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We consider Toeplitz determinants whose symbol has: (i) a one-cut regular potential
V, (ii) Fisher-Hartwig singularities and (iii) a smooth function in the background.
The potential V is associated with an equilibrium measure that is assumed to be
supported on the whole unit circle. For constant potentials V', the equilibrium
measure is the uniform measure on the unit circle and our formulas reduce to
well-known results for Toeplitz determinants with Fisher—-Hartwig singularities. For
non-constant V', our results appear to be new even in the case of no Fisher-Hartwig
singularities. As applications of our results, we derive various statistical properties of
a determinantal point process which generalizes the circular unitary ensemble.
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1. Introduction

In this work, we obtain large n asymptotics of the Toeplitz determinant

1 2

Dn(O_Z, ﬁ, ‘/, W) = det(fj,k)j’k:()’m’n,h fk = % (eig)e_ikedH, (11)
0

where f is supported on the unit circle T = {z € C: |z] = 1} and is of the form

f(z2) =e ™V E(2), zeT. (1.2)
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We assume that V' and W are analytic in a neighbourhood of T and that the
potential V is real-valued on T. The function w(z) = w(z;d@,3) in (1.2) contains
Fisher-Hartwig singularities and is defined in (1.8) below. Since the functions V
and W are analytic on T, there exists an open annulus U containing T on which
they admit Laurent series representations of the form

“+oo —1
V() =Vot+ Vi) +Vo(2), Vil(z) =) Wik, V()= Y Vidh, (1.3)
k=1

k=—o0

+o0 —
W(z)=Wo+Wi(2)+ W_(2), Wi(z)=> Wik, W_(z2)= Y Wi,
= k=—o0

(1.4)

where Vi, W, € C are the Fourier coefficients of V and W, ie. Vi =
1/2x fozﬂ V(e®)e=*9d0 and similarly for Wy. Associated to V there is an equi-
librium measure gy, which is the unique minimizer of the functional

1
p= 10g|z_

among all Borel probability measures p on T. In this paper, we make the assumption
that p is supported on the whole unit circle. We further assume that V is regular,
i.e. that the function ¢ given by

du(=)du(s) + / V(2)du(z) (1.5)

11

W(z) =5~ o 2 V" + V2™, z €U, (1.6)

is strictly positive on T. Under these assumptions, we show in appendix A that
dpy () = 4(e)ds, 6 €0,2n). (1.7)

The function w appearing in (1.2) is defined by
H Way, (2)wgs, (2 (1.8)

where w,, () and wg, (2) are defined for z = €% by

; i fo<g<o
_ o g _ ,i(0—0k) Bk (& o 1 S k>
Wak (Z) - |Z tk‘ ’ wﬁk (Z) =e X {emr,@k, 1f ok < 0 < 27.[_, 0 € [0,27’(),
(1.9)

and

i@k

thi=e 0=0p< b < <0, <2T. (1.10)

At tj, = €', the functions w,, and wg, have root- and jump-type singularities,
respectlvely Note that wg, is continuous at z =1 if k # 0. We allow the parame-
ters 01,...,0,, to vary with n, but we require them to lie in a compact subset of
0,2m)0 :={(61,...,0m) : 0< by <--- <0, <27}
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To summarize, the n x n Toeplitz determinant (1.1) depends on n, m, V, W,
t=(t1,...,tm), @ = (ai,...,qn) and B: (B1,---,0m), but for convenience the

dependence on m and t is omitted in the notation D,, (&, 3.V, W). We now state
our main result.

THEOREM 1.1 Large n asymptotics of D,,(d, 3.V, W). Letm e N:={0,1,...}, and
let ty, = €%, ay, € C and B; € C be such that

0=0)<b;<...<0p <2m, and

Reayp > -1, Refre(—1,4) fork=0,...,m.

Let V:T —R and W : T — C, and suppose V and W can be extended to analytic
functions in a neighbourhood of T. Suppose that the equilibrium measure dpy (e*) =
¥(e?)d0 associated to V is supported on T and that 1» > 0 on T. Then, as n — oo,

Do (@, 5, V,W) = exp(Cyn? 4+ Cyn + Cylogn + Cy + O(n~1F2Pmax)y - (1.11)

with Bmax = max{|Ref1|,...,|Re Omn|} and
Vo 1 [*™ . .
Ci=-2-2 V(e dpy (e%),
2 2,

2m

Co = 37 G (V(t) = Vo) = S22t (Vi () + | W(e)dp (),
k=0 k=0

k=0
+oo m m
Ca= D OWW_p = 37 (W (t) = Wo) + D B (W (tr) = W- (1))
(=1 k=0 k=0
@,i0, — agif; oo
+ {] . 5 (0 — 0 — ) + (%jﬁk - k) log [t; —tk}
0<j<k<m

1 1

G(1+ ay) (ty) \27 W’“)) ’
where G is Barnes’ G-function. Furthermore, the above asymptotics are uni-
form for all ay, in compact subsets of {z € C:Rez > —1}, for all By in compact
subsets of {z€ C:Rez € (—%, %)} and for all (01,...,0,,) in compact subsets
of (0,2m)7,. The above asymptotics can also be differentiated with respect to
ag,...,am,ﬂo,...,ﬁm as follows: if ko, ..., komy1 €N, ko+ ...+ kom+1 =1 and

OF i= Ok ... Okm Ok 95 then

Qm ~ Bo Bm ’

m a an _ mo o op
JerOgG(H- 5+ B)G(1+ % ﬁk)JrZﬁk (
k=0 k=0 w

(log n)km+1 +.Fkamg1

oF (logDn(o'Z, @KW) — logﬁn> =0 ( ) , as n — +0o0o,

(1.12)

1 2Bmax

where ﬁn denotes the right-hand side of (1.11) without the error term.
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1.1. History and related work

In the case when the potential V'(z) in (1.2) vanishes identically, the asymptotic
evaluation of Toeplitz determinants of the form (1.1) has a long and distinguished
history. The first important result was obtained by Szegd in 1915 who determined
the leading behaviour of D, (&, 3.V, W) in the case when & = f=0and V =0,
that is, when the symbol f(z) is given by f(z) = V(%) In our notation, this result,
known as the first Szegé limit theorem [45], can be expressed as

2
D,,(0,0,0, W) = exp <2fr W (e)do + 0(n)> as n — oo. (1.13)
0

Later, in the 1940s, it became clear from the pioneering work of Kaufmann and
Onsager that a more detailed understanding of the error term in (1.13) could be
used to compute two-point correlation functions in the two-dimensional Ising model
in the thermodynamic limit [39]. This inspired Szegé to seek for a stronger version
of (1.13). The outcome was the so-called strong Szegd limit theorem [46], which in
our notation states that

2m 400
D, (0,0,0,W) = exp (2737 W(e)do + Zewgw,e + 0(1)) as n — oo.
0 =1

(1.14)

We observe that if V' = 0, then duv(eie) = %; thus, Szeg6’s theorems are consistent

with our main result, theorem 1.11, in the special case when @ = 5 =0and V = 0.
(The strong Szegé theorem actually holds under much weaker assumptions on W
than what is assumed in this paper, see e.g. the survey [7].)

In a groundbreaking paper from 1968, Fisher and Hartwig introduced a class of
singular symbols f(z) for which they convincingly conjectured a detailed asymptotic
formula for the associated Toeplitz determinant [32]. The Fisher—Hartwig class con-
sists of symbols f(z) of form (1.2) with V' = 0. In our notation, the Fisher-Hartwig
conjecture can be formulated as

2m

m 2
Dy (@, 3,0, W) ~ exp (” W(e)do + > (i’“ — ﬁi) logn + C4>
k=0

2 0
asn — oo, (1.15)

where Cy is a constant to be determined, and the Fisher-Hartwig singularities
are encoded in the vectors @ and E Symbols with Fisher-Hartwig singularities
arise in many applications. For example, in the 1960s, Lenard proved [41] that no
Bose-Einstein condensation exists in the ground state for a one-dimensional system
of impenetrable bosons by considering Toeplitz determinants with symbols of the
form f(2) = |z — €"1]|z — 7% | with §; € R. Lenard’s proof hinges on an inequality
whose proof was provided by Szegd, see [41, Theorem 2]. We observe that (1.15) is
consistent with theorem 1.11 in the special case when V = 0.

There are too many works devoted to proofs and generalizations of the
Fisher-Hartwig conjecture (1.15) for us to cite them all, but we refer to [4, 11,
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47] for some early works, and to [5, 6, 10, 25] for four reviews. The current state-
of-the-art for non-merging singularities and for &, /j in compact subsets was set by
Ehrhardt in his 1997 Ph.D. thesis (see [29]) and by Deift, Its and Krasovsky in [24,
26]. Since our proof builds on the results for the case of V' = 0, we have included
a version of the asymptotic formulas of [24, 26, 29] in theorem 4.1. We also refer
to [21, 31] for studies of merging Fisher-Hartwig singularities with V' = 0, and to
[17] for the case of large discontinuities with V' = 0.

Note that if V' =V} is a constant, then D, (&, B, Vo, W) = e‘"zVUDn(o_Z, 3,0, Ww).

The novelty of the present work is that we consider symbols that include a non-
constant potential V; we are not aware of any previous works on the unit circle
including such potentials. Our main result is formulated under the assumption that
Re By € (—%, %) for all k. The general case where Re 8 € R was treated in the
case of V' =0 in [24]. Asymptotic formulas for Hankel determinants with a one-cut
regular potential V' and Fisher-Hartwig singularities were obtained in [8, 14, 19],
and the corresponding multi-cut case was considered in [18]. Our proofs draw on
some of the techniques developed in these papers.

