
ON HARMONIC CONTINUATION
by M. S. P. EASTHAM

(Received 3 May, 1962)

1. Let D be a bounded, closed, simply-connected domain whose boundary C consists of a
finite number of analytic Jordan curves. Let y be any analytic arc of C. Then we shall prove
the following theorem.

THEOREM 1. Let u{x, y) be harmonic in the interior of D and continuous on y, and let
8u(x, y)jdn = g(s) when (x, y) is on y, where g(s) is an analytic function of arc-length s along y.
Then u(x, y) can be harmonically continued across y.

Here, d/dn denotes differentiation along the inner normal. A similar result for the case in
which u(x, y) is analytic on y is known [3, pp. 220-3]. The proof of Theorem 1 is given in
§§ 2-4, and an extension to the case in which D is a more general region is given in § 5.

2. First let v(r, 6) be any function which is harmonic in r <R, 0 < 8 < n, and continuous
in the closure of this region, r, 9 being polar coordinates. Also, let dv(r, 6)1 dy tend to zero as
y-> 0, when -R < x < R. Define v(6) by v(0) = v(R, 6) if 0 ^ 9 ^ n, and v(0) = v(R, 2n-0)
if 7i ̂  9 ^ 2n. Then it is proved in [4] (with a different notation) that the function

v(d>)
d<S>

which is harmonic in r < R and continuous in r ^ R, is equal to v{r, 9) in r ^ R, 0 ^ 9 ̂  n.
Thus V(r, 6) is a harmonic continuation of v(r, 9) into the lower half of the region r ^ R.

3. Next, let w(x,y) be harmonic in x2 +y2 < 1, y > 0 and continuous in x2+y2 <1, j>^0,
and let dw(x,;>)/d)> tend tog(jc)asj -»Owhen - 1 < x < 1, where g (x) is analytic in - 1 < x < 1.

If - 1 <a < 1, we have

g(x)= £ cn(x-ay,

the expansion being valid in some neighbourhood of a. Then the series YJ
cn(.z~a)"> where

z — x+iy, represents an analytic function of z, g(z) say, in some region \z—a\ ^ R, and we
can take R to satisfy - 1 < a-R < a+R < 1.

00 c(z-a)n+l

Let G(z) = X "( " ,
»=o n + 1

and let W{x, y) = im G(z). Then G(z) is analytic in | z—a \ ̂  R, and so W{x, y) is harmonic
there. Also,
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dy 8x" ""'

and the right-hand side