on
An for n ≥ 1 by evaluation which we write as Aut(A) � An. We will consider
the (pointwise) stabiliser of a set Y ⊆ A (usually finite), that is Stab(Y ) :=
{α ∈ Aut(A) : α(y) = y for all y ∈ Y}. For a tuple ā ∈ An, we further define the
orbit of ā under the action, Orb(ā) := {α(ā) : α ∈ Aut(A)}, as well as the Y-relative
orbit Orb(ā;Y ) := {α(ā) : α ∈ Stab(Y )} where Y ⊆ A. By the characterisation
theorem due to Engeler, Ryll-Nardzewski, and Svenonius (see [11]), a countable
structure A is �-categorical if and only if for each n ≥ 1, the action Aut(A) � An

has only finitely many orbits. We say that A is a transitive structure if the action
Aut(A) � A has a single orbit. The structure A is said to have no algebraicity if
for any finite Y ⊆ A and any a ∈ A \ Y , the Y -relative orbit Orb(a;Y ) is infinite.
Finally, we say that A is a homogeneous structure if any finite partial isomorphism
m : ā 	→ b̄ on A can be extended to an automorphism α ∈ Aut(A). It is easy to see
that a homogeneous structure in a finite (relational) language, i.e., A = 〈A, (Ri)i∈I 〉
with I finite, is automatically �-categorical.

In the sequel, an important property of �-categorical structures without
algebraicity will be the existence of “almost identical” embeddings/endomorphisms
which can be obtained using a standard compactness argument.

Lemma 2.2 [10, Lemma 3.6]. Let A be an �-categorical structure without
algebraicity. Then for every a ∈ A, there are f, g in the Tpw-closure of Aut(A) such
that f|A\{a} = g|A\{a} and f(a) �= g(a).

If f and g are as in the previous lemma, then for any s ∈ End(A) we note that
a ∈ Im(s) if and only if fs �= gs. This yields the following fact which will be at the
heart of both proofs in Section 3.

Lemma 2.3 (Contained in [9, Proof of Lemma 5.3]). Let A be an �-
categorical structure without algebraicity. Then for every a ∈ A, the set
{s ∈ End(A) : a ∈ Im(s)} is open in the Zariski topology on End(A). �

2.4. Cores. A structure C is called a model-complete core if2 the endomorphism
monoid End(C) coincides with the Tpw-closure of the automorphism group Aut(C).
If C is finite, this means End(C) = Aut(C). Every �-categorical structure has a
homomorphically equivalent model-complete core structure:

Theorem 2.4 (Originally [5, Theorem 16], alternative proof in [2, Theorem 5.7]).
Let A be an �-categorical structure. Then there exists a model-complete core C such
that A and C are homomorphically equivalent. Moreover, C is either �-categorical or
finite and uniquely determined (up to isomorphism).

2In the case that C is �-categorical, this means that any endomorphism of C is an elementary
self-embedding.
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6 MICHAEL PINSKER AND CLEMENS SCHINDLER

Because of the uniqueness result,C is commonly referred to as the model-complete
core of A. We will repeatedly use the following simple property of model-complete
cores:

Lemma 2.5. Let A be an �-categorical structure and let C be its model-complete
core. Then any homomorphism f : C → A is an embedding.

Proof. If g : A → C denotes the homomorphism existing by homomorphic
equivalence, then gf is an endomorphism of C and thus contained in the Tpw-
closure of Aut(C), in particular a self-embedding. This is only possible if f is an
embedding. �

This lemma in particular applies to the homomorphism h : C → A yielded by
homomorphic equivalence. Replacing C by its isomorphic copy h(C), we will
subsequently assume that C is a substructure of A. Note that depending on the
structure A, it can but need not be possible to pick the homomorphism g : A → C

to be surjective. For instance, the model-complete core of the random graph is the
complete graph on countably many vertices, and any bijection from the random
graph to the complete graph is a surjective homomorphism.

On the other hand, if A is given by the rational numbers Q extended by two
elements ±∞, equipped with the canonical strict order, then the model-complete
core of A is precisely 〈Q, <〉 which cannot coincide with any homomorphic image
of A since such an image would have a greatest and a least element. If the model-
complete core of A is finite, however, any homomorphism g : A → C is surjective,
as can be seen by viewing g as an endomorphism of A and applying the following
lemma we will also use later on:

Lemma 2.6. If the model-complete core of an �-categorical structure A is finite of
size n, then the image of any endomorphism of A has size at least n.

Proof. If s ∈ End(A), then s(A) is homomorphically equivalent to A. Hence,
s(A) and A have the same model-complete core which can therefore be regarded as
a substructure of s(A). �

§3. Two sets of sufficient conditions. This section is devoted to stating and showing
our sufficient conditions, expressed in terms of the model-complete core, for the
pointwise topology and the Zariski topology to coincide (see Theorem 3.2).

3.1. Our results. An essential notion for our results is given by structures with
mobile core:

Definition 3.1. Let A be an �-categorical structure. Then A is said to have a
mobile core if any element ofA is contained in the image of an endomorphism into the
model-complete core. Explicitly, for any a ∈ A, there ought to exist a substructure
C of A and g ∈ End(A) with the following properties:

(i) C is a model-complete core homomorphically equivalent to A.
(ii) a ∈ g(A) ⊆ C .