1.2. Application: a determinantal point process on the unit circle

The Toeplitz determinant (1.1) admits the Heine representation

- 1 ; it 12 T i
Dn<a,ﬁ,v,W>—/[ ] IT 1€ — e P I] f(e'®)dg,.  (1.16)
0,27]™ j=1

Y
n!(2m)n <iZhen

This suggests that the results of theorem 1.11 can be applied to obtain information
about the point process on T defined by the probability measure

1 . oo o
n\(2m)" 2, H |eiPr — eii|? He V() g, 1y, On €10,2m),
' " 1<j<k<n j=1

(1.17)

where Z, = D,(0,0,V,0) is the normalization constant (also called the partition
function). In what follows, we use theorem 1.11 to obtain smooth statistics, log
statistics, counting statistics and rigidity bounds for the point process (1.17). In the
case of constant V', the point process (1.17) describes the distribution of eigenvalues
of matrices drawn from the circular unitary ensemble and has already been widely
studied. We are not aware of any earlier work where the process (1.17) is considered
explicitly for non-constant V. However, the point process (1.17), but with nV (e’?)
replaced by the highly oscillatory potential V (e™?), is studied in [2, 34]. We also
refer to [12, 13] for other determinantal generalizations of the circular unitary
ensemble.
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Let p,(2) := H?Zl(eid’ﬂ' — z) be the characteristic polynomial associated to (1.17),

and define log p,,(2) for z € T\ {e'?',... e} by
log pn (2 Zlog @i 2), Im log(e® — 2)
_ditarggz [T H0< gy <argyz,
2 T, if argyz < ¢; < 2m,
where arg, z € [0, 27). In particular, if 0 ¢ {¢1,..., ¢},

n n
eQiﬁk(Im log pn(tk)f’nak*nﬂ') — H wﬂk (6i¢j) — 67iﬁk(7r+0;€)n627riﬂan(0k) H eiﬂk(f)j’

J=1 j=1
(1.18)

where N, (0) := #{¢; € [0,6]} €{0,1,...,n}. Using the first identity in (1.18)
and the fact that {6,...,0m}N{P1,...,¢n} =0 with probability one, it is
straightforward to see that

n m - 7
H eW(emj) H eosze log pn(tk)emﬂk(lm log pn(tk)—an—nﬂ')‘| _ Dn( ﬁa V,

j=1 k=0

Furthermore, if 8y = —f1 — ... — B, then the second identity in (1.18) together
with (1.19) implies

(((—;'ﬁ(—)» H e—zﬁkan N H eW(P 7)) H |p tk |ak 2783, Nnp Ok)]
(1.20)
LEMMA 1.2. For any z € T, we have
o 27 ) )
PO [T g e — gy (), (1.21)
0

argoz ImVi(z) —ImV,(1) /argﬂ i 0
_ = d . 1.22
o - ) pv (€*) ( )

Proof. The equilibrium measure py is uniquely characterized by the Euler-Lagrange
variational equality

27
2/ log |z — e|duy (e’) =V (z) — ¢, forz €T, (1.23)
0

where ¢ € R is a constant, see e.g. [42]. In particular, the identity (1.21) is equivalent
to the statement that £ = V{y. The equality ¢ = Vj can be established by integrating
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(1.23) over z = €' € T and dividing by 27:

2 2 27
d . ) , d
¢ :/0 6727? = ; (V(z) - 2/0 log e — 6“9|d/¢v(e“9)> 725: =1,

where we have used the well-known (see e.g. [42, Example 0.5.7]) identity
fOQW log |e'® — ew\% =0 for 6 € [0,27). This proves (1.21). Identity (1.22) follows
from (1.6) and (1.3). O

Combining (1.20), theorem 1.1 and lemma 1.2, we get the following.

THEOREM 1.3. Let m € N, and let t, = %%, ag,...,am € C and uy,...,u, € C
be such that

0=0p<b,<...<0,, <2m, and Rear>-1, Imug€ (—m,7) for allk.

LetV :T — R, W :T — C and suppose V, W can be extended to analytic functions
in a neighbourhood of T. Suppose that the equilibrium measure duy (e¥) = (e?)df
associated to V is supported on T and that ¢ > 0 on T. Then, as n — oo, we have

E H eW(ewj) H |pn(tk)|ak H euan(ak)
j=1 k=0 k=1
= exp (C’ln + Cylogn+Cs + O (n*“ru";ax >) , (1.24)
With Umax = max{|Imu1|,..., |[Imuy,|} and
N m 2T ) ] m 616 )
Cr= Yo [ logle® ~ tlduv(e®) + 3w [ duv(e)
k=0 0 k=1 0
2m ) )
+ W(e')duy (e'?), (1.25)
0
~ N AT
Cy = k4 Tk 1.
=3 (%) (120
k=0
+oo m m
S W, (tk) + W_(tk) up Wo(te) — W—(tk)
C3=> WW_i=> o 5 > 5 (1.27)
=1 k=0 k=0
QUL — AUy UjUE QO
DY {ka—ej—w)— (B2 + 22 )logm—tu}
0<j<k<m
(1.28)
2
s G+ %+ 3)G(1+ G — 5= LT N
+ Zlog ( 2 27\'1) ( 2 27m) _ Z 2 Ok ( — w(tk)) s
P G(1+ o) Pt d(t) \ 27
(1.29)
where G is Barnes’ G-function and ug := —uy — ... — Uy,. Furthermore, the above

asymptotics are uniform for all oy, in compact subsets of {z € C:Rez > —1}, for
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all ug, in compact subsets of {z € C:Imz € (—m,m)} and for all (01,...,0.,) in
compact subsets of (0,2m)™ . The above asymptotics can also be differentiated with
respect 10 o, ..., O, UL, - .. Uy @S follows: if ko, ..., kam €N, ko + ...+ kap, = 1
and OF := ok ... 8&””351”“ .0k then as n — 400

7 ng[H @ [T puie I1 euwnww] g,
j=1 k=0 k=1
(logn)km+1+m+k2m

where E,, denotes the right-hand side of (1.24) without the error term.

Our first corollary is concerned with the smooth linear statistics of (1.17). For

V' =0, the central limit theorem stated in corollary 1.4 was already obtained in
[38].

COROLLARY 1.4 Smooth statistics. Let V and W be as in theorem 1.3, and assume
furthermore that W : T — R. Let {x;}]25 be the cumulants of Y5, W (e'%7), i.e.

kj = 0] log Ele! Zim W] (1.30)
Asn — +o00, we have

n . 27 . . 1

E Z W(e)| =n W (e)duy (e'?) + O (n) ,
j=1 0
n ) +oo 1

Var Z W (e )] = 2Z£WEW4 +0 <n) ,

j=1 =1

1

Moreover, if W is non-constant, then

S W) —n [T W () dpy ()
(235055 kWi W_y,)1/2

converges in distribution to a standard normal random variable.

Our second corollary considers linear statistics for a test function with a log-
singularity at t. We let vg ~ 0.5772 denote Euler’s constant.
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COROLLARY 1.5 log | - |-statistics. Let t = ¢ € T with 6 € [0,27), and let {x; ;“_1
be the cumulants of log |pn(t)], i.e.

k; = 0), log E[e® 08 lPn(1)]]| (1.31)

a=0"

As n — +oo, we have

2w
1
Emgmawn:njil%wwfumw W+o(n)
0
logn 149g 2 1
log |pn (£)]] = I -
Varflog pu(0)] = %7 4+ 1 ro(d),

n

@=ermkﬂmﬂmw>+0(ﬁ >3

and
27 3 i
log [pn(t)| —n [ log e — t|duy (e')
Vlog n/\@

converges in distribution to a standard normal random variable.

Counting statistics of determinantal point processes have been widely studied
over the years [22, 44] and is still a subject of active research, see e.g. the recent
works [16, 23, 43]. Our third corollary established various results on the counting
statistics of (1.17).

COROLLARY 1.6 Counting statistics. Let t = ¢ € T be bounded away from to := 1,
with 0 € (0,27), and let {/ij} 1 be the cumulants of N, (0), i.e.

k; = 03 log E[e"N»(]| (1.32)

u=0"
Asn — +oo, we have

mmwn=¢fmwww+oCﬁ”)

0

ogn | 14yp+loglt—1] gz —v(1) gk —w(t)
(

Var[N,,(0)] = (1) 2m24(t)

2 w2 272
Lo <(logn)2> ’
n

logn)2i+1 )
/{)2j+1:(9<“g’n)>7 ‘721,

_1)i+1 . (logn)2i+2 )
R2j+2 = 525 2572 (log ©)**2 (1) + O (n) ) Jj=z1

N, (0)—n .[9 duv (ei¢)
and \/logon/ﬂ'
variable.

converges in distribution to a standard normal random
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REMARK 1.7. There are several differences between smooth, log- and counting
statistics that are worth pointing out:

e The variance of the smooth statistics is of order 1, while the variances of the log-
and counting statistics are of order logn.

e The third and higher order cumulants of the smooth statistics are all O(n~1),
while for the log-statistics the corresponding cumulants are all of order 1. On the
other hand, the third and higher order cumulants of the counting statistics are
as follows: the odd cumulants are o(1), while the even cumulants are of order 1.
This phenomenon for the counting statistics was already noticed in [43, eq (29)]
for a class of determinantal point processes.

Another consequence of theorem 1.3 is the following result about the individ-
ual fluctuations of the ordered angles. Corollary 1.8 is an analogue for (1.17)
of Gustavsson’s well-known result [36, Theorem 1.2] for the Gaussian unitary
ensemble.

COROLLARY 1.8 Ordered statistics. Let & < & < ... <&, denote the ordered
angles,

51 :min{¢17"'7¢n}7 €j _Oel[(I)leﬂ-){o N ( ) :j}v j: 15"'7"7 (133)

and let ng be the classical location of the k-th smallest angle &,
Nk . k
/ dpy (€)= =, k=1,...,n. (1.34)
0 n

Let t = e € T with 0 € (0,27). Let kg = [n fa dpy (€%)], where [z] == [z + 1] s

the closest integer to x. As n — 400, nf@/ﬁ (&ky — Miy) converges in distribution

to a standard normal random variable.

There has been a lot of progress in recent years towards understanding the global
rigidity of various point processes, see e.g. [1, 20, 30]. Our next corollary is a
contribution in this direction: it establishes global rigidity upper bounds for (i) the
counting statistics of (1.17) and (ii) the ordered statistics of (1.17).

COROLLARY 1.9 Rigidity. For each € > 0 sufficiently small, there exist ¢ >0 and
no > 0 such that

0
) 1 c
P su Nnﬂ—n/d EN<A+e)=logn|>1- , 1.35
(0@3% (6)~n [y () < (14 )~ log T (139
1logn c
Nk _ >1-— .
P (o v )ig - ml < (92 ) 21 (1.36)

for all n > ny.
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REMARK 1.10. It follows from (1.36) that lim,, ., P(maxi<r<n ¥(e™)[& — ni| <
(1+ e)%lo%) = 1. We believe that the upper bound (1 + e)i is sharp, in the sense

that we expect the following to hold true:

1 logn

) 1 logn
— < s _ < (1 —
™ n = lrél/?é{nw(e )‘5/«: nk' = ( + 6)7(' n

lim P ((1 s

n—-+4o0o

) =1. (1.37)

Our belief is supported by the fact that (1.37) was proved in [1, Theorem 1.5] for
V=0, () = L

o5

2. Differential identity for D,,

Our general strategy to prove theorem 1.1 is inspired by the earlier works [8, 14,
24, 40]. The first step consists of establishing a differential identity which expresses
derivatives of log D, (&, 6.V, W) in terms of the solution Y to a Riemann—Hilbert
(RH) problem (see proposition 2.2). Throughout the paper, T is oriented in the
counterclockwise direction. We first state the RH problem for Y.

RH problem for Y(-) =Y, (,; @, 3.V, w)

(a) Y :C\ T — C?%? is analytic.

(b) For each z € T\ {to,...,tm}, the boundary values lim, _., Y (z') from the inte-
rior and exterior of T exist, and are denoted by Y, (z) and Y_(z) respectively.

Furthermore, Y, and Y_ are continuous on T \ {to,...,¢m}, and are related by
the jump condition

Yi(z) = V() (é anf(z)>, S eT\ {tor o stm)s (21

where f is given by (1.2).

