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Abstract. In this work, we study the existence of solutions of nonlinear fractional coupled system of
¢-Hilfer type in the frame of Banach spaces. We improve a property of a measure of noncompactness
in a suitably selected Banach space. Darbo’s fixed point theorem is applied to obtain a new existence
result. Finally, the validity of our result is illustrated through an example.

1 Introduction

In recent decades, fractional differential equations are receiving great attention as a
significant tool in pure and applied mathematics, finding applications in various fields
such as propagation in complex mediums, epidemiology, biological tissues, computer
vision (a survey), and the theory of viscoelasticity (see, for example, [9, 29]). Some
basic results can be found in [1, 20, 37].

The concept of the fractional derivative (FD) with regard to another function in
the sense of Riemann-Liouville was presented by Kilbas et al. in [20]. The authors
in [30] proposed a ¢-Hilfer FD and extended the work dealing with the Hilfer’s FD
in [17]. The ¢-Hilfer’s FD significance stems from the fact that it has as its special
instances a number of widely used FD operators. As a matter of fact, the weakly
singular kernel function in the fractional operator definition can be freely selected. In
other words, it covers a wide range of cases for a specific function ¢. For some recent
developments, see [7-8, 27, 31, 33-35]. This kind of FD has been widely used in practi-
cal applications, such as, several anomalous diffusions, including ultra-slow processes
[21], financial crisis [27], and random walks [16]. On the other side, the modeling of
various natural phenomena in chemistry, biology, computer networks, and physics
often involves different types of coupled fractional differential systems, as evidenced
by references [28, 36]. Therefore, investigating of coupled systems within the context
of the ¢-Hilfer FD framework became recently crucial, for more background, see
[2, 4, 24].
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This study investigates the following system:

HDIF (1) = @it a(8), 32(1)), el
HDF® y, (1) = (11 (£), 32(1)), tel = (a,b],

lim,, .+ (£, a) 7y (t) = &,

(a,b],

1)

lim,, .+ p(t, a) 72 y,(t) = &,

where HDZi’ﬁ“(P (for i = 1,2) denotes the ¢-Hilfer FD of order 0 < &; < 1 and type 0 <
Bi<lL,0<yi=a;+Bi(1-a;) <1, 1-maxjcica{yi} <o —pi, 0< p; <oy, (B, |- )
is a Banach space and g; : [a,b] x ExE - E (i = 1,2) satisfies some certain condi-
tions, specified later, &, &, € E,and ¢(t, a) = ¢(t) — ¢(a), where ¢ be increasing and
differentiable with ¢’(t) # 0, for all ¢ € [a, b].

In [6, 19, 37], the authors investigated some classes of coupled systems in the frame
of ¢-Hilfer FD. They obtained some quantitative and qualitative results by means of
some classical fixed point theorems where the Lipschitz condition on the considered
system is required. The proof of our existence theorem combines results from measure
of noncompactness (MNC) and Darbo’s fixed point theorem under fairly reasonable
assumptions on the forcing terms taking values on infinite-dimensional Banach space.
Some interesting features of this work are as follows:

o The MNC expression is rigorously characterized in the functional space on which
we work, allowing us to provide a unified approach for treating various differential
systems regardless of the kind of the singularity generated by the initial condition.

o Under rather general assumptions, namely, when the nonlinearities fulfill an L?-
Carathéodory type condition, a new existence criterion is proved.

o The results obtained in this work extend, refine, and generalize various related
results appearing in the literature (see [13, 14, 32]).

o An illustrative example is discussed to show the applicability of our abstract results
in treating differential systems in infinite-dimensional spaces driven by fractional
derivatives [25].

This work is divided into three sections. Section 2 recalls some theoretical concepts
which are used throughout this work. In particular, a reconstruction of the MNC
in a suitably selected Banach space is established. A new existence result is stated
and demonstrated in Section 3. The last section provides an example illustrating the
validity of our results.