Note that structures with mobile core are a weakening of transitive structures
(as introduced in Section 2.3): Let A be transitive, let C be its model-complete
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core with homomorphism g : A → C, and let a0 ∈ A be a fixed element. If a ∈ A
is arbitrary, then transitivity yields α ∈ Aut(A) such that α(g(a0)) = a. Hence,
C̃ := α(C) is an isomorphic copy of C with homomorphism g̃ := αg : A → C̃ such
that a ∈ g̃(A) ⊆ C̃ . In fact, it suffices to assume that A is weakly transitive, i.e., that
for all a, b ∈ A there exists s ∈ End(A) with s(a) = b—replacing α in the above
argument by s, we still obtain that s(C) is an isomorphic copy of C by Lemma 2.5.

On the other hand, there exist non-transitive structures which have a mobile core,
for instance the disjoint union of two transitive structures where each part gets
named by an additional unary predicate (to ascertain that the parts are invariant
under any automorphism). Finally, the structure 〈Q ∪ {±∞}, <〉 mentioned after
Lemma 2.5 does not have a mobile core: The element +∞ cannot be contained in
any copy of the model-complete core 〈Q, <〉.

Now we can formally state the main result of this section.

Theorem 3.2. Let A be an �-categorical structure without algebraicity which has
a mobile core. Then the Zariski topology on End(A) coincides with the pointwise
topology if one of the following two conditions holds:

(i) EITHER the model-complete core of A is finite,
(ii) OR the model-complete core of A is infinite and does not have algebraicity.

The cases (i) and (ii) will be treated separately in Sections 3.2 and 3.3, respectively.
Before we get to the proofs, we show how Theorem 3.2 can be used to easily verify
that the Zariski topology and the pointwise topology coincide on the endomorphism
monoids of a multitude of example structures. Some of them have been treated
in [10], but our result applies to many other structures which have not yet been
considered, e.g., the random reflexive or irreflexive n-clique-free graph.

Corollary 3.3. Let A be one of the following structures:
(i) 〈Q,≤〉;

(ii) the random reflexive partial order;
(iii) the equivalence relation with either finitely or countably many equivalence

classes of countable size ( for the case of a single class, this includes the complete
reflexive graph on countably many vertices);

(iv) the random reflexive (di-)graph;
(v) the random reflexive n-clique-free graph;

(vi) 〈Q, <〉;
(vii) the random strict partial order;
(viii) the random tournament;
(ix) the irreflexive equivalence relation with either finitely or countably many

equivalence classes of countable size ( for the case of a single class, this includes
the complete irreflexive graph on countably many vertices);

(x) the random irreflexive (di-)graph;
(xi) the random irreflexive n-clique-free graph.

Then the pointwise topology and the Zariski topology on End(A) coincide. In
particular, the pointwise topology is the coarsest Hausdorff semigroup topology on
End(A).

Proof. It is immediate that all structures in (i)–(xi) are �-categorical structures
without algebraicity which are transitive (in particular, they have a mobile core).
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8 MICHAEL PINSKER AND CLEMENS SCHINDLER

For (i)–(v), the model-complete core of A is merely a single point with a loop; in
particular, the model-complete core is finite. For (vi) and (xi), the structure A is
already a model-complete core, so the model-complete core of A is just A itself. For
(vii) and (viii), the model-complete core ofA is the structure 〈Q, <〉. For (ix) and (x),
the model-complete core of A is the complete graph on countably infinitely vertices.
Summarising, the model-complete core of A has no algebraicity in (vi)–(xi).

In any case, Theorem 3.2 applies and yields the desired conclusion. �

3.2. Finite cores. First, we consider the case that A has a finite model-complete
core.

Proposition 3.4. Let A be an �-categorical structure without algebraicity which
has a mobile core. If the model-complete core of A is finite, then the Zariski topology
on End(A) coincides with the pointwise topology.

Proof. We show that the Tpw-generating sets {s ∈ End(A) : s(a) = b}, a, b ∈ A,
are TZariski-open by proving that they are TZariski-neighbourhoods of each element.

Let s0 ∈ End(A) such that s0(a) = b. Since A has a mobile core, there exist a copy
C of the model-complete core of A and g ∈ End(A) such that a ∈ g(A) ⊆ C . By
Lemma 2.6, we know that g(A) = C . We set n = |C | and write g(A) = {a1, ... , an}
where a1 = a. Applying Lemma 2.3, we obtain that the set

V := {s ∈ End(A) : s0(a1), ... , s0(an)∈ Im(s)}=
n⋂
j=1

{s ∈ End(A) : s0(aj)∈ Im(s)}

is open in the Zariski topology. Since the translation �g : s 	→ sg on End(A) is
continuous with respect to the Zariski topology, the preimage

U := �–1
g (V ) = {s ∈ End(A) : s0(a1), ... , s0(an) ∈ Im(sg)}

is TZariski-open as well. Again by Lemma 2.6, the images of the endomorphisms s0g
and sg (for arbitrary s ∈ End(A)) must both have n elements. Hence, the images
s0(ai) are pairwise different and, further,

U = {s ∈ End(A) : Im(sg) = {s0(a1), ... , s0(an)}} .