(¢) Y has the following asymptotic behaviour at infinity:

Y(2) = (1+0(z71))z"s, as z — 0o,

where o3 = ((1) _01)

O1) O1)+0(|z — t,]*)) .
(O(l) o(1) +(9(|z—tk"’°)> , ifReax #0,
e O(1) O(log| t])
og |z — tg . -
(O(l) 0(10g|2—tk|)>’ if Reay, = 0.
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Suppose {pr(2) = kpz" + .. }rxs0 and {pr(2) = kr2z® + .. . }x>0 are two families of
polynomials satisfying the orthogonality conditions

1 27

— pe(2)277 f(2)d0 = k20,
5= | pz s = s

1 2 R B . _
oy i Pr(z 1)ij(z)d0=l’€kl5jk,

Then the function Y(z) defined by

V) = (o)t [ G2 s et

2mwis"(s — z)

- ﬁn_lAMds) (2.3)

2mis(s — z)

solves the RH problem for Y. It was first noticed by Fokas, Its and Kitaev [33] that
orthogonal polynomials can be characterized by RH problems (for a contour on the
real line). The above RH problem for Y, whose jumps lie on the unit circle, was
already considered in e.g. [3, eq. (1.26)] and [24, eq. (3.1)] for more specific f.
The monic orthogonal polynomials #,, 'p,, k,, 1 pn, and also Y, are unique (if they
exist). The orthogonal polynomials exist if f is strictly positive almost every-
where on T (this is the case if W is real-valued, ay > —1 and i3 € (—31,1)).
More generally, a sufficient condition to ensure existence of p,,, p, (and therefore of
Y) is that D,(ln) #0# D7(l"+)1, where Dl(n) =:det(fj—r)jk=0,.,1-1, =1 (note that

DM = D, (@, 5,V,W)), see e.g. [21, Section 2.1]. In fact,

Joo faa oo [k foo far oo fokpr 1
: : DU fi fo o foks2 z
fe=1 fr—2 ... f7€1 : : : fk
1 Z e 2 . T fe—1 ... bil z
Dy Diis Dy 7\ Dy 4

and ki = (D,i"))l/z/(D,(en_gl)l/z. (Note that pg, pr and ki are unique only up to
multiplicative factors of —1. This can be fixed with a choice of the branch for the
above roots. However, since Y only involves 'p,, and Ky_1Pn_1, which are unique,
this choice for the branch is unimportant for us.) If D,(C") #0fork=0,1,...,n+1,
it follows that

n—1
Do (&, 3, V, W) = [ ;% (2.5)
§=0
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LEMMA 2.1. Let n € N be fized, and assume that D,(:')(f) #0,k=0,1,...,n+ 1.
For any z # 0, we have

[Y~H(2)Y'(2)] Zpk Dok (z (2.6)

where Y (-) = Y, (-;d, 6, V, W).

Proof. The assumptions imply that k; = (D(”))l/z/(D(i) )1/2 is finite and nonzero
and that pg,pr exist for all k € {0,...,n}. Note that (a) detY : C\T — C is
analytic, (b) (detY)y(z) = (det Y),(z) for z€ T\ {to,...,tm}, (c) detY(z) =
o(|z —t|7') as 2 — t; and (d) det Y(2) = 1 + o(1) as z — oo. Hence, using succes-
sively Morera’s theorem, Riemann’s removable singularities theorem and Liouville’s
theorem, we conclude that detY = 1. Using (2.3) and the fact that detY =1, we

obtain
_ " Rp—1 . o d
[Y 1(2)Y/(Z)]21 = 2 pnfl(z 1)%1%(2)
d Kopp—
-1 Bl n  'n 1~ —1
ot pn(2) 2= [ F e (7]

Using the recurrence relation (see [24, Lemma 2.2])

Rn—1 ~ R _ ~ _
1pn 1(z71) = Enpn(z7") = Pu(0)2 "pul2),
we then find

Y (2)Y'(2)],,

=2 —apa(2)pn (=) + 2 () e (2) — )= ) ) ).
( ( dz dz

The claim now directly follows from the Christoffel-Darboux formula [24, Lemma
2.3]. (|

PROPOSITION 2.2. Let n € N1 :={1,2,...} be fized and suppose that f depends

smoothly on a parameter . IfD,gn)(f) # 0 fork =n—1,n,n+ 1, then the following
differential identity holds

1

0ylog Dy, (&, 3V, W) = o

/Qw[Y1(2)Y’(z)]21z"*18,,f(z)d9, z=e".
(2.7)

REMARK 2.3. Identity (2.7) will be used (with a particular choice of ) in the proof
of proposition 4.4 to deform the potential, see (4.8).

Proof. We first prove the claim under the stronger assumption that D,i”)( H#0
for k =0,1,...,n+ 1. In this case, ki = (D,(C"))1/2/(D,(€Tjr)1)1/2 is finite and nonzero
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and py, i, exist for all k =0,1,...,n. Replacing 277 with p; (2*1)5;1 in the first
orthogonality condition in (2.2) (with k = j), and differentiating with respect to =,

we obtain, for j =0,...,n— 1,
Oy[ki] Ky 2 L1y
vTjJ — ﬁ X UO p;(2)p;(z~ Ky f(2)do
1 o R —1 F‘jj 2 A —1 —1
=5 | pi(2)Di(z77)0[f(2)]d0 + 7/ Oy [pi(2)p (=~ ")k 1] f(2)de.
0 T Jo 2.8)
The second term on the right-hand side can be simplified as follows:
Py 27 . 3 B
o | Oy [Pi(2)pi (A5 ] £ (2)d0
0
2m
Kj P | 9, (4]
—_ . . . = 2-
o2 [ 0@l (e = 2 (2.9)

where the first and second equalities use the first and second relations in (2.2),
respectively. Combining (2.8) and (2.9), we find

S OIS e (2.10)

Ky
Taking the log of both sides of (2.5) and differentiating with respect to 7, we get
-1

0, log Do(i, AV, w) = 23" Dbl _ L / S mems | a6,

K 2m
J =0

(2.11)

An application of lemma 2.1 completes the proof under the assumption that
D,(C")(f) #0,k=0,1,...,n+ 1. Since the existence of Y only relies on the weaker

assumption D,(C")(f) #0, k=n—1,n,n+1, the claim follows from a simple
continuity argument. O

3. Steepest descent analysis

In this section, we use the Deift-Zhou [28] steepest descent method to obtain large
n asymptotics for Y.

3.1. Equilibrium measure and g-function

The first step of the method is to normalize the RH problem at oo by means of
a so-called g-function built in terms of the equilibrium measure (1.7). Recall from
(1.3), (1.4) and (1.6) that U is an open annulus containing T in which V, W and
1) are analytic.
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Define the function g : C\ ((—o0,—1]JUT) — C by

ds

)
18

g@w:Ab&@—sww> (3.1)

where for s = ¢ € T and 6 € [~n,7), the function z ~— log,(z — s) is analytic in
C\ ((—o0, —1JU{e" : —7 < 0" < 0}) and such that log,(2) = log|2|.

LeEMMA 3.1. The function g defined in (3.1) is analytic in C\ ((—oo,—1]UT),
satisfies g(z) = logz + O(z71) as z — oo and possesses the following properties:

9+(2) +9-(2) = 2/10g|z—s\1/1(5)% +i(r+c¢+argz), ze€T, (3.2)
T

9+(2) —g—(2) = 2mi Y(e?)dd, =z €T, (3.3)

9+(5) —g_(:) = 2ni, 5 € (~o0,~1), (3.4

where é = ["_60(e"?)df and arg z € (—m, ).

Proof. In the case where the equilibrium measure satisfies the symmetry 1(e??) =
Y(e=), we have ¢ = 0 and in this case (3.2)-(3.4) follow from [3, Lemma 4.2]. In
the more general setting of a non-symmetric equilibrium measure, (3.2)—(3.4) can be
proved along the same lines as [3, proof of Lemma 4.2] (the main difference is that
F(7) = 7 in [3, proof of Lemma 4.2] should here be replaced by F(7) =7 +¢). O

It follows from (3.3) that

§i(2) g (2) == T4(z), €T (35)

Substituting (3.2) into the Euler-Lagrange equality (1.23) and recalling that
dpv (s) = ¢(s) 42, we get

V(z) =g4+(2) +9-(2) + £ —logz —i(m + &), z €T, (3.6)

where the principal branch is taken for the logarithm. Consider the function

_m/qwﬁ%,ﬁM<Lzea
&(z) - (3.7)

m/‘wgi, 2] >1, 2 U,
-1 18

where the contour of integration (except for the starting point —1) lies in U \
((—00,0] U T) and the first part of the contour lies in {2 : Im z > 0}. Since ¢ is real-
valued on T, we have Re&(z) = 0 for z € T. Using the Cauchy—Riemann equations
in polar coordinates and the compactness of the unit circle, we verify that there
exists an open annulus U’ C U containing T such that Re{(z) > 0 for z € U’ \ T.
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Redefining U if necessary, we can (and do) assume that U’ = U. Furthermore, for
z=¢Y €T, 6 (—mn), we have

1)~ €-() = 264(0) = ~2mi | ()5 =2mi [ 0l I = g1) ~ 9-(2)
(3.8)
264 (2) — 294 (2) =4 —V(z) —logz —im — ic. (3.9)

Analytically continuing &(z) — g(2) in (3.9), we obtain

£(2) = g(2) + % (0= V() —logz —in—ic), forall z€ U\ ((—00,0]UT).

(3.10)

Note also that

Er(x) — & (z) = mi, xeUnN(—oc0,—1), (3.11)

§+(£E) - 5—(1) = _ﬂ-ir zelUn (_170)7 (312)
where &y (x) :=lim,_ g+ {(z £ i€) for x € U N ((—o0,—1) U (—1,0)).
3.2. Transformations Y — T — S

The first transformation Y — T is defined by
T(z) = e T H Y (2)e I H o T, (3.13)

For z € T\ {to,...,tm}, the function T satisfies the jump relation 7'y = T'_Jp where
the jump matrix Jr is given by

g (€I el (g (=g (=W () )
(2) = 0 enlas(:)—9-(2))

Combining the above with (3.4), (3.6) and (3.8), we conclude that T' satisfies the
following RH problem.

RH problem for T

(a) T:C\ T — C?*? is analytic.

(b) The boundary values T} and T_ are continuous on T\ {tg,...,t,} and are
related by
67277'5‘#(2) ew(z)w z
Ty (2) = T (2) ( ; ewgg) L e T\ {tor . tm).

(¢) As z — 00, T(2) =1+ O(z71).
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(d) Asz —tp, k=0,...,m, z€ C\ T,

O(1) O(1)+0(|z — ™)
O(1) O(1)+0(|z — ™)
o) O
o) Of

< 1) o 10g|ztk)>

1) O(log|z —tx])
The jumps of T for z € T\ {to,...,tn} can be factorized as

e~ e+ (2)  W(2)y(2) 1 0
0 e—2n§_(z) = e—W(z)w(z)—le—Qnﬁ_(z) 1

1 0
W(z —Wi(z —1
X (() el )w(z) — e~ WI( )w(z) 0) (ew(z)w(z)leQ”EJr(z) 1) .