2 Preliminary results

Let I := [a, b]. Throughout this work, C(I, E) denotes all E-valued continuous func-
tions on I with the sup norm

|zlloo = sup[z(£)].
tel

https://doi.org/10.4153/50008439524000134 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439524000134

744 O. Zentar, M. Ziane, and M. Al Horani
We endow the space LZ(I ,E), 1< p < oo, of Bochner integrable functions z on I

b v
for which HzHLz < o0, with the norm HZHL‘;, = (/ go’(s)|z(s)|pds) Ife(t) = t, the

space LF (I, E) coincides with the usual L? (I, E) space.
If p=o00, L*(I,E) is the Banach space of all equivalence classes of essentially
bounded measurable functions on I equipped with the norm

|z| L = esssup |z(t)| = inf{M > 0; ||z(t)| < M for almost every ¢t € I}.
tel
We also define
SEH(LR)={¢ : € C'(I,R) and ¢'(t) >0 forall tel}.
For ¢ € SbY(I,LR) and t,s € I, (¢ > 5), we pose

(o(t) - 9(s))* = 9(t,5)*, for acR.

Definition 2.1[15]  For a, 8 € (0, +00), the gamma and beta functions are given by
oo 1
I'(a) = f t* e tdt, B(a,pB) = f 11— )P dt.
0 0
Lemma 2.2 [26] Lett//eS;’f(I,R), 0<a<lL0<P<a,a<t<{<t<b, andlet

¢
Oup(r.litig) = [ 9(1:5)p(s.a) P/ (5)ds.
Then, for all t € I, we have
Oup(at,t,9) = ¢(t,a)* FB(a,1-p)

and

1-a

2ﬁ 2 oa— min{a,l-,a—
05®a,ﬁ(7sf7t’¢)3(06+ )max{l,mb,a) BYp({, pymin(etpahy,

B

Remark 2.3 [26] From Lemma 2.2, one has:

(i) O4p(a,t,t,p)<Oup(a,b,b,¢)fortel,
(i) Onp(7,{,t,9) > 0as|{—1] 0.

Remark 2.4 By Lemma 2.2, we get
Y6y ()Y () e L(LR), ij=1,2
So it is possible to choose R such that

2.1)

201 il (b, a)vi rt
L;j(R) = sup le i~ 9(5.2) f ¢ (s)p(t,5)" " o(s,a) e ™) ds
tel ['(a;) a

<1/4.
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Definition 2.5 The left-sided ¢-fractional integral of a function f of order a > 0 is
defined as

«, _ 1 t a-1_1
0 f) (1) = T(a) fa p(t:5)" "9 (s)f(s)ds, t>a,
with ¢ € SLT (I, R).

Definition 2.6 Letn-1<a < nwith neN, ¢ € ST (I, R). The left-sided ¢-Hilfer
FD of a function f of order « and type 0 <  <1is defined as

. - 1 d\' /0oy (n-
H@a;ﬂxp £) = gﬂgn a),p a 3(1+ B)(n-a),p £).
To define a solution of the system (1.1), for each i = 1,2, we consider the Banach
space
¢, (LE) = {ze C(I'E) : 9(-a)""2() e C(LE)},

normed by

2(8)]-

(2.2) lzles = supo(t,a)"
i tel

Also, by Gf’_yl (LE) x Gf_yz(I,E) we denote the product weighted space with the
norm

H(ZI’ZZ)Hef’_nxef_“ = |z Hef_h + HZZHG;P_YZ-
Henceforth, for a subset U of the space foyi (I,E), define U,, by
Uy, ={zy, : ze U},

where

p(t,a)7iz(t), tel,
(2.3) z), (¢ :{

lim,,+ @(t,a)Viz(t), t=a.
It is clear that z,, € C(I, E).

Definition 2.7 [10]  The Hausdorff MNC is the map A : P(E) — [0, co) defined by
A(U) =inf {&e > 0: U has a finite e — netin E},
where P(E) denotes the family of all bounded subsets of E.

Lemma 2.8 [10] Let E be a real Banach space and Uy, U, U, € P(E). Then the
following properties are satisfied:

M A(Uo) <A (D) if Uy c Uy,

(2) A({a}uU)=A(U) for every a € E,

(4) A(U) = A(convU), where conv U is the closed convex hull of U,

(4) A(pU) = |u|A(U), where p € R,
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(5) A(U) = 0ifand only if U is relatively compact,
(6) A(UyuUy) =max (A(Uz), A (D)),
(7) A(U2+U1)SA(U2)+A(U1).

Lemma 2.9 [11] LetB c C(I,E) be a bounded set. Then, for all t € I,

A(B(t)) < A (B),

where B(t) = {u(t) : u € B}. Furthermore, if B is equicontinuous on I, then A(B(-))
is continuous on I and

(2.4) A (B) = sup A(B(t)),

tel

where A is the Hausdorff MNC in C(I,EE).