The crucial observation is that Ug = {sg : s ∈ U} is a finite set: Any element
sg is determined by the ordered tuple (s(a1), ... , s(an)). Since the unordered set
{s(a1), ... , s(an)} is fixed for s ∈ U , there are only finitely many (at most n!, to be
precise) possibilities for the ordered tuple.

Consequently, the setM := {sg : s ∈ U, s(a) �= b} is finite as well. We define

O := U ∩
⋂
t∈M

{s ∈ End(A) : sg �= t} ∈ TZariski

and claim that O = {s ∈ End(A) : s ∈ U, s(a) = b}, subsequently giving s0 ∈ O ⊆
{s ∈ End(A) : s(a) = b} as desired. If s ∈ U with s(a) = b, then we take z ∈ Awith
g(z) = a and note sg(z) = s(a) = b �= t(z) for all t ∈M . Conversely, if s ∈ U but
s(a) �= b, then t := sg ∈M , so s /∈ O—completing the proof. �
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3.3. Cores without algebraicity. Now we consider structures A whose model-
complete cores do not have algebraicity. In our proof, we will use the following
technical condition from [9]:

Lemma 3.5 [9, Lemma 5.3]. Let X be an infinite set and let S be a subsemigroup of
XX such that for every a ∈ X there exist α, 	, 
1, ... , 
n ∈ S for some n ∈ N such that
the following hold:

(i) α|X\{a} = 	 |X\{a} and α(a) �= 	(a);
(ii) a ∈ Im(
i) for all i ∈ {1, ... , n};

(iii) For every s ∈ S and every x ∈ X \ {s(a)}, there is i ∈ {1, ... , n} so that
Im(
i) ∩ s–1(x) = ∅.

Then the Zariski topology of S is the pointwise topology.

We remark that (i) corresponds to Lemma 2.2 and that the proof proceeds
by constructing the generating sets of the pointwise topology from the sets
{s ∈ S : a ∈ Im(s)} exhibited in Lemma 2.3.

The fact that the model-complete core does not have algebraicity will come into
play via the following observation:

Lemma 3.6. Let B be a countably infinite structure without algebraicity and let
b ∈ B. Then there exist f, h in the Tpw-closure of Aut(B) such that f(b) = b = h(b)
and f(B) ∩ h(B) = {b} (so there exist two copies of B within B which only have b in
common).

Proof. We enumerate B = {bn : n ∈ N} where b0 = b. First, we recursively
construct automorphisms αn, 	n ∈ Aut(B), n ∈ N, such that αn+1|{b0,...,bn} =
αn|{b0,...,bn}, 	n+1|{b0,...,bn} = 	n|{b0,...,bn}, and αn({b0, ... , bn}) ∩ 	n({b0, ... , bn}) =
{b} for all n ∈ N. We start by setting α0 = 	0 := idB . If αn and 	n are already
defined, we putY := αn({b0, ... , bn}) as well asZ := 	n({b0, ... , bn}). SinceBhas no
algebraicity, the relative orbits Orb(αn(bn+1);Y ) and Orb(	n(bn+1);Z) are infinite,
so we can find cn+1 ∈ Orb(αn(bn+1);Y ) which is not contained in Z and then find
dn+1 ∈ Orb(	n(bn+1);Z) which is not contained inY ∪ {cn+1}. Taking 
 ∈ Stab(Y )
with 
(αn(bn+1)) = cn+1 as well as � ∈ Stab(Z) with �(	n(bn+1)) = dn+1, and setting
αn+1 := 
αn as well as 	n+1 := �	n completes the construction. Finally, we set
f := limn∈N αn and h := limn∈N 	n; these maps are contained in the Tpw-closure of
Aut(B) and have the desired properties. �

Proposition 3.7. Let A be an �-categorical structure without algebraicity which
has a mobile core. If the model-complete core of A is infinite and does not have
algebraicity, then the Zariski topology on End(A) coincides with the pointwise
topology.

Proof. We check the assumptions of Lemma 3.5.
Since A is �-categorical without algebraicity, property (i) follows from

Lemma 2.2.
For properties (ii) and (iii), we fix a ∈ A, set n = 2, and construct 
1, 
2. Since

A has a mobile core, there exist a copy C of the model-complete core of A and
g ∈ End(A) such that a ∈ g(A) ⊆ C . Since C has no algebraicity, there exist f, h
in the Tpw-closure of Aut(C) such that f(a) = a = h(a) and f(C ) ∩ h(C ) = {a}
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by Lemma 3.6. Using the homomorphism g : A → C, we set 
1 := fg and 
2 := hg,
considered as endomorphisms of A. Then a ∈ Im(
i), i.e., (ii) holds. Suppose now
that for some s ∈ End(A) and x ∈ A, we have Im(
i) ∩ s–1{x} �= ∅ for i = 1, 2. In
order to prove (iii), the goal is to show x = s(a). We rewrite to obtain the existence
of xi ∈ A with sfg(x1) = s
1(x1) = x = s
2(x2) = shg(x2). As a homomorphism
fromC toA, the restriction s |C : C → A is an embedding by Lemma 2.5, in particular
injective. Hence,

fg(x1) = hg(x2) ∈ f(C ) ∩ h(C ) = {a},
yielding x = sfg(x1) = s(a) as desired. �

§4. Counterexample. In this section, we give an example of an�-categorical (even
homogeneous in a finite language) and transitive structure without algebraicity such
that the Zariski topology on its endomorphism monoid does not coincide with
the pointwise topology, thus answering Question 1.1. By our results in Section 3,
the model-complete core of this structure must be infinite and have algebraicity.
Informally speaking, we take a complete graph on countably many vertices where
each point has as fine structure a complete bipartite graph on countably many
vertices (see Figure 1).