) y if Reak 74 O,
T(z) =
if Reay, = 0.

Before proceeding to the second transformation, we first describe the analytic con-
tinuations of the functions appearing in the above factorization. The functions
wg,, k=0,...,m, have a straightforward analytic continuation from T\ {¢x} to
C\ {Atg : A > 0}, which is given by

we, (2) = 274, P+

ek 0 < argyz < Oy,
X = 8180 Mo seC\{Mr: A0}, k=0,...,m,
e~ Pk 0y < arg, z < 2m,

(3.14)
where arg, z € [0, 27), t,:ﬂ"' i= e~ k0 and 2Pk 1= |z|Preifr 2180 2 For the root-type

singularities, we follow [24] and analytically continue wy, from T \ {¢;} to C\ { Aty :
A > 0} as follows

(Z _ tk:)ak eak(log |z—tk\+iafgk(z—tk)) C
= = : >
Wan (Z) (Ztkeizk(z))ak/Q e%(log‘ |z|+iarg, (2)+i0k+ilk(2)) Z€ \ {)\tk A 0}’
k=0,...,m,
where afg,z € (0, 0 + 27), and
3m, 0< < O,
((2) = 0 argg z < O
m, O <argyz < 2m.
Now, we open lenses around T \ {to, ..., ¢} as shown in figure 1. The part of the

lens-shaped contour lying in {|z| < 1} is denoted 4, and the part lying in {|z] > 1}
is denoted vy_. We require that v,,v_ C U. The transformation 7' — S is defined
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v
Figure 1. The jump contour for S with m = 2.

1, if z is outside the lenses,

1 0

% : if |z| > 1 and inside the lenses,
67W(z)w(z)71672n5(z) 1

(1 0— e WEy(z)~te2n8() 1) , if |z| <1 and inside the lenses.

(3.15)

Note from (3.11)-(3.12) that e=2"¢(*) is analytic in U N ((—oco, —1) U (—1,0)). Tt

can be verified using the RH problem for 7" and (3.15) that .S satisfies the following
RH problem.

RH problem for S

(a) S:C\ (v4 Uy_ UT) — C?*2 is analytic, where v,,v_ are the contours in
figure 1 lying inside and outside T, respectively.

(b) The jumps for S are as follows.

Si(z)=5_(2) (0 eVPw(z) —eWEw(z)~t 0), 2€T\{to,....tm},

1
S+(2) = 5-(2) <6W(z)w(z)le2n§(z) 1) ; z € YUy

(e}

(c) As z — o0, S(2) =1+ O(z71).
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(d) As z — tg, k=0,...,m, we have

<O(1) O(log(z — tk)))
o(1)
(
o(

if z is outside the lenses,

O(log(z — tx))

S(z) =
< }Zgéz _ ik); gggggz - zkgg) , if z is inside the lenses,
— 1 "y
if Re o = O7
B gg;) ) if z is outside the lenses,

Ez —lk)") O(l)> , if z is inside the lenses,

if Reay > 0,

if Reay, < 0.

Since v4,v7— CU and Re&(z) >0 for 2 € U\ T (recall the discussion below
(3.7)), the jump matrices S_(2)~1S,(2) on 74 U~y_ are exponentially close to
I as n — 400, and this convergence is uniform outside fixed neighbourhoods of

t0s- s tm.
Our next task is to find suitable approximations (called ‘parametrices’) for S in
different regions of the complex plane.

3.3. Global parametrix P(°°)

In this subsection, we will construct a global parametrix P(>) that is defined as
the solution to the following RH problem. We will show in subsection 3.5 below
that P(°°) is a good approximation of S outside fixed neighbourhoods of ¢, . . ., tm.

RH problem for P(>)
(a) P(>®):C\ T — C?*? is analytic.
(b) The jumps are given by
Pj_w)(z) = P (z) (0 eWPuw(z)—eWEw(z)~t 0),
z€T\{to,. ., tm}- (3.16)
(c) As z — oo, we have P(®)(2) = I + O(z71).

(d) As z—t, from |2|<S1, k€{0,...,m}, we have P()(2)=0(1)(z—
)~ k4803

The unique solution to the above RH problem is given by

plooz) — { PO (0 1-1 o), if |2] < 1, 17,
D(z)%, if |2 > 1, '
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where D(z) is the Szegd function defined by

D(2) = Dy (2) [] Do (2) D, (2), Dw<z>exp(2}ri W_“d) (3.18)
k=0 T

B 1 log wa,, () B 1 / logwg, (s)
D, (z) =exp (27”_ /T R ds |, Dg,(z) =exp Srl ds ).
(3.19)

The branches of the logarithms in (3.19) can be arbitrarily chosen as long as
log wa, (s) and log wg, (s) are continuous on T \ ¢;. The function D is analytic on C \
T and satisfies the jump condition D, (z) = D_(2)eW®w(2) on T\ {to,...,tm}.
The expressions for D,, and Dg, can be simplified as in [24, eqs. (4.9)-(4.10)]; we

have
2=ty FABr (S +Bk) (log |e—tk | +iateg, (s~ tx)) .
( tpe'™ ) N (%2 +Bi) (0 +im) o il <1
Dak(z)Dﬂk(Z): 'lk.l,_ﬁ ap s oA
2ot \TEH B ol tulbinie ) )
. T (Be-E)(log o[ tiatgrs) 2> 1,
(3.20)

where afg; was defined below (3.14). Using (1.4), we can also simplify Dy as

Dy (z) =

Wo+W, (2) 1
{e el <1, (321)

e~ W-0), |z| > 1.

3.4. Local parametrices P ()

In this subsection, we build parametrices P(tk)(z) in small open disks D;, of t,
k=0,...,m. The disks D,, are taken sufficiently small such that D, C U and
Dy, Dy, =0 for j # k. Since we assume that the ¢;’s remain bounded away from
each other, we can (and do) choose the radii of the disks to be fixed. The para-
metrices P(**)(2) are defined as the solution to the following RH problem. We will
show in subsection 3.5 below that P(**) is a good approximation for S in Dy,

RH problem for P(tx)

(a) P®) Dy, \ (TU~; Uy_) — C?*? is analytic.

)
(b) For z € (TU~y Uy_) NDy,, P9 (2)7 1P (2) = §_(2)719, (2).
(c) Asn — +oo, P#)(2) = (I + O(n~'+2IReBrl)) P(>)(2) uniformly for z € 9Dy, .
)

(d) As z — tg, S(2)P)(2)~1 = O(1).

https://doi.org/10.1017/prm.2023.73 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.73

Toeplitz determinants with a one-cut reqular potential 1451

A solution to the above RH problem can be constructed using hypergeometric
functions as in [24, 35]. Consider the function

(7 ds
fe. () = 271'1/ Y(s)—, z €Dy,
b s

where the path is a straight line segment from t; to z. This is a conformal map
from Dy, to a neighbourhood of 0, which satisfies

fin(2) = 21t () (2 — tr) (L 4+ Oz — t1,)), as z — ty. (3.22)

If Dy, N (—00,0] =0, fi, can also be expressed as

2) = — £(2) — &4 (te), 2| <1,
(2] = =2 {—(5(2) =& (tr)), |2I>1

If Dy, N (=00, 0] # 0, then instead we have

£(2) — & (tr), |z| <1, Imz >0,
o &(z) — &4 (tg) — e, |z <1, Imz <0,
fi.(2) = =2 x ) — £ (ko). 2> 1 Imz > 0. if Imt;, >0, (3.23)
—(&(2) =& (tr) +m), [2[>1, Imz <0,
£(2) — &4 (tg) + i, |z| <1, Imz >0,
o §(2) — &4 (tr), |z <1, Imz <0, .
fi.(2) = =2 % () — € (t) — i), |e|> 1 Imz >0, if Imt;, < 0.
—(&(2) =& (), 2] > 1, Imz <0,

If t, = —1, (3.23) also holds with & (t) := lim._q+ &4 (e(™=9") = 0. We define wy,
and Wy by

wi(2) = 6727riﬁké(z§k)zﬁkt’;ﬁk H Wa, (Z)Wﬁj (2),
J#k
ATy,

X{e_ 7, Zle,kUQE,k?

SIS

Wi(2) = Gay (2)

iTa

k
ez, zeQikqu_J€7

where 0(z;k)=1 if Imz<0 and k=0 and 0(z;k) =0 otherwise, 27 :=
|Z|5keiﬁk argo 2

3 12 (Z _ tk)aTk eaTk(log|z7tk\+ia1‘gk(27tk))

W, (Z) T (Ztkewk(z))ak/‘l = e%(log|z|+iarg0(z)+i0k+i€k(z))’ (324)

and (see figure 2)

QY y={2€ Dy, : FRe fi,(z) > 0, Im f, (z) > 0},
Qi’k ={z €Dy, : FRe f1,(2) >0, Im f, (2) < 0}.
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Figure 2. The four quadrants Qik, Qi,k near tj and their images under the map fi, .

The argument afg;(z — ) in (3.24) is defined to have a discontinuity for z €
(QEJ€ N Qlka) U (25 k), t500), 2wk i= nyk al Qlj,k N dD,, and such that aig((1 —
04 )tk — ti) = 0 + 7. Note that afg;(z — i) is merely a small deformation of the
argument afg,(z — t;) defined below (3.14). This small deformation is needed to
ensure that Fy, in (3.26) below is analytic in Dy, .

Note that wy, is analytic in Dy, . We now use the confluent hypergeometric model
RH problem, whose solution is denoted ®uc(z; g, k) (see appendix B for the
definition and properties of ®ug). If k£ # 0 and Dy, N (—o0, 0] = 0, we define

7 74 —o3 —né(z)os  — X4, -
P (2) = By, (2)®uc (nfy, (2); o, Br) Wi(2) 7706 G762 00y (2) %,
(3.25)
where Fy, is given by
_ p(oo) g3 W) o 125 o
Ei (2) = P (2)wi(z) 2 e 2 T2Wy(2)7?
’L”lTCkk
e 4 3e*”ﬁ’f"?’, zle,k
i?TOék
———03 .
€ 4 e_”rﬁkaga S QL n o [og:
X Ty, ok ené+ (k) S(nftk(z))ﬁk 2.
ok
e 4 (0 1-10), zeQt,
T
_ o5
e 4 (0 1-10), zeQf,
(3.26)
Here the branch of f;, (2)% is such that f, (2)% = |fi, (2)|PkePri¥8 /0 (2) with
arg fi,(z) € (—3,2%), and the branch for the square root of wy(z) can be chosen

arbitrarily as long as wy(2)/? is analytic in Dy, (note that P{+)(z) is invari-
ant under a sign change of wy(2)'/?). If k # 0, Dy, N (—00,0] # B and Imt;, >0
(resp. Imt;, < 0), then we define P(**)(2) as in (3.25) but with £(z) replaced by
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&(2) + mif_(2) (resp. £(z) + mif, (z)), where

1, ifImz <0, |z >1, -1, ifImz>0, |2| > 1,
_(z):==4—-1, iflmz<0, |2|]<1, 64(2):=4¢1, ifImz>0, 2] <1,
0, otherwise, 0, otherwise.