Next, we extend the result of Lemma 2.9 to the space C¥  (I,IE). Let us confirm
that, in general, the expression (2.4) may not be well-defined, since bounded sets in
e’ , (I, E) are not necessarily bounded in C(I, E). Consider, for instance, the set

(1) = {q)(t,a)y_lz(t), z€ Q},

where Q is bounded in C(I, E). Obviously, Q is unbounded in C(I, E), this indicates
that the map ¢ — A(Q(t)) is not well-defined, therefore it is wrong to consider the

expression (2.4). However, clearly the set Q is bounded with respect to the norm (2.2)
(ie,Qc Gf_y(I,E)).

Lemma 2.10 LetB c (‘,’ffy(l, E) be a bounded set. Then, for all t € I, we have
A(B, (1)) < Ae;p_y(IBB).

Additionally, assume that B is equicontinuous on 1, then A(B,(-)) is continuous on I
and

Agy (B) = stu})A(By(t))

Proof For every &>0, there exists B; EG{p_y(I,E), (i=1,...,n) such that

B =|JB; and

i=1
(2.5) O0(B;) <2A(B(t)) +2¢, i=1,...,n,
where 8(-) denotes the diameter of a bounded set in €] (L E). So, we have

B(t) = UB;(t) foreach tel

i=1
and

(2.6) luy(t) = vy ()| < lu—v], <6(B;), foru,veB;, i=1,...,n.

https://doi.org/10.4153/50008439524000134 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439524000134

Theoretical study of a ¢-Hilfer fractional differential system in Banach spaces 747

From (2.5) and (2.6), it follows that
2A(B, (1)) <8(Bi(t)) <d(B;) <2A(B(t)) + 2e.
Since ¢ is arbitrary, one has
A(By(t)) < A(B(t)), forevery tel.
Consequently, we have

stu? A(B, (1)) < Aef:y(IB%).

Now, let us prove the converse inequality. Assume that B is a bounded subset in
Gfly(l ,E) and equicontinuous on I. Obviously, B, is a bounded subset in C(I,IE)
and equicontinuous on I. From Lemma 2.9, we obtain that

A(By) < sup A(By(t)).
tel
Consider the isometricmap Y : Gf’_y (I,E) - C(I, E) defined by z ~ z,. Then, we get
ey (B) = sup A(B, (1)
te
and the result is reached. ]

Lemma 2.11 [18] Let {x,}}5 belongs to L'(I,E) such that |x,(t)| <¢(t)
almost everywhere on I(n=1,2,...) for some ¢eL'(I,R,). Then, the map
t > A({x,(8)}}27) is integrable on R, and

27) A({fotxn(s)ds }0:) ngOtA({xn(s)};:;’)ds.

Lemma 2.12 [3] Let BeP(E). Then for each €>0, there exists a sequence
{xn}13 € B, satisfies

(2.8) A (B) <2A.({x,}:57) +e.
Theorem 2.13 (Darbo[12]) Let E be a Banach space, let Vc E be a nonempty,

bounded, closed, convex, andlet N : V — V be a continuous mapping. Assume that there
exists k € [0,1) such that

(2.9) A(N(V)) <kA(V).
Then N admits a fixed point in V.
Theorem 2.14 [10] Suppose @®,®,,...,d, are MNCs in the Banach spaces

E,E,,...,E,, respectively. Let G : [0,00)" — [0, 00) be a convex function such that
G(x1,%2,...,%,) =0ifand only if x; =0 fori=1,2,...,n. Then

(2.10) (X)) = G(@01(X1), @2(X3),...,0,(X,))

defines an MNC inE; x E; x --- x E,,, where X; denotes the natural projection of X into
E;fori=12,...,n.
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Example 2.15 Let @;,®, be MNCs in E;,E,, respectively and G(x,x;) = x; +
x, for (x1,x;) € [0,00)2. Then, G satisfies all properties of Theorem 2.14. Hence,
@(X) = @1(X1) + @2(X3) is an MNC in the space E; x E,.