4.1. Definitions, notation, and preliminary properties. We start by formally
introducing our structure and giving some notation.

Definition 4.1.

(i) Let K2,� denote the complete irreflexive bipartite graph on countably many
vertices: We write the domain as K2,� := A+1 ∪̇ A–1 where A+1 and A–1 are
countably infinite sets referred to as the parts of K2,� , and define the edge
relation as EK2,� := A–1 × A+1 ∪ A+1 × A–1, i.e., two points are connected if
and only if they are contained in different parts of K2,� .

(ii) LetGdenote the following structure over the language of two binary relations:
We set G := N×K2,� (countably many copies of K2,�) and define the
relations as follows:

EG

1 :=
{
((i, x), (j, y)) ∈ G2 : i �= j

}
,

EG

2 :=
{
((i, x), (j, y)) ∈ G2 : i = j and (x, y) ∈ EK2,�

}
.

This means that the set of copies ofK2,� forms a complete graph with respect
to E1 and that each copy {i} ×K2,� of K2,� is indeed a copy of the graph
K2,� (with respect to E2) (see Figure 1).

Note that an endomorphism s of K2,� acts as a permutation on the set {A+1, A–1}
of parts since two (E

K2,�
2 -connected) elements from different parts of K2,� cannot be

mapped to the same part of K2,� – we either have s(A+1) ⊆ A+1 and s(A–1) ⊆ A–1

or s(A+1) ⊆ A–1 and s(A–1) ⊆ A+1.

Definition 4.2. For s ∈ End(K2,�), we put sgn(s) ∈ {+1, – 1} to be the sign of
the permutation induced by s on {A+1, A–1}. Explicitly, this means that s(Ae) ⊆
Ae·sgn(s) for e = ±1. As a slight abuse of notation, we will refer to sgn(s) as the sign
of s.
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Figure 1. The structure G: complete graph on countably many vertices (dashed)
where each point has a complete bipartite graph on countably many vertices as fine
structure (solid).

Clearly, we have sgn(st) = sgn(s) sgn(t) for s, t ∈ End(K2,�). As a tool, we define
two very simple endomorphisms of K2,� .

Notation 4.3.

(i) In the sequel, a+1 ∈ A+1 and a–1 ∈ A–1 shall denote fixed elements.
(ii) We define c+1 ∈ End(K2,�) and c–1 ∈ End(K2,�) to be the unique endomor-

phisms of K2,� with image {a+1, a–1} and sign +1 and – 1, respectively. So c+1

is constant on Ae with value ae and c–1 is constant on Ae with value a–e for
e = ±1.

In order to describe the automorphism group and endomorphism monoid of G,
the following notation will be useful.

Notation 4.4. Let X be a set, let � : N → N, and let si : X → X for each i ∈ N.
Then

⊔�
i∈N
si shall denote the self-map of N× X defined by

⊔
i∈N

�si :

{
N× X, → N× X,

(i, x), 	→ (�(i), si(x)).

For � : N → N and s : X → X , we further set � � s :=
⊔�
i∈N
s .
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Lemma 4.5.

(i) End(G) =
{⊔�

i∈N
si : � ∈ Inj(N), si ∈ End(K2,�)

}
.

(ii) Aut(G) =
{⊔


i∈N
αi : 
 ∈ Sym(N), αi ∈ Aut(K2,�)

}
.

Remark 4.6. Lemma 4.5 exactly expresses that End(G) and Aut(G) are the
(unrestricted) wreath products of End(K2,�) with Inj(N) and Aut(K2,�) with
Sym(N), respectively, by the canonical actions of Inj(N) and Sym(N) on N.

Proof (of Lemma 4.5). It is straightforward to see that the maps
⊔�
i∈N
si in (i)

and
⊔

i∈N
αi in (ii) form endomorphisms and automorphisms, respectively. Thus,

(ii) follows immediately from (i) since
⊔�
i∈N
si can only be bijective if � ∈ Sym(N)

and si ∈ Aut(K2,�).
To show (i), we first note that for any s ∈ End(K2,�) and any two elements

(i, x), (i, y) ∈ G in the same copy of K2,� , the images s(i, x) and s(i, y) are also
contained in the same copy of K2,� : Either x, y are connected in K2,� in which
case s(i, x) and s(i, y) are EG

2 -connected and therefore contained in the same copy,
or x, y are both connected in K2,� to a common element z in which case s(i, x)
and s(i, y) are both EG

2 -connected to s(i, z) and therefore contained in the same
copy. Setting �(i) to be the index of this copy, i.e., s(i, x), s(i, y) ∈ {�(i)} ×K2,� ,
we obtain that s can be written as

⊔�
i∈N
si for some functions si : K2,� → K2,� . By

compatibility of s with EG

1 , the map � needs to be injective. Further, the maps si are
endomorphisms of K2,� since s is compatible with EG

2 . �

The representation in (ii) readily yields the following properties of G by means of
lifting from Sym(N) and Aut(K2,�):

Lemma 4.7. G is �-categorical, homogeneous, transitive, and has no algebraicity.