Using the definition of Wk and the jumps (3.16) of P(°°), we verify that Ej, has
no jumps in Dy, . Moreover, since P(°)(z) = O(1)(z —t3,) " (FET ag 2ty
+(1 —|z]) >0, we infer from (3.26) that E; (z) = O(1) as z — t;, and there-
fore Ey, is analytic in D;, . Using (3.26), we see that Ey; (z) = O(1)n3 as
n — oo, uniformly for z € Dy, . Since P) and S have the same jumps on
(TU~, Uy_)NDy,, S(2)PM)(2)~ 1 is analytic in Dy, \ {t)}. Furthermore, by (B.5)
and condition (d) in the RH problem for S, as z — ) from outside the lenses we
have that S(z)P®)(2)~1is O(log(z — t)) if Reag = 0, is O(1) if Reay, > 0, and is
O((z — t1,)°*) if Reay, < 0. In all cases, the singularity of S(z)P*)(2)~1 at z = t;,
is removable and therefore P(**) in (3.25) satisfies condition (d) of the RH problem
for P(tr),

The value of Ey, (t;;) can be obtained by taking the limit z — ¢ in (3.26) (e.g.
from the quadrant Qf’k). Using (3.17), (3.18), (3.20), (3.22) and (3.26), we obtain

E, (tr) = (() 1-1 ()) A7?, (3.27)
where

W ()

Ap =€ Dw(tr)"

5| TT Dy (t1) ™ Dy 1 (t0) ', (t1)2, <tk>] (2mip(tx)m) P e (1),
i#k '
(3.28)

In (3.28), the branch of wéj (tr) is as in (3.24) and wéj (tx) is defined by

1 8, e's P if 0
2 (1) = et s (0s=05) o
wp, (tr) = € e, if 0

The expression for Ay can be further simplified as follows. A simple computation
shows that

Dy, 4(2) = |z —tj|7] exp ( [afgj(z —t;) — 0, _7"]>

:|Z_t]'|2e}(p<2 2 T

Dp, +(2) = |z — ;|7 exp (i [afg; (= — t;) — 0; — 7])
— |z — t;]% exp (zﬂj Vjéz) N argo;— 0, WD
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for z € T. Therefore, the product in brackets in (3.28) can be rewritten as

k-1
H|tk—t| B?exp( 23J9k20)1—[ (moz]> H exp( maJ)

j#k =0 j=k+1
and thus
W (tg) Bk 8,
AL =e 2 g (tk) 271”(/} tk H |tk —t,; | £
J#k
where
\ k—1 Ty i T Ozj(tgk — 97) 19 '(/1( )d5 <3 29)
= — — — — D ™ . .
KLy T 2 2 \
j=0 j=k+1 j#k k

=1+ nkft (;) Etk (Z) (_1 T(O‘k’vﬁk) - T(ak’ _ﬂk) 1) Et’“(z)_l

+ O(n~ 22RO, (3.30)

as n — oo uniformly for z € 9Dy, , where 7(ay, Ok) is defined in (B.3).

3.5. Small norm RH problem
We consider the function R defined by

P (7)1 Mo Dy UT _
R(Z) _ S(Z) (2)717 z € (C\ (Uk:O e U T UL Uy )7 (331>
S(z)PE) ()71, 2€ Dy, \ (TUy Uy ), k=0,...,m

We have shown in the previous section that P(**) and S have the same jumps on
TU~y U~ and that S(z)P®)(2)~' = O(1) as z — t. Hence, R is analytic in
Uty Dy, . Using also the RH problems for S, P(>) and P®) we conclude that R
satisfies the following RH problem.

RH problem for R

(a) R:C\T'p — C?*?is analytic, where I'r = U7 0Dy, U ((v+ Uy—) \ U Dy, )
and the circles 9D, are oriented in the clockwise direction.

(b) The jumps are given by
Ry(2) = R-(2)P™)(z)

1 0 —
(0) ()1
X (eW(z)w(z)162n§(z) 1) P ()70, 2 € (v4Ur-)\ Uty Dy

R, (2) = R_(2)P) (2) P> ()71, 2€0D;,, k=0,...,m
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(c) As z — o0, R(z) =T+ O(z71).

(d) As z — z* € I'y,, where I'}; is the set of self-intersecting points of I'g, we have
R(z) = O(1).

Recall that Reé(z) > ¢ >0 for z € (y4 U~y_) \ Ul Dy, . Moreover, we see from
(3.17) that P(*)(z) is bounded for z away from the points tg,...,t,. Using also

(3.30), we conclude that as n — 400
Jr(2) =1+ O(e™"), uniformly for z € (y1Uy_) \ Uy~ Dy, , (3.32)
Jr(z) =1+ JI(;)(,Z)TF1 + O(n~2F2Pmax) - uniformly for z € Uy ,0Dy,, (3.33)

where Jg(z) := R:I(Z)R+(Z) and

BE =
ftk( )

Furthermore, it is easy to see that the O-terms in (3.32)—(3.33) are uniform for
(01,...,0,,) in any given compact subset © C (0,2m)",, for ag,...,q,, in any
given compact subset 2 C {z € C: Rez > —1}, and for Bo,...,0, in any given
compact subset B C {z € C: Rez € (—3, 3)}. Therefore, R satisfies a small norm
RH problem, and the existence of R for all sufficiently large n can be proved
using standard theory [27, 28] as follows. Define the operator C : L?(I'g) — L*(T'r)
by Cf(z) = zm fFR o £(s) ~dz, and denote Cy f and C_f for the left and right non-
tangentlal limits of Cf Since T'p is a compact set, by (3.32)—(3.33) we have
Jr — 1 € L*(T'gr) N L>=(T'g), and we can define

I (z) = Etk()(—l (g, B) — T(an, =) 1) By (2)7", 2 € 0Dy,

Crp : L*(TR) 4+ L=(T'g) — L*(T'r),
Crnf =C_(f(Jr—1)),
f e L*(Tr) + L®(Tg).

Using HCJR||L2(FR)—>L2(FR) < CllJgr — I”LOO(FR) and (3.32)—(3.33), we infer that
there exists ng = ng(0,A,B) such that ||Cs,| 120 p)—r2ry) < 1 for all n > ng, all
(01,...,0m) €O, all ag,...,q, €A and all Gy, ..., 0, € B. Hence, for n = nog,
I—Cy, : L?>(T'r) — L3(I'g) can be inverted as a Neumann series and thus R exists
and is given by

R=1+C(ur(Jr —1)), where pp =1+ (I —Cy,) 'Cs,(I). (3.34)
Using (3.34), (3.32) and (3.33), we obtain
R(z) = I+ RW(2)n~1 4+ O(n=2+2Bmex), as n — 400, (3.35)

uniformly for (61,...,0,) € O, ag,...,a, € A and Py, ..., L, € B, where RW is

given by
I3 (s)
RW(z /
Z 2m oD, 5%
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Since the jumps Jg are analytic in a neighbourhood of I'g, expansion (3.35) holds
uniformly for z € C\ T'g. It also follows from (3.34) that (3.35) can be differentiated
with respect to z without increasing the error term. For z € C\ U} Dy, , a residue
calculation using (3.22), (3.27) and (3.30) shows that (recall that 0D;, is oriented
in the clockwise direction)

T (8- %)
R =y A gw(;k; (U Aok —Br) — Ar(an, i) —1).

(3.36)

REMARK 3.2. Above, we have discussed the uniformity of (3.32)—(3.33) and (3.35)
in the parameters 0, ay, B;. In § 4, we will also need the following fact, which can
be proved via a direct analysis (we omit the details here, see e.g. [8, Lemma 4.35]
for a similar situation): If V' is replaced by sV, then (3.32)-(3.33) and (3.35) also
hold uniformly for s € [0, 1].

REMARK  3.3. If ko,...,kami1 €N, ko+...4kynp1 =1 and 9% := ko .
Okm Ot 95 then by (3.17) we have

0
GEJR(Z) = O(e™), uniformly for 2z € (y;Uy_) \ Ul Dy, ,

and by the same type of arguments that led to (3.30) we have

. - _ log n)Fm+1t-Fhamis
6kJR(Z) == 8k(‘]](31) (Z))n ! + O (( )n2*2ﬁmax ’

uniformly for z € Uy 0Dy, .

It follows that

. . B logn km+1+--<+k2m+1
8kR(Z) - ak(R(l)(z))n 1o <( )71272[%“

), as n — +00.

If W is replaced by tW, t € [0, 1], then the asymptotics (3.32), (3.33) and (3.35)
are uniform with respect to ¢t and can also be differentiated any number of times
with respect to ¢ without worsening the error term.

4. Integration in V

Our strategy is inspired by [8] and considers a linear deformation in the potential (in
[8] the authors study Hankel determinants related to point processes on the real line,
see also [14, 18, 19] for subsequent works using similar deformation techniques).
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Consider the potential V, := sV, where s € [0, 1]. Tt is immediate to verify that
27 ] ) .
2/ log |z — e“g|duf/0 (€%) = Vio(z) — £y, for z €T, (4.1)
0

with dpuyg, (¢") := 5=df and ¢, = 0. Using a linear combination of (4.1) and (1.23)
(writing V, = (1 — s)Vp + sV), we infer that

2
2/ log|z — ew|d,u‘75(ew) =V,(z) — L, for z €T, (4.2)
0

holds for each s € [0,1] with /s := sf and duy, (€%9) = b5 (e'9)dh, s(e??) = 12— +
stp(e'?). In particular, this shows that 1 (e??) > 0 for all s € [0, 1] and all § € [0, 27).
Hence, we can (and will) use the analysis of § 3 with V replaced by V.

We first recall the following result, which will be used for our proof.

THEOREM 4.1 Taken from [24, 29]. Let m € N, and let t;, = €%, oy, and By be
such that

0=0p <061 <..<0n,<2m, and Reoy>-1, Refp€(—3,3)
fork=0,...,m

Let W : T — R be analytic, and define Wy and W_ as in (1.4). As n — 400, we

have
- 1
Dn(&,ﬁ,O,W) = exp <D27’L+D3 10g7’L+D4+O <nl—25nmx>> s (43)
where
Dy =Wy,
" a2
D3 = ];) < 4k 5k>

m

Dy = ZfWgW_[ + Z (/Bk — 7) Wi (tg) Z (ﬂk + 7) —(tr)
= k=0
) log |t; tk|}

p> {W = (g — ;) + (2

0<j<k<m

N G+ %+ B)G(L+ % — Br)
+Zlog GO +an) ,

where G is Barnes’ G-function. Furthermore, the above asymptotics are uniform
for all o, in compact subsets of {z € C: Rez > —1}, for all By in compact subsets

of {z€C:Rez € (—1,3)} and for all (61,...,6,,) in compact subsets of (0,2m)™,.
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REMARK 4.2. The above theorem, but with the O-term replaced by o(1), was
proved by Ehrhardt in [29]. The stronger estimate O(n~1+2fmax) was obtained
in [26, Remark 1.4]. (In fact the results [26, 29] are valid for more general values
of the [’s, but this will not be needed for us.)