3 Main results

We initiate this section by introducing the following hypotheses which are needed in
the sequel:

(H1) The functions ¢ — g;(t,u,v);i =1,2 are measurable on I for each (u,v) €
C(LE) x C(I,E), and the functions (u,v) ~ g;(t,u,v) are continuous for
aetel

1
(H2) There exist functions h; € Ly’ (I, R}), 0 < ; < a; such that

lgi(tvv) | < Bt (L [l + ), =12,

forv;,v, € E,and ae. t € 1.
(H3) There exist functions #;,7; € L (I,R.), i = 1,2, such that for any bounded
subsets A! x AZ ¢ Gf_yl(I,E) x Gf_yz (I,E), we have

2 .
(31) A(gi(t,Al,Az)) < Zﬂi,]‘(t)A(AJ), forall tel.
=1
(H4) The following inequality holds:
(3.2) 2K <K, i=12,

where

p(bya) 7 b
LY

K=& + [ (@) 0"
, <o(b,a)lfw||h,~\|L,,%_ -
+KJZ=; o) u (G)gi)s,.)}.(a,b,b,(p)) ,
g, = %" nd 9,-,]-:1_”, ij=12.
1—pi 1= ui

Now, we prove our main result for the system (1.1), which is based on Theorem 2.13.
Theorem 3.1  Assume that (H1)-(H4) hold. Then, system (1.1) has at least one solution.

Proof First, let us introduce an operator ¥ : G;P_yl (ILE) x G;P_yz (LE) —
foyl(I,E) X Cffyz(I,E) associated with the system (1.1) as

(3.3) (H(y y2)) (1) = (Fa(y y2)) (1), (Fa(y1, 2))(1)) 5
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where the operators J;: Gf_yl(I,E) x (?;p_yz(I,IE) - Gf’_yi(l, E), i=1,2 are
defined by

(Fi (1 p2)) (1) = Eig(t, )" + F(tc,-) fuf<P'(5)<P(t>5)“‘_1gi(5>y1(5)>y2(5))d5> tel.

According to [22, Lemma 3.1], the solutions of the system (1.1) are fixed points of
the operator J{. Consider the following bounded closed convex set:

O ={(n3) €L, (LE)x €L (LE) : |ylley, <K, lyslley, <K}

Then we divide the proof into four steps.

Step 1. H transforms Qg into itself. Indeed, for each (y1, ;) € Qg and every t € I,
one has

lo(t, a) =7 (Hi(y1 y2)) (1)

<l s 2 [T 0069 fsito (), a(9)] s

e+ 2 [T 00" () (s ()] Ia(e) ) s

I-yi t
<+ LR [0 gl nler,

+9(5.0)" yallep, )ds

<&+ % ft o(t,$)% i (s) (1 +K > o(s, a)yj1) ¢'(s)ds.
i a j=1

Since p; + (1 - u;) =1, we can write ¢’(s) as the product
o'(5)= 9'(5)"g' ().
Then, applying the Holder inequality, we get
lo(t,a)™" (3i(y1,32)) (1)
o(t,a)i |hiHL#¢'_ . o -
ey (L et ™ide)

=yillh. 1l .
2 (P(t)a) thl“LE ¢ a1 » 1-p;
Ky s ([ o e ) o)
= i a

<[ &l +

https://doi.org/10.4153/50008439524000134 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439524000134

750 O. Zentar, M. Ziane, and M. Al Horani

Hence, by Lemma 2.2 and Remark 2.3, we obtain
il 2

1-u;
I-yi Ly’ 1- Hi I+ai—yi—pi
t, J‘Ci ) | < i t,
oo, G 0rm) O] < 160+ 25 (222) ot

, o(ta) | o -
+KY. L' (@ (a,t,t ))
- =7 ~ a—p; 1Y) a,l, 1,
2 T (w) y

I-p; 71—y
<Ki, i=12.

Thus,

13 y2)ler < Ki, i=12.
Consequently,

IH G y2)ler cer  <Ki+ K

1" =y
This shows that H transforms Qg into itself.
Step 2. The continuity of (-, -).