Proof. We start by showing that G is homogeneous which will also yield the
�-categoricity since G has a finite language. Let ā = (a1, ... , an) and b̄ = (b1, ... , bn)
be tuples in G and letm : ā 	→ b̄ be a finite partial isomorphism. Writingak = (ik, xk)
and bk = (jk, yk), we note that ik and i� coincide if and only if jk and j� coincide (for
otherwise, either m orm–1 would not be compatible withEG

1 ). Hence, the map ik 	→
jk is a well-defined finite partial bijection and can thus easily be extended to some
 ∈
Sym(N) (in other words, the structure with domain N and without any relations is
homogeneous). Further, if ik1 = ··· = ikN =: i , then mi : xk1 	→ yk1 , ... , xkN 	→ ykN
is a finite partial isomorphism of K2,� since m is a finite partial isomorphism with
respect to EG

2 . The graph K2,� is homogeneous, so mi extends to αi ∈ Aut(K2,�).
Setting αi = idK2,� for all i such that no xk is contained in the i-th copy of K2,� and
putting α :=

⊔

i∈N
αi ∈ Aut(G), we obtain an extension of m.

Next, observe that G is transitive: given a, b ∈ G , the map a 	→ b is a finite partial
isomorphism since neither EG

1 nor EG

2 contain any loops. Thus, homogeneity yields
α ∈ Aut(G) with α(a) = b.

Finally, G does not have algebraicity since K2,� does not have algebraicity: For a
finite set Y ⊆ G and a = (i0, x0) ∈ G \ Y , we set Yi0 := {y ∈ K2,� : (i0, y) ∈ Y} ��
x0 and note that OrbG(a;Y ) encompasses the infinite set {i0} × OrbK2,� (x0;Yi0 ) as

witnessed by the automorphisms
⊔id
i∈N
αi whereαi0 ∈ StabK2,� (Yi0 ) andαi = idK2,�

for i �= i0. �
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Remark 4.8. An alternative construction of G is as a first-order reduct of the free
superposition (see [6]; this is a type of construction to combine two structures with
different signatures in a “free” way) of K2,� with the irreflexive equivalence relation
with countably many equivalence classes of countable size. Since both structures
are transitive and have no algebraicity, the superposition structure has the same
properties which are then inherited by G since a first-order reduct can only have
additional automorphisms.

To simplify the presentation, we additionally define a few notational shorthands
concerning endomorphisms of G:

Notation 4.9.

(i) For p =
⊔�
i∈N
pi ∈ End(G), we define p̃ := � ∈ Inj(N).

(ii) Given p0, ... , pk ∈ End(G) and ϕ(s) := pkspk–1s ... sp0, s ∈ End(G), we
define ϕ̃(�) := p̃k�p̃k–1� ... �p̃0, � ∈ Inj(N).

4.2. Proof strategy. The goal of Section 4 is to prove the following:

Theorem 4.10. On the endomorphism monoid of the structure G, the pointwise
topology is strictly finer than the Zariski topology.

Remark 4.11. Before we go into the details of the proof, let us remark that the
structure G needs to have an infinite model-complete core which has algebraicity
in order to have a chance of satisfying Theorem 4.10—for otherwise, Theorem 3.2
would apply.

The model-complete core of K2,� is just the graph consisting of a single
edge, as witnessed for instance, by the substructure induced on {a+1, a–1} and
the homomorphism c+1 : K2,� → {a+1, a–1}. We claim that the model-complete
core of G is the complete graph on countably many vertices where each point
has as fine structure a single edge, i.e., the substructure C of G induced on
C := N× {a+1, a–1} ⊆ G (see Figure 2).

Similarly to the proof of Lemma 4.5, one easily checks that (here, c±1 are
considered as self-maps of {a+1, a–1})

End(C) =

{⊔
i∈N

�
i : � ∈ Inj(N), 
i ∈ {c+1, c–1}
}
,

Aut(C) =

{⊔
i∈N



i : 
 ∈ Sym(N), 
i ∈ {c+1, c–1}
}
.

Thus, any endomorphism is locally interpolated by an automorphism, and C

is indeed a model-complete core. Additionally, G and C are homomorphically
equivalent—an example of a homomorphism G → C is given by

⊔id
i∈N
c+1 (where

c+1 is considered as a map defined on K2,�).
Finally, C has algebraicity: any automorphism of C which stabilises Y :=

{(0, a+1)} also stabilises a := (0, a–1), so the Y -related orbit of a is finite.

In order to show Theorem 4.10, we will prove that TZariski-open sets on End(G)
cannot determine the sign of the components si of s =

⊔�
i∈N
si , in other words

decide whether the functions si switch the two parts of K2,� or not. On the other
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Figure 2. The model-complete core of G: complete graph on countably many
vertices (dashed) where each point has a single edge (solid) as fine structure.

hand, Tpw |End(G)-open sets can determine the sign of finitely many components,
thus showing Tpw |End(G) �= TZariski. More precisely, we will prove that if a TZariski-
generating set Mϕ,� contains idN �c+1, then it also contains � � c–1 for all
elements � of a “big” subset of Inj(N)—where “big” means either “Tpw |Inj(N)-open
neighbourhood of idN” (if the terms ϕ and � have equal lengths; see Lemmas 4.12
and 4.13) or “Tpw |Inj(N)-dense and open set” (if the terms ϕ and � have different
lengths; see Lemma 4.14).