LEMMA 4.3. For z € T, we have

L) gy = L1~ 2ma)), (449)
AT o W — 2 z
Ziﬂ]{r %dw =Vo+Vi(2) = V_(2) = Vo + 2 Im (V (2)), (4.5)

where f stands for principal value integral.

Proof. The first identity (4.4) can be proved by a direct residue calculation using
(1.3) and (1.6). We give here another proof, more in the spirit of [8, Lemma 5.8]
and [19, Lemma 8.1]. Let H,p : C\ T — C be functions given by

1 1 ! -1 1
S UAC) I S
2z 2mi Jpw—z 1, |z >1.

(4.6)

Clearly, H(co) = 0, and for z € T we have

HA) ~ o) = = () o) = 1) + V() =0,

where for the last equality we have used (3.6). So H(z) = 0 by Liouville’s theorem.
Identity (4.4) now follows from relations (3.5) and

1 1 [fV(w)
0=H H (2)=-(d —4d ——+ —f ——=d T.
V() = () =g () =+ rf s e
The second identity (4.5) follows from a direct residue computation, using (1.3). O

PROPOSITION 4.4. As n — 400,

D, (&, 5,V,W)

log = =C n2 J'_ Con + Is + O n_1+2ﬁmax , 47
D (@, 3.0, e en e+ Ol ) (4.7
where
_ VO 1 o 0 16
=g | VEd()
m m 27
C2 = Z i(V(tk) - Vo) — Z 2i0Im (V4 (tx)) + W (e e)duv(e 0) — W,
k=0 2 k=0 0

https://doi.org/10.1017/prm.2023.73 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.73

Toeplitz determinants with a one-cut reqular potential 1459

Proof. We will use (2.7) with V =V and v = s, i.e.

dslog D, (&, 3, Vs, W) = "(2)]2127 "0, f(2)d6, (4.8)

\

1
27 Jo
where f(z) = e‘"vﬂ(z)w(z) and Y (-) = Yn(~;@',ﬁ,VS,W). Recall from proposition
2.2 that (4.8) is valid only when D,(Cn) (f) #0,k=n—1,n,n+ 1. However, it follows
from the analysis of subsection 3.5 (see also remark 3.2) that the right-hand side of
(4.8) exists for all n sufficiently large, for all (61,...,0,,) € O, all ag,...,a, €Y,
all Bo,...,0Bm € B and all s € [0, 1]. Hence, we can extend (4.8) by continuity (see

also [14, 19, 26, 37, 40| for similar situations with more details provided). By
(2.1), for z € T\ {to,...,tm} we have

Y (2) 7Y (2)]a1,4 = [V (2) 7Y (2)]21,—, (4.9)
[Y(Z)_lyl(z)]21 = _fZ(T;) ([Y(z)_ly/(z)hLJr — [Y(z)_lyl(z)hl’,) s (410)
and thus, using that d, log f(z) = —nV/(2) is analytic in a neighbourhood of T,

-1

0, log D, (&, B, Ve, W) = o—

/ [Y='(2)Y'(2)],, 0slog f(z)dz, (4.11)
CeUC;
where C; C {z:|z| <1} NU is a closed curve oriented counterclockwise and sur-
rounding 0, and C. C {z:]z| > 1} NU is a closed curve oriented clockwise and
surrounding 0. We choose C; and C, such that they do not intersect TU~y U~y_ U
Dy, U---UDy,,.

Inverting the transformations ¥ — T +— S +— R of § 3 using (3.13), (3.15) and
(3.31), for z € C. UC; we find

[Y—l(z)yx(z)hl _ ng'(z) + [p(oo)(z)flp(oo)/(z)}

+ [P 2) R() TR (2) PO (2)]

11

11

Substituting the above in (4.11), we find the following exact identity:
05 1og Dy (0, 0, Ve, W) = 1 s + Lo s + I s,

where
L= — g (2)0,log f(2)dz, (4.12)
27T7/ C.UC;
-1
257 om C.UC, [ (2) (Z)} - 05 log f(z)dz, (4.13)
-1
= — (0) -1 —1 s (c0)
I3 s ~ omi e, {P (2) " R(z)" R'(2)P (z)] L dslog f(z)dz. (4.14)

Using 0s log f(z) = —nV (z) and (3.5) (with ¢ replaced by 1), we find

n? ,

(6(2) — DV )z = = [ V)
T

T

Ils:

)

211

https://doi.org/10.1017/prm.2023.73 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2023.73

1460 E. Blackstone, C. Charlier and J. Lenells

and since ¥ = 12

/Ollsds——/% ') ( +w(ew)) de

WV( “) Mv(6i9)> = cn’. (4.15)

n
5 (Vo+ ;

Now we turn to the analysis of I5 ;. Using (3.17), we obtain

[P TP (2)] = (2)0[log D(2) (4.16)

11

where ¢ is defined in (4.6). Also, by (3.18), (3.20) and (3.21), we have

Wi(2) + 300 (B + %) s |2l < 1,
0, logD(z) = ) . . . (4.17)
_W,(Z) + Zkzo (ﬁk - %) (zftk - ;) , ‘Z| > 1,
where W are defined in (1.4), and by (1.6), we have
+oo 27 ) )
= > KWV = W (e )duy (€?) — Wo. (4.18)
k=—oc0 0

Substituting (4.16) and (4.17) in (4.13), and doing a residue computation, we obtain

s=-—Nn Z |k| W V_ k—!—nz - Vo)

k=—o0

_nZﬁk <7T'L]{1‘Z—(t)kd —Vo> = com,

where for the last equality we have used (4.5) and (4.18). Clearly, I 4 is independent

of s, and therefore fol I sds = con. We now analyse I3 ; as n — +oo. From (3.35),
we have

R—l(z)R/(z) — n—lR(l)/(Z) 4 O(n_2+25”"“"),
and, using first (3.17) and then (3.36),

PO I RO (2) P (z)|

RV, > 1 G0

x{[Rm/(z)]Qw e iw ol

k=0

Therefore, as n — 400

(ﬁk ak tk 1 -1
I3 3= — d +20max )
3, 2 Z 27 / / (z —tr) 2+ 0(n )

k=0
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Partial integration yields

/
S L) e ([ ) e LT
2mi \Jo, Jo.) (2 —tr)? z—tk wiJr 2 — tg
and thus, by (4.4), we have

1~ (B = Pt )tkl

BPLY. —~ z/th th

I3 s (1 — 2mip(tg)) + O(n~1H20max), as n — +00.

Since the above asymptotics are uniform for s € [0,1] (see remark 3.2), the claim
follows. O

Theorem 1.1 now directly follows by combining proposition 4.4 with theorem 4.1.
(The estimate (1.12) follows from remark 3.3.)

5. Proofs of corollaries 1.4, 1.5, 1.6, 1.8, 1.9

Let e®1, ..., e!*" be distributed according to (1.17) with ¢, ..., ¢, € [0, 27). Recall
that N,,(0) = #{¢; € [0,0)} and that the angles ¢1,..., ¢, arranged in increasing
order are denoted by 0 < & < & <... <&, < 2m.

Proof of corollary 1.4. The asymptotics for the cumulants {Iij} 1 follow directly
from (1.30), theorem 1.3 (with m = 0, ap = 0 and with W replaced by tW) and the
fact that (1.24) can be differentiated any number of time with respect to ¢ without
worsening the error term (see remark 3.3). Furthermore, if W is non-constant, then

:ji EW W_y, = zj E|Wk|? > 0 (because W is assumed to be real-valued) and

from theorem 1.3 (with m = 0, ap = 0 and with W replaced by oy IJVVI‘/;W NEEE
k=1 -

t € R) we also have

n i, 2m i i
Elox tzj:l W(ei%i) —n 0 Wie P)dpy (e'?) _ e§+o(n_1)
» BTN |

as n — +oo with ¢ € R arbitrary but fixed. The convergence in distribution stated
in corollary 1.4 now follows from standard theorems (see e.g. [9, top of page 415]).

Proof of corollary 1.5. The proof is similar to the proof of corollary 1.4. The
main difference is that (i) for the asymptotics of the cumulants, one needs to use
theorem 1.3 with W =0, m =0ift =1, and with W =0, m =1, ag =0, u; = 0 if
t € T\ {1}, and (ii) for the convergence in distribution, one needs to use theorem
1.3 with W = 0, m = 0 and ag replaced by av/2/y/logn, o € R fixed, if t = 1, and
with W =0, m=1, ag =0, u; = 0 and a; replaced by av/2/v/Iogn, a € R fixed,
ifteT\{1}.

Proof of corollary 1.6. This proof is also similar to the proof of corollary 1.4. For
the asymptotics of the cumulants, one needs to use theorem 1.3 with W =0, m = 1,
ap = a1 = 0 and for the convergence in distribution, one needs to use theorem 1.3
with W =0, m =1, oy = a1 = 0, and with u; replaced by mu/+/logn, u € R fixed.
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Proof of corollary 1.8. The proof is inspired by Gustavsson [36, Theorem 1.2]. Let

0 € (0,2r) and kg = [n fog dpv (€'?)], where [z] := |z + 1], and consider the random

variable

n fo* dpy (€)= ko (&) —
\/IOW/TF On

where p,(€) 1= nfo5 dpy (€') and o, := L\/logn. For y € R, we have

Y, = (5.1)

P[Ya <y) =Pk, < (ko +yon) | = P[No (3 (ko +y00)) > ko] (5:2)

Letting 6 := ;! (kg + yo,,), we can rewrite (5.2) as

N (0) — p1,(0) S ko — Mn(é)] _ Pl/‘"(é)_N”(é) < y] (5.3)

=
On

P[Y, <] :IP’[

As n — +o00, we have
ko = [1n(0)] = O(n), é=9(1+0(¢@)). (5.4)

Since theorem 1.3 also holds in the case where 6 depends on n but remains bounded
away from 0, the same is true for the convergence in distribution in corollary 1.6.
By (5.4), 6 remains bounded away from 0, and therefore corollary 1.6 together
with (5.3) implies that Y, converges in distribution to a standard normal random
variable. Since

IP[W( e'o)

\/@/ﬂ' (§k9 - 77/69) X i;|

ply < fin (17 +yW) _Mn(nke)]
On
nk9+nw ’"’W) ni (e’ )
=P|Y, < ———d¢| =P[Y, <y+o(1)]
n

kg On

as n — +o0o, this implies the convergence in distribution in the statement of
corollary 1.8.