Let {y1,n> y2.n} € Qg such that (y1,4, y2,1) = ()1, y2) as n —> oco. Making use of
the Carathéodory condition of g;, i =1, 2, we easily have

18i (s y1,n(5)s y2,n(5)) = &i(s, 1(5), 2(5)) [ > 0, as n — oo.
Next, by (H2), one gets

1gi (s, y1,n(5), y2,n(5)) = &i (s, 11(5), y2(s)) |
< gi(s y1,n(s), yon () + 1 gi (s, y1(s5), y2(s)) |
<2k (s)(1+ [ () + [ y2()])

< Zhi(s)(l + Kigo(s,a)w—l).

j=1
2
Since, the function s — h;(s) (1 +K> 9(s, a)Yf_l) is Lebesgue integrable over [ a, ],
j=1

2

so is the function s — h;(s)¢(t, s)“"’l(l +K > o(s, a)y"_l). Then it follows from the
=1

Lebesgue dominated convergence theorem that

lo(t, @)™ [Hi (1> y2n) (1) = Hi (31, y2) (D]

: % fat 9(6,9)" 79" () Igi(s: yn(5), y20(5)) = gi (5, y1(5), y2(s)) | ds ~ 0

as n — oo for all t € I, which leads to

|G y2n)) = (i y2)) ey =20

n—oo
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for any t € I. Therefore,

IH O y2m) =H i y2)lep | <ep, 520

1-y2 n—ooo

Accordingly, the operator H(-, -) is continuous.
Step 3. H(€Qy) is equicontinuous.

Let (y1,2) € Qgand a < t; < t, < b. Then for i = 1,2, we have
lo(t2, @) (Hi(y1, y2) ) (£2) = (11, @) 77 (Hi (31, y2) ) (1)

. HWW L7 90t a5 1) 32())ds

F(O(,')
t,a)orn, i
“"(F(’) [ 5101, 1515, 2(5))ds
§]0+]1,
where
tyya)v o o
Jo= PO [ @t 9" g () (9) s
and

he H(P(trz(:c))_y fatl 9" (5)9(12,5)* " gi (s, y1(s), y2(s))ds

_Mfah @' ($)p(t1,8) %" gi(s, y1(s), y2(s))ds||.

F((X,’)

Next, applying the Holder inequality, we conclude that

Jox HNT frltz ¢'(8)9(t2,9)" T hi(s)(1+ [ (9)] + [y2(s)])ds

F((X,’)
=yill .l
(P(tZ) a) Y |h1HL;T' (ftz (t S)%d (S))l,“i
S F((xi) " (P 2> §0

2 ﬁo(tz,a)lfyi”hiHL,%i t e vl 1-p;
= i !

and hence,

Hi
LV’

@(tz,a) 77 | i 1
Jo < l

F(O(i) Qi_y"

https://doi.org/10.4153/50008439524000134 Published online by Cambridge University Press
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Now, using Remark 2.3, we obtain

Jo— 0 as f— 1,

and
Ji<2+ T3
where
tr,a)' i —(t,a) u
et ) A ACT G LR FICPTOR A

o= D [ @lp(9)" = (0, (5 (), 32D

Then,

]2 — 0)
n—»oo

on the other hand, ¢(t,,5)% " < ¢(#,s)*% . Therefore

o L ([ 09 g s = [ h(6)e! (o1, as)

AT KZ f hi()9(5)(@(11,8) ™ = @(12,5)" (s, @)~

I(a;)
Then,
¢(ti,a)' ™ |k HL
sty (@noaht9))' ™ = (Oa,0(a 2 9) ™
p(tna) Il 5 1
? K ®9i,9i-(a)tl>tl)¢) o
A [CHCeR)
1-pi
_(®9,*,9,-,j(a> tl: t2;§0)) # ]
So,
]3—>0 as ) — b,
Hence,

lp(t2, @) 7 (Hi (31, y2)) (12) = (11, @) 7 (Hi(y1, 32))(B) | — 0 as t — 1.

Thus, we conclude that J{(€Q, ) is equicontinuous.
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Step 4. Condition (2.9) holds. For every bounded subset J' x J* c Cf_yl(I,E) x
e} ,(I,E), we define the MNC as

(3.4) Agr xer (I'xJ?) = Aw (Jl) +A@¢ (Jz)

where

(3.5) Ae¢ (JI ) =supe VAT, (1) i=12, X>0.
tel

By using Lemma 2.10 and Example 2.15, K@T «cp  satisfies all properties of the
~7 —72
Hausdorff MNC mentioned in Lemma 2.8.