Our (almost trivial) first lemma analogously holds in a more general setting. Since
we only apply it in case of terms of equal lengths, we formulate it in the present
form.

Lemma 4.12.

(i) Let k ≥ 1 and let �0, ... , �k, �0, ... , �k ∈ Inj(N) as well as ϕ̃(�) :=
�k��k–1� ... ��0 and �̃(�) := �k��k–1� ... ��0, � ∈ Inj(N).

If ϕ̃(idN) �= �̃(idN), then Mϕ̃,�̃ = {� ∈ Inj(N) : ϕ̃(�) �= �̃(�)} is a
Tpw |Inj(N)-open neighbourhood of idN.

(ii) Let k ≥ 1 and let p0, ... , pk, q0, ... , qk ∈ End(G) as well as ϕ(s) :=
pkspk–1s ... sp0 and �(s) := qksqk–1s ... sq0, s ∈ End(G). Assume ϕ̃(idN) �=
�̃(idN) (using the shorthand from Notation 4.9).

Then there exists a Tpw |Inj(N)-open neighbourhood U of idN such that � �
t ∈Mϕ,� = {s ∈ End(G) : ϕ(s) �= �(s)} for all � ∈ U and t ∈ End(K2,�).
In particular, � � c–1 ∈Mϕ,� for all � ∈ U .

The second lemma really requires the terms to be of equal length.
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Lemma 4.13. Let k ≥ 1 and let p0, ... , pk, q0, ... , qk ∈ End(G) as well as ϕ(s) :=
pkspk–1s ... sp0 and �(s) := qksqk–1s ... sq0, s ∈ End(G). Assume ϕ(idN �c+1) �=
�(idN �c+1) but ϕ̃(idN) = �̃(idN).

Then there exists a Tpw |Inj(N)-open neighbourhood U of idN such that � � c–1 ∈
Mϕ,� = {s ∈ End(G) : ϕ(s) �= �(s)} for all � ∈ U .

Finally, we formulate a result for terms of different lengths.

Lemma 4.14.

(i) Let � < k and let �0, ... , �k, �0, ... , �� ∈ Inj(N) as well as ϕ̃(�) :=
�k��k–1� ... ��0 and �̃(�) := �����–1� ... ��0, � ∈ Inj(N).

ThenMϕ̃,�̃ = {� ∈ Inj(N) : ϕ̃(�) �= �̃(�)} is Tpw |Inj(N)-dense and open.
(ii) Let � < k and let p0, ... , pk, q0, ... , q� ∈ End(G) as well as ϕ(s) :=
pkspk–1s ... sp0 and �(s) := q�sq�–1s ... sq0, s ∈ End(G).

Then there exists a Tpw |Inj(N)-dense and open set V such that � � t ∈Mϕ,� =
{s ∈ End(G) : ϕ(s) �= �(s)} for all � ∈ V and t ∈ End(K2,�). In particular,
� � c–1 ∈Mϕ,� for all � ∈ V .

We first demonstrate how these auxiliary statements are used and prove
Theorem 4.10 before showing the statements themselves in Section 4.3.

Proof (of Theorem 4.10 given Lemmas 4.12–4.14). We will show that any
TZariski-open set O containing idN �c+1 also contains � � c–1 for some � ∈ Inj(N).
This implies in particular that the Tpw-open set {s ∈ End(G) : s(0, a+1) = (0, a+1)}
cannot be TZariski-open—proving TZariski �= Tpw .

It suffices to consider TZariski-basic open sets O, i.e.,O =
⋂
h∈H Mϕh,�h � idN �c+1

for some finite set H. If the terms ϕh and �h have equal length, we apply Lemma
4.12 or 4.13 to find a Tpw |Inj(N)-open neighbourhood Uh of idN such that � � c–1 ∈
Mϕh,�h for all � ∈ Uh . If ϕh and�h have different lengths, we instead apply3 Lemma
4.14 to find a Tpw |Inj(N)-dense and open set Vh such that � � c–1 ∈Mϕh,�h for all
� ∈ Vh . Intersecting the respective sets Uh and Vh thus obtained yields a Tpw-
open neighbourhood U of idN and a Tpw |Inj(N)-dense and open set V such that
� � c–1 ∈Mϕh,�h for all � ∈ U whenever ϕh and �h have equal length and such
that � � c–1 ∈Mϕh,�h for all � ∈ V whenever ϕh and �h have different lengths. The
intersection U ∩ V is nonempty; for any � ∈ U ∩ V we have � � c–1 ∈Mϕh,�h for
all h ∈ H , i.e., � � c–1 ∈ O. This concludes the proof. �

Remark 4.15. A slight refinement of this proof even shows that the Zariski
topology on End(G) is not Hausdorff since idN �c+1 and idN �c–1 cannot be
separated by open sets: By the proof, a given basic open set around idN �c+1 contains
� � c–1 provided that � is an element of the intersection of a certain Tpw |Inj(N)-open
neighbourhood of idN and a Tpw |Inj(N)-dense open set. The same idea similarly (but
with an easier proof in the analogue of Lemma 4.13) yields that a given basic open set
around idN �c–1 contains �′ � c–1 provided that �′ is an element of the intersection
of another Tpw |Inj(N)-open neighbourhood of idN and another Tpw |Inj(N)-dense open
set. The intersection of these four sets is nonempty, so the basic open sets around
idN �c+1 and idN �c–1 contain a common element (namely � � c–1 for a certain
� ∈ Inj(N)).