Proof of corollary 1.9. Let p,(§) := nf(f duy (e?), o, = %\/logn, and for 0 €
[0,27), let N, (0) := N,,(0) — (). Using theorem 1.3 with W = 0, m € N+, ag =
co. =y, =0and uy,...,u, € R, we infer that for any § € (0,7) and M > 0, there
exists ny = n((d, M) € N and C = C(5, M) > 0 such that

mo 9 9
IE( 2Ky uk N (0 ) < Cexp (Zkgo & U;) ; (5.5)
for all n > n(), (01,...,0,) in compact subsets of (0,2m)7, N (J,2m — )™ and
Ui, . .. € [-M, M], and where ug = —uj — ... — Up,.
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LEMMA 5.1. For any 6 € (0,7), there exists ¢ > 0 such that for all large enough n

and small enough € > 0,

Nn(‘g) - Mn(e)

2
On

c

(5.6)

P sup <T(l+e) | >21-
§<0<2m—5

Proof. A naive adaptation of [15, Lemma 8.1] (an important difference between

[15] and our situation is that o, = %l/%g: in [15] while here we have o,, = y)

logn’

yields

Nn(o) _ ,U'n(a)

2
On

<V2r(l+ e)) >1-o0(1).

P sup
5<0<2m—8

Inequality (5.5) can in fact be used to obtain the stronger statement (5.6).> Recall
that g = p,, ' (k) is the classical location of the k-th smallest point & and is defined
in (1.34). Since u, and N,, are increasing functions, for = € [ng_1,n;] with k €
{1,...,n}, we have

Np () = pn(2) < No(Mk) — pn(Me—1) = Nn () — pn () + 1, (5.7)
which implies

N, — N, — 1
sup () = pn(2) < sup n (M) — tn (1) +
2 2
s<a<2n—6 on ke, On

)

where IC,, = {k : m, > ¢ and nr_1 < 2w — 0}. Hence, for any v > 0,

p( s PZI) cp (s Tl L

2 2
5<z<2m—48 On

2
ke, On On

Let €9 > 0 be small and fixed, and let Z be an arbitrary but fixed subset of (0, ¢o].
Claim (5.6) will follow if we can prove for any e € Z that

P (s 2alte) = ol

sup (5.8)

&1
>7(l+e€ ) <
keKn on +e

= logn’

for some ¢; = ¢1(Z) > 0. Let m € N be fixed and S,, and S}, be the following two
collections of points of size m

45 +1
Sm:{5+(27r—26) ‘74;; : jzo,...,m—1},

5;1:{5+<2W_25)4{1;2: j:07...,m—1}.

Let X,,(0) := (Ny(0) — pun(0))/0y. For any 6 € [0, 2w — 4], we have by corollary 1.6
that E[X,,(0)] = O(ivlong") and Var[X,,(0)] < 2 for all large enough n. Hence, by

1We are very grateful to a referee for pointing this out.
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Chebyshev’s inequality, for any fixed £ > 0, P(= Xl >

n. Using this inequality with £ = % together Wlth a union bound we get

me
P sup > 5= P sup
0€8,,US1, 0esSnusy,

3 %X 2m 24m

= meyglogn T 2 ’
(Ze)25r e?logn

>0) < 75> T for all large enough

and then
N, — o (NE 24

P<Sup (mx) » (1) >ﬁ(1+6)> < 2Am

ke, o2 e?logn

n X, (0
+ Z P — Hn() >m(l4+e€) and sup () < ™.
Un feS,us’ On 2
ké’c m m

The reason for introducing two subsets Sy, S, is the following: for any k € K,,, one
must have that 7, remains bounded away from at least one of S,,, S, (so that (5.5)
can be applied). Indeed, suppose for example that 6 is bounded away from S,,, then

by (5.5) (with m replaced by m + 1 and with u; = v and uz = ... = U1 = — %)
we have
_ U — A u?o? 1
E[exp ulNp,(ne) — - Z N,.(0) 1 < Cexp{ 1 (1 + m) }
GESWL

and similarly,

exp ZN N (k)

GESm

2
gCexp{uZ (1+7711)}

Hence, if 7, remains bounded away from S,,, we have (with v :=7(1+ ¢/2) and

= 31+ 2)

= .
P <‘ n(;?k) >m(l4+€ and sup "2(0) < Wﬁ) (5.10)
o 2
n 0e5,,USL, n
No(mw) — LS5 Na(f L n(0) — N,
cp (D) i Yies, M) 7) L p <m Lacs, Nol) = Nulow) 7)

+ <el(rh Zoesy Na@)=Nu(m) - ef”i)
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2

<E (e%(RL(nk)—# Yoesm m<é))> oo

2

+ E (6%(% Zéesm N”(é)_ﬁn(nk))> 67%Ui

2 2 1 2 2 1+£ 2 9
< 2Cexp (” T <1+ ) - %i) — 2Cexp (_W(zl)“)
m «

402

_a+95)?

=2Cn . (5.11)

We obtain the same bound (5.11) if 7 in (5.10) is instead bounded away from S, .
The above exponent is less than —1 provided that m is sufficiently large relative to
€. Since the number of points in K,, is proportional to n, claim (5.6) now directly
follows from (5.9) (recall also (5.8)). O

LEMMA 5.2. Let § € (0, %) and € > 0. For all sufficiently large n, if the event

N (0) — pn(0)

sup 3 ’ <7(l+e) (5.12)
5<0<2—6 On
holds true, then we have
n —k 1
sup % <1+ + =, (5.13)
k€ (pn (26),pn (27 —20)) Th Tn

Proof. The proof is almost identical to the proof of [15, Lemma 8.2] so we omit
it. O

By combining lemmas 5.1 and 5.2, we arrive at the following result (the proof is
very similar to [15, Proof of (1.38)], so we omit it).

LEMMA 5.3. For any 6 € (0,7), there exists ¢ > 0 such that for all large enough n
and small enough € > 0,

P( max (e )|g — ] < (5.14)

1+ elogn c
n<k<(1-9)n T n

>1- .
logn

Extending lemmas 5.1 and 5.3 to 6 = 0. In this paper, the support of py is T.
Therefore, the point 1 € T should play no special role in the study of the global
rigidity of the points, which suggests that (5.6) and (5.14) should still hold with
6 = 0. The next lemma shows that this is indeed the case.

LEMMA 5.4 Proof of (1.35). For each small enough € > 0, there exists ¢ > 0 such
that

Nn(g) B Hn(e)

2
On

C

IP’( sup <ﬂ'(1—|—e)>21
0<o<2r

for all large enough n.

B logn
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Proof. For —m <60 <0, let N,(0) := #{¢; — 2w € (—7,0]}, and for 0 <6 <,
let N, (0) := #({¢; — 2m € (—m,0]} U{¢; € [0,0]}). For —m <0 <, define also

fn(0) = nfir dpuy (€'?). In the same way as for lemma 5.1, the following holds:
for any ¢ € (0,7), there exists ¢; > 0 such that for all large enough n and small

enough € > 0,
IP’( sup W<W(1+E)>>l— “ .
— <O T—0 o logn
Clearly,
Fo) = [Nel0+2m) = No(m). 0 € (—r.0),
I Nu(0) + = Noy(m),  if 6 e (0,7),
in(0) = pn (0 +27) — pp(m), if 0 € (—m,0),
P bn0) 40— (), i 6 € (0,7),

No(8) — fin(6) Mw—%w>{mmmﬂw%”i”6hmw

o2 o2 (0.1 em) Xe@pa® g g < (0, 7).

Thus, for all large enough n,

Ni(0) = pn (6)

2
On

Ny () — pn ()

<m(l+e)+ p

P sup >1-— a .
0€[0,2m)\ (7 —6,7+8) logn

Combining the above with (5.6) (with ¢ replaced by ¢3), we obtain

) Lq_ate
logn

(5.15)

Nn (0) — Hn (6)

2
On

Nn(w) - /Ln(ﬂ')

<m(l+4e€) + 3
Un

P sup
0€[0,2m)

Let X, := (Np(7) — pn(7))/on. By corollary 1.6, E[X,]= O(@) and
Var[X,,] < 2 for all large enough n. Hence, by Chebyshev’s inequality, for any fixed
>0, P(% >/{) < 22?72 for all large enough n. Applying this inequality with
L=m(1+(1+¢€))— 71'(1n+ €) = me? we see that if P(A) denotes the left-hand side
of (5.15), then

P(A) g}P(Am{f"' <e}) +]P><‘ff"' 26) <P (Am {Rf" <£}> +£232.
n n n o’n
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Together with (5.15), this gives

P{ sup 5
0€[0,2m) On

| X | 3
>P(Ang Xl <y > >P(A)_W
2 _ c1 + C2 _ 3 2 1— C3 :
logn 202 logn
for some c¢3 = c3(€) > 0, which proves the claim. O

The upper bound (1.36) can be proved using the same idea as in the proof of

lemma 5.4.

Acknowledgements

The work of all three authors was supported by the European Research Council,
Grant Agreement No. 682537. C. C. also acknowledges support from the Swedish
Research Council, Grant No. 2021-04626. J. L. also acknowledges support from
the Swedish Research Council, Grant No. 2021-03877, and the Ruth and Nils-Erik
Stenback Foundation. We are very grateful to the referees for valuable suggestions,
and in particular for providing us with a proof of (5.6).

References
1 L-P. Arguin, D. Belius and P. Bourgade. Maximum of the characteristic polynomial of
random unitary matrices. Comm. Math. Phys. 349 (2017), 703-751.
2 J. Baik. Circular unitary ensemble with highly oscillatory potential, e-print arXiv:1306.
0216.
3 J. Baik, P. Deift and K. Johansson. On the distribution of the length of the longest increasing
subsequence of random permutations. J. Amer. Math. Soc. 12 (1999), 1119-1178.
4 E. Basor. Asymptotic formulas for Toeplitz determinants. Trans. Amer. Math. Soc.
239 (1978), 33-65.
5 E. Basor and K. E. Morrison. The Fisher-Hartwig conjecture and Toeplitz eigenvalues.
Linear Algebra Appl. 202 (1994), 129-142.
6 E. L. Basor and C. A. Tracy. The Fisher-Hartwig conjecture and generalizations, current
problems in statistical mechanics. Phys. A 177 (1991), 167-173.
7 E. Basor. A brief history of the strong Szegd limit theorem, Oper. Theory Adv. Appl. Vol.
222 (Birkh&user/Springer, Basel, 2012).
8 N. Berestycki, C. Webb and M. D. Wong. Random Hermitian matrices and Gaussian
multiplicative chaos. Probab. Theory Related Fields 172 (2018), 103-189.
9 P. Billingsley. Probability and measure. Anniversary edition. Wiley Series in Probability
and Statistics (John Wiley and Sons, Inc., Hoboken, NJ, 2012).
10 A. Bottcher. The Onsager formula, the Fisher-Hartwig conjecture, and their influence on
research into Toeplitz operators. J. Stat. Phys. 78 (1995), 575-584.
11 A. Bottcher and B. Silbermann. Toeplitz operators and determinants generated by symbols
with one Fisher-Hartwig singularity. Math. Nachr. 127 (1986), 95-123.
12 P. Bourgade and H. Falconet. Liouville quantum gravity from random matrix dynamics
e-print arXiv:2206.03029.
13 S.-S. Byun and S.-M. Seo. Random normal matrices in the almost-circular regime, e-print

arXiv:2112.11353 to appear in Bernoulli.

https://doi.org/10.1017/prm.2023.73 Published online by Cambridge University Press


arXiv:1306.0216
arXiv:1306.0216
arXiv:2206.03029
arXiv:2112.11353
https://doi.org/10.1017/prm.2023.73

1468

14
15
16
17
18
19
20
21
22
23
24

25

26

27

28
29
30
31
32
33
34

35

36
37
38

39

E. Blackstone, C. Charlier and J. Lenells

C. Charlier. Asymptotics of Hankel determinants with a one-cut regular potential and
Fisher-Hartwig singularities. Int. Math. Res. Not. 2018 (2018), 62.