Now, let &/ = (A!, A?) be a bounded set belongs to convH(Qk), using Lemma
2.12, it follows that for a given ¢; > 0 (i = 1,2), there exists { (", y*")}% ¢ .o/ such
that, for all ¢ € I,

(6)  Rep, (I()(1))=Rep, ({TLOHYNW = Oy e}

SZKG;P_“({(:H:i(yl,n’yZ,n))(t)}::)+£i, i=12.
From

(B7) (3G y () = (ta)" " + T i (60 (), 7" (1), i=1.2,
wet get

(3.8)
KGI”_y,. ({(J{i(yl’”,yz’”))(')}::) = Ke;”_yi ({jzi’(pgi(vyl’”(-),yz’”(~))}::), i=1,2.

Now, we estimate the quantity A e ({(J{i (yb", yZ”))()}+j) Using (H3), for all
1-y; n=

s€[a,t],onehasfori=1,2

A{r ©e 9" a5 (01> (o))

<D 9 ()o(t8) i j(s)A{Y"" () 103
g

< ()9 () (1) 9. ) A ()11
j=1

<Y 110, (5)9' ()9 (1) 9 (s,a)717e™ sup e A({y))" ()15
j=1 a<s<t

<2 i (8)9' ()9 (1) (s, ) e ™ Ay ({y]" nst)-
j=1
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Thus, Lemma 2.11 entails that, for all t € T and s < ¢,
aj, ) R +o00o
A({T e gty (0, 7" ()}
t
S A (i [ et el ey evds
a

j=1 F()

Hence,

A({o(ta) 736G (0,7 ()}7)

2”’71]HL

<
j=1 F(oc,)

L O [T (9t (s, a7 e s,

—Rt

Multiplying both sides by e ', we obtain

supe A ({(p(t, a)l_y‘ﬂ'fi(yl’”(t)’)’z’”(t))}::)

te]

islim o s i
<3 g o, O D00
J=1 !

sup () (S)gp(t’s)m_lgD(S,a)yf_le_x(t_s)ds_

tel

So,
-~ n +oo 0o
Rey ({#6:0M "), 5) < ZL, JRer, (P13,
where £; j(R),i=1,2,j=1,2are defined in (2.1). Hence,

Rey, ({26.0""0*M),5)
< max{L, 00} (Rey, (")) + Rey, (7"13%)
_maX{sz(N)}AG‘P xeq’ ({(yln’yZn)}

1<j<2

The last inequality together with the fact that

Rep cer, (0P YN < Rey ser ()
yields
N n ny T N
(3.9) A@;«:”({Hi(yl’ Sy )}nzl) < {Elj’cl)%{ﬁi,j(&)}/\ef:”Xef:yz(gﬁZ{).
From (3.6) and (3.9), one gets

(310) Ry (3t:()(1)) < 2max{L; J(0YRep cep, () +en i=12.
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Then,

Rep ey, (3())
=Rey, (96()) + Rey | (30())
< 2( max{L,j ()} + max{LZ,j(R)})Kef_ xep, (&) +es

<4max{max{L,J(N)}}Ae¢ xep, (ﬂ)+£3,

1<i<2 "1<j<2

where &3 = € + ¢;. Since €3 > 0 is arbitrary, we have

Rer cer (9—((427))<4max{maX{L,J(N)}}Aerp ey, ().

1=y 1<i<2 "1<j<2

From Remark 2.4, we deduce 4 max;<;<; {max<je2{ £ j(R)}} <1
In view of Steps 1 to 4, we can apply Theorem 2.13 and deduce that J{ admits in
Qk, at least one fixed point which is a solution of system (L.1). [ |

4 An example
Consider the Banach space
E={z=('2%...,2",...) 1 2" >0 as n—> oo},
equipped with the norm |z|g = sup |2").
We recall that the Hausdorff MNC Ain (E, | - ||g) is defined as follows:
A(A) = Jim sup | (1-P,) <]
where A is a bounded subset in E and P,, is the projection onto the linear span of the

first n vectors in the standard basis (see [5, 25]).
Consider the following coupled system:

HDSPy (1) = gu(t 31 (1), y2(1)),  tel':=(0,b], 0<b< L,
HDEFy(6) = ga (631 (8), y2(1)), el :=(0,b], 0<b< L,
(7791) (0%) = (0,0,...,0,...),
(772y,) (0%) = (0,0,...,0,...).