3If �h is longer than ϕh , we exchange these two terms.
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The preceding remark suggests the following refinement of Question 1.1:

Question 4.1. Is there an �-categorical (transitive?) relational structure A such
that there exists a Hausdorff (even Polish?) semigroup topology on End(A) which is
not finer than the topology of pointwise convergence?

4.3. Proof details. In this subsection, we prove Lemmas 4.12–4.14 in sequence.

Proof (of Lemma 4.12).

(i) The set Mϕ̃,�̃ ⊆ Inj(N) is open with respect to Tpw |Inj(N) since ϕ̃ and �̃ are
continuous with respect to Tpw |Inj(N).

(ii) Set U :=Mϕ̃,�̃ and note that if u := ϕ(� � t) and v := �(� � t), then
ũ = ϕ̃(�) �= �̃(�) = ṽ, so u �= v. �

The second lemma requires more work.

Proof (of Lemma 4.13). We start by fixing some notation. We first write
pj =

⊔�j
i∈N
pj,i , qj =

⊔�j
i∈N
qj,i (so �j = p̃j , �j = q̃j), and � := ϕ̃(idN) = �̃(idN).

Further, we define Ξj := �j�j–1 ... �0 as well as Θj := �j�j–1 ... �0, j = 0, ... , k.
In particular, Ξk = Θk = �. Let the two (distinct, by assumption) functions
ϕ(idN �c+1) and �(idN �c+1) differ at the point (h, x) ∈ G . Further, set
e ∈ {– 1,+1} such that x ∈ Ae and choose any x′ ∈ A–e .

In the course of the proof, we will require the explicit expansions of the
compositions in ϕ(idN �c±1) and �(idN �c±1):

ϕ(idN �c±1) =
⊔
i∈N

�pk,Ξk–1(i)c±1pk–1,Ξk–2(i) ... c±1p0,i ,

�(idN �c±1) =
⊔
i∈N

�qk,Θk–1(i)c±1qk–1,Θk–2(i) ... c±1q0,i .

We proceed in two steps—first, we show that idN �c–1 ∈Mϕ,�; second, we
extend this to � � c–1 for all � in an appropriately constructed Tpw |Inj(N)-open
neighbourhood of idN.

(1) idN �c–1 ∈Mϕ,�: We compare ϕ(idN �c±1) and �(idN �c±1) at (h, x) as well
as (h, x′). In order to simplify notation, we define4

m := sgn(pk–1,Ξk–2(h)) · sgn(pk–2,Ξk–3(h)) · ... · sgn(p0,h),

n := sgn(qk–1,Θk–2(h)) · sgn(qk–2,Θk–3(h)) · ... · sgn(q0,h),

p̂ := pk,Ξk–1(h),

q̂ := qk,Ξk–1(h),

and conclude

[ϕ (idN�c+1)](h, x) =
(
�(h), p̂(ame)

)
, [ϕ (idN�c–1)](h, x) =

(
�(h), p̂(ame(–1)k )

)
,

[� (idN�c+1)](h, x) =
(
�(h), q̂(ane)

)
, [� (idN�c–1)](h, x) =

(
�(h), q̂(ane(–1)k )

)
,

4m and n count how many times the fixed functions (except for the outermost ones) involved in
evaluating ϕ(idN �c±1) and �(idN �c±1) switch the parts of the h-th copy of K2,� .
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[ϕ (idN�c+1)](h, x′) =
(
�(h), p̂(a–me)

)
, [ϕ (idN�c–1)](h, x′) =

(
�(h), p̂(a–me(–1)k )

)
,

[� (idN�c+1)](h, x′) =
(
�(h), q̂(a–ne)

)
, [� (idN�c–1)](h, x′) =

(
�(h), q̂(a–ne(–1)k )

)
.

If {
p̂(a+1), p̂(a–1)

}
�=

{
q̂(a+1), q̂(a–1)

}
,

then ϕ(idN �c–1) and �(idN �c–1) cannot coincide on both (h, x) and (h, x′), so
idN �c–1 ∈Mϕ,� as claimed.

In case of {
p̂(a+1), p̂(a–1)

}
=

{
q̂(a+1), q̂(a–1)

}
,

we distinguish further: If m = n, then [ϕ(idN �c+1)](h, x) �= [�(idN �c+1)](h, x)
shows

p̂(a+1) = q̂(a–1) as well as p̂(a–1) = q̂(a+1),

which leads to5 [ϕ(idN �c–1)](h, x) �= [�(idN �c–1)](h, x), so idN �c–1 ∈Mϕ,� as
claimed. If on the other hand m =– n, then we analogously obtain

p̂(a+1) = q̂(a+1) as well as p̂(a–1) = q̂(a–1)

and [ϕ(idN �c–1)](h, x) �= [�(idN �c–1)](h, x), so idN �c–1 ∈Mϕ,� as claimed.
(2) There exists a Tpw |Inj(N)-open neighbourhood U ⊆ Inj(N) of idN such

that � � c–1 ∈Mϕ,� for all � ∈ U : One immediately checks that for arbitrary
t ∈ End(K2,�), the map �t : Inj(N) → End(G), �t(�) := � � t is continuous with
respect to Tpw |Inj(N) and6 Tpw |End(G). SinceMϕ,� is open with respect to Tpw |End(G),
the preimage U := �–1

c–1
(Mϕ,�) ⊆ Inj(N) is open with respect to Tpw |Inj(N). By (1),

the set U contains idN—completing the proof. �
Finally, we show the third lemma.

Proof (of Lemma 4.14). (i) We have to prove that for two tuples z̄, w̄ of the same
length such that w̄ does not contain the same value twice (since we are working
in Inj(N)), the intersection {� ∈ Inj(N) : �(z̄) = w̄} ∩Mϕ̃,�̃ is nonempty. The idea
behind the proof is to find an element x0 ∈ N and inductively construct a partial
injection �̂ which extends z̄ 	→ w̄ such that the values

[ϕ̃(̂�)](x0) = �k�̂�k–1�̂ ... �̂�0(x0) and [�̃(̂�)](x0) = �� �̂��–1�̂ ... �̂�0(x0)

are welldefined (i.e., �0(x0) ∈ Dom(̂�), �1�̂�0(x0) ∈ Dom(̂�), etc.) and [ϕ̃(̂�)](x0) �=
[�̃(̂�)](x0). This gives �(z̄) = w̄ and � ∈Mϕ̃,�̃ for any � ∈ Inj(N) extending �̂.

More precisely, we will define (not necessarily distinct) elements x0, ... , xk,
x′0, ... , x

′
k ∈ N and y0 ... , y� , y

′
0, ... , y

′
� ∈ N such that:

(1) x0 = y0.
(2) x′j = �j(xj) for all j = 0, ... , k.
(3) y′j = �j(yj) for all j = 0, ... , �.

5Here we use that ϕ and � have equal lengths (or more precisely: lengths of equal parity).
6Caution! We briefly consider the pointwise topology on End(G) instead of the Zariski topology.
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(4) �̂ defined by z̄ 	→ w̄, (x′0, ... , x
′
k–1) 	→ (x1, ... , xk), (y′0, ... , y

′
�–1) 	→ (y1, ... , y�)

is a welldefined7 partial injection.
(5) x′k �= y′� . (This will crucially depend on the assumption � < k.)

We first pick x0 = y0 ∈ N such that x′0 := �0(x0) /∈ z̄ and y′0 := �0(y0) /∈ z̄; this is
possible since the set �–1

0 (z̄) ∪ �–1
0 (w̄) of forbidden points is finite by injectivity of

�0 and �0. Note that x′0 and y′0 are not necessarily different (in particular, �0 = �0 is
possible).

Suppose that 1 ≤ i ≤ � and that x0, ... , xi–1, x
′
0, ... , x

′
i–1 as well as y0, ... , yi–1,

y′0, ... , y
′
i–1 are already defined such that (1)–(4) hold (with i – 1 in place of

both k and �). We abbreviate Xi–1 := {x0, ... , xi–1}, X ′
i–1 := {x′0, ... , x′i–1} and

Yi–1 := {y0, ... , yi–1}, Y ′
i–1 := {y′0, ... , y′i–1}. Pick xi , yi /∈ w̄ ∪ Xi–1 ∪ Yi–1 such that

x′i := �i(xi) /∈ z̄ ∪ X ′
i–1 ∪ Y ′

i–1 andy′i := �i(yi) /∈ z̄ ∪ X ′
i–1 ∪ Y ′

i–1 with the additional
property that8 xi and yi are chosen to be distinct if and only if x′i–1 and y′i–1 are
distinct (to obtain a welldefined partial injection in (4)). As with the construction
of x0 above, this is possible by finiteness of the forbidden sets.

If � + 1 ≤ i ≤ k and if x0, ... , xi–1, x
′
0, ... , x

′
i–1 as well as y0, ... , y� , y

′
0, ... , y

′
�

are already defined such that (1)–(4) hold (with i – 1 in place of k), then we
again abbreviateXi–1 := {x0, ... , xi–1}, X ′

i–1 := {x′0, ... , x′i–1} andY� := {y0, ... , y�},
Y ′
� := {y′0, ... , y′�}. Analogously to the previous step, we pick xi /∈ w̄ ∪ Xi–1 ∪ Y�

such that x′i := �i(xi) /∈ z̄ ∪ X ′
i–1 ∪ Y ′

� . Note that in the final step i = k, we are
picking xk such that9 x′k /∈ z̄ ∪ X ′

k–1 ∪ Y ′
� . In particular, we require x′k �= y′� , i.e., (5).

(ii) The set V :=Mϕ̃,�̃ ⊆ Inj(N) is Tpw |Inj(N)-dense by the first statement and
clearly Tpw |Inj(N)-open. For � ∈ V , we set u := ϕ(� � c–1) as well as v := �(� � c–1)
and note that ũ = ϕ̃(�) �= �̃(�) = ṽ. This yields � � c–1 ∈Mϕ,� as desired. �
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