C. Charlier. Asymptotics of Muttalib—Borodin determinants with Fisher-Hartwig singular-
ities. Selecta Math. 28 (2022), 50.

C. Charlier. Asymptotics of determinants with a rotation-invariant weight and discontinu-
ities along circles. Adv. Math. 408 (2022), 108600.

C. Charlier and T. Claeys. Thinning and conditioning of the Circular Unitary Ensemble.
Random Matrices Theory Appl. 6 (2017), 51.

C. Charlier, B. Fahs, C. Webb and M. D. Wong. Asymptotics of Hankel determinants with
a multi-cut regular potential and Fisher—Hartwig singularities, e-print arXiv:2111.08395.
C. Charlier and R. Gharakhloo. Asymptotics of Hankel determinants with a Laguerre-type
or Jacobi-type potential and Fisher-Hartwig singularities. Adv. Math. 383 (2021), 107672.
T. Claeys, B. Fahs, G. Lambert and C. Webb. How much can the eigenvalues of a random
Hermitian matrix fluctuate?. Duke Math. J. 170 (2021), 2085-2235.

T. Claeys and I. Krasovsky. Toeplitz determinants with merging singularities. Duke Math.
J. 164 (2015), 2897-2987.

A. Costin and J. L. Lebowitz. Gaussian fluctuations in random matrices. Phys. Rev. Lett.
75 (1995), 69-72.

D. Dai, S.-X. Xu and L. Zhang. On the deformed Pearcey determinant. Adv. Math.
400 (2022), 108291.

P. Deift, A. Its and I. Krasovsky. Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel
determinants with Fisher-Hartwig singularities. Ann. Math. 174 (2011), 1243-1299.

P. Deift, A. Its and I. Krasovsky. Toeplitz matrices and Toeplitz determinants under the
impetus of the Ising model: some history and some recent results. Comm. Pure Appl. Math.
66 (2013), 1360—-1438.

P. Deift, A. Its and I. Krasovsky. On the asymptotics of a Toeplitz determinant with
singularities, MSRI Publications, Vol. 65 (Cambridge University Press, 2014).

P. Deift, T. Kriecherbauer, K. T-R. McLaughlin, S. Venakides and X. Zhou. Strong asymp-
totics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl.
Math. 52 (1999), 1491-1552.

P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert problems.
Asymptotics for the MKdV equation. Ann. Math. 137 (1993), 295-368.

T. Ehrhardt. A status report on the asymptotic behavior of Toeplitz determinants with
Fisher-Hartwig singularities. Oper. Theory Adv. Appl. 124 (2001), 217-241.

L. Erdds, H.-T. Yau and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices.
Adv. Math. 229 (2012), 1435-1515.

B. Fahs. Uniform asymptotics of Toeplitz determinants with Fisher—Hartwig singularities.
Comm. Math. Phys. 383 (2021), 685-730.

M. E. Fisher and R. E. Hartwig. Toeplitz determinants: some applications, theorems, and
conjectures. Advan. Chem. Phys. 15 (1968), 333-353.

A. S. Fokas, A. R. Its and A. V. Kitaev. The isomonodromy approach to matrix models in
2D quantum gravity. Comm. Math. Phys. 147 (1992), 395-430.

P. J. Forrester. Charged rods in a periodic background: a solvable model. J. Statist. Phys.
42 (1986), 871-894.

A. Foulquié Moreno, A. Martinez-Finkelshtein and V. L. Sousa. On a conjecture of A.
Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized
Jacobi polynomials. J. Approz. Theory 162 (2010), 807-831.

J. Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincare
Probab. Statist. 41 (2005), 151-178.

A. Its and I. Krasovsky. Hankel determinant and orthogonal polynomials for the Gaussian
weight with a jump. Contemporary Mathematics 458 (2008), 215-248.

K. Johansson. On Szeg6’s asymptotic formula for Toeplitz determinants and generalizations.
Bull. Sci. Math. 112 (1988), 257-304.

B. Kaufman and L. Onsager. Crystal statistics, III. Short-range order in a binary Ising
lattice. Phys. Rev. 76 (1949), 1244-1252.

https://doi.org/10.1017/prm.2023.73 Published online by Cambridge University Press


arXiv:2111.08395
https://doi.org/10.1017/prm.2023.73

Toeplitz determinants with a one-cut reqular potential 1469

40 I. Krasovsky. Correlations of the characteristic polynomials in the Gaussian unitary
ensemble or a singular Hankel determinant. Duke Math J. 139 (2007), 581-619.

41 A. Lenard. Momentum distribution in the ground state of the one-dimensional system of
impenetrable Bosons. J. Math. Phys. 5 (1964), 930-943.

42 E. B. Saff and V. Totik. Logarithmic Potentials with External Fields (Berlin: Springer-
Verlag, 1997).

43 N. R. Smith, P. Le Doussal, S. N. Majumdar and G. Schehr. Counting statistics for non-
interacting fermions in a d-dimensional potential. Phys. Rev. E 103 (2021), L030105.

44 A. Soshnikov. Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and
other determinantal random point fields. J. Statist. Phys. 100 (2000), 491-522.

45 G. Szeg6. Ein Grenzwertsatz iiber die Toeplitzschen Determinanten einer reellen positiven
Funktion. Math. Ann. 76 (1915), 490-503.

46 G. Szegb. On certain Hermitian forms associated with the Fourier series of a positive
function. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952),
228-238.

47 H. Widom. Toeplitz determinants with singular generating functions. Amer. J. Math.
95 (1973), 333-383.

Appendix A. Equilibrium measure

Assume that py is supported on T. We make the ansatz that py is of form (1.7)
for some 9. Let g be as in (3.1). Substituting (3.2) in (1.23) and differentiating, we
obtain

1
g;(z)—kg’,(z):V'(z)—F;, z€T.

Since ¢'(z) = 1 + O(272) as z — oo, we deduce that

/ p(z) [5+V'(s)
=— 2 T Al
g =-52 [ATFa senyT (A1)
where p(z) := +11if |2| > 1 and p(2) := —1if |z] < 1. Using (A.1) in (3.5), it follows
that
1y
~ e = i,][ sV, e (A2)
z miJr s—=z

Recall from (1.3) that V is analytic in the open annulus U and real-valued on T,
and therefore

V() =Vo+ Y (2F+ Wiz ™), V() =D (kVid" ' —kViz™Fh), zeU
k>1 E>1

(It is straightforward to check that the series 3, -, kVizF~1 and D k1 kViz—k-1
are convergent in U.) Direct computation gives
1 l .
s+ V(s i —
][ 57()(15 = —— 4wy (V2" 4 kVz TR, z €T,
T S—2 z =

which, by (A.2), proves that v is given by (1.6). Since the right-hand side of (1.6)
is positive on T (by our assumption that V is regular), we conclude that 1 (e*)d6
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is a probability measure satisfying the Euler-Lagrange condition (1.23). Therefore,
¥(€?)df minimizes (1.5), i.e. ¥(e??)dd is the equilibrium measure associated to V.

Since the equilibrium measure is unique [42], this proves (1.7).

Appendix B. Confluent hypergeometric model RH problem
(a) ®yg : C\ Xpe — C?*2 is analytic, where Yy is shown in figure 3.

(b) For z € Ty (see figure 3), k=1,...,8, Pyg obeys the jump relations
Pug,+(2) = Puc,—(2)Jk,
where

J1 = (0 e~imh _ gimf 0) , Jy = (0 eimh _ g—imf O) ,

ez 0
J3J7<0 e_i‘f;a>7
1 0 1 0 1
Jo = <e—i‘n’aeiﬂ'ﬁ 1>3 Jy = <ei7r(xe—i7rﬂ 1>a JG = <e—i7r(xe—i7rﬂ

1 0
Jg = <ei‘n’o¢eiﬂ'ﬂ 1) .

(¢c) As z — o0, z ¢ Ypg, we have

— P :
Pua(2) = <I > Hf) I i),

k=1
where
o2
w1 = (=) (41 rleu8) = rlo=p) 1),
___T(5-0)
T(Oé,ﬁ)— F o 1 )
($+06+1)
and
imo
e 4 Jse*”ﬁ”, g<argz<7r7
imo 5
e 4 Jse*”B”S, T <argz < g,
M(z) = iTa
e 4 03(0 1-1 0), —g<argz<0,
imo
470 1-1 0), O<argz<—.
e ( ), argz < o
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Iy
FZ Fg
I A VIII
17
VII
I's — > Iy
0
11 Vi
v iV
1—‘4 FG
I's

Figure B3. The jump contour Xj¢ for @ (z). The ray I’y is oriented from 0 to oo, and
forms an angle with R which is a multiple of T

In (B. 2) 2P has a cut along iR~ so that 277 = |z|PeFiarel®) with —Z <

argz<— As z — 0, we have
() O(logz)) if € ITUITTUVIUVII,
O(1) O(log z)
Prc(z) = O(logz) O(logz) ’
(O(logz Ologz)> if ze TUIV UV UVIII,
if Rea =0,
O(z%) O(:~%) :
(0( 2) o(-%)) FFElIUIITUVIUVIL (55
Pra(z) = O0(z72) 0z %) ’
(O(z % O(z_g))’ if ze I UIVUVUVIII,

if Rear > 0,
0(z%) O(z%)
Pra(z) = < $ $

This model RH problem was first introduced and solved explicitly in [37] for the
case @ = 0, and then in [24, 35] for the general case. The constant matrices ®yg i
depend analytically on a and /3 (they can be found explicitly, see e.g. [35, eq. (56)]).
Consider the matrix

), if Rea < 0.

r'(1+2 -5 iTa
(F(1+a )G( + B, a5 2)e” 2

r(1+2+p)
(1+(x G

Dug(z) =

_ina

(1+*+6,&;Z)8 2

_T(+5-8) a . i _
o (1 + g~ Gz )> S (B.6)
H(% - ﬂva;zeilﬂ)
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where G and H are related to the Whittaker functions:
M, K
G(a,a;2) = 7”(2) H(a,o;2) = Wi, (2) =

Jz

The solution ®yq is given by

(I)HG (Z)
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for z €I,
for z € 11,
for z € I11,
for z € IV,
for z € V,
for z € VI,
for z € VII,
for z e VIII.

(B.8)
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