Note that (4.1) is a particular case of (1.1), where:

(4.1)

a=0, o(t)= L7Vominply [ = maxLlj, $ij=0i+9ii—9j Hmin = min y;

1<i<2 1<i<2
1<j<2
1 29,,J 21—9g
(=——— -1, Lijj=4——+——1¢, Omin=min¢, ;,
(/)min(l - ‘umin) b 0; 1- ‘9 min {2;2% b
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andfortel, y; = {y""}, €E,

1 oo
gty ) = et{arctan(|y1’"| + |y2)"|) i ﬁ} ,
n=1

n n l
gty = iy« 1) 4 >+ )

n=1

One can easily deduce that the functions g;, (i = 1,2) satisfy the Carathéodory type
hypotheses, so (H1) holds.
To justify hypothesis (H2), let t € T and y; = {y""}, € E, (i =1,2). We have

1 oo
lgi(t, y1, 92) | = etH{arctan(|yl’”| +[y?") + 7} H
ne)y=1"E

<e! (sup [y""| + sup |y>"| + 1)
n>1 n>1
<e (Inle+lyle+1),

and

n n l *
lga(tyn )l = ¢! {ine 7 <121+ 2

<e! (sup |y>"| + sup |y>"| + 1)
n>l n>l

<e' (Inle+lyle+1).

This shows that hypothesis (H2) holds, with
h(t) = hi(t) = hy(t) =e', foralltel.
To prove (3.1), let t € I and z; = {z""}, € A" C E, i = 1, 2. Fix n € N; then we have
arctan(|2"[ + [22¥]) < [2"] + [22*] < [ (1= Pw) (2" )0 + [ (1= Pu) (2F)i] oo

for all k > n, which implies, by taking the supremum, that

k k
sup [ (1-P,) (arctan(|y"™*| + [y**])) k] oo
(z1,22) €Al xA?

< sup || (1-Py) (2" )kfloo + sup | (1=Py) (2*)i] -

z1€A! z,€A2
Then
. 1k 2,k
lim  sup [ (I-P,) (arctan(|y™"| +[y™")) o
n—eo (z1,22) €A xA?
< lim sup | (1= Py) (2" )kfoo + lim sup [ (I=Py) (2*")i] e
=00 2 eAl =00 1 eA?
which yields
Agi(t, AL, A))
1
=e' lim  sup (I-Py,) (arctan(|z1’k| +|2%K)) + —2) H o
n—eo (z1,22) €A xA? k k
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< e’[ lim sup | (I-P,) (z") oo
N=>00 2 leAl
+ Tim sup | (1= Py) (2%F)e o
=00 2,eA?
<ma(E)A(AY) + (1) A(A%),
where
M1 =H,2= h.
Similarly, one can obtain
Ag2(t, AL A%)) < maa(DA(AY) + a2 (HA(A?Y),

where
N2,1=H22 = h.

757

Hence condition (H3) is verified. Now, it remains to show that (3.2) holds. To do this,

from I'(«a;) > 1for 0 < a; <1, we have

(P(b’0)1+a,-—y,-—y,- 2
pL#i

1

Ri<|nl ;.

Then, by Lemma 2.2 and 0 < ¢(b,0) < 1, we get

p(b,0)" 7t
0"

1

Ki<|h| »
L%

2 2\9,*,]' 21_9:‘
+K Al  [[— +

Sl (& o
p(b,0) e

1-u;

0;
¢(b’0)l+ai_yi_.‘“i
e ——

0;

I+a;i—yi—u;
L 2(b,0)

1-u;
J o000 290,00

i

A\ 1-u
<A o +2K| k| 2 ([ (L*1/¢minb(+1)¢mm)
L L#i

1 1—lmin
< || o +2K|h| o (b )
L#i L%

e Ihl &+ 2Kb|A] o
gi-#i L#i L#i

1

and

b/u; Ui blui\Mi _ i b i1 nu;
Hh”ﬁi:(#i‘f M )™ < (piei) = pliel < plfiel = ettt <o

Now, choose
. 2eq(b,0)raiyizHi

0,71 (1~ 4be)

i=12.

Hence,
2K <K, i=12.

-
+KY Inl (©9,.9,,(0,b,b,9)p(b,0)"")
j=1

Hi

Since, all hypotheses in Theorem 3.1 are verified, system (4.1) has at least one solution.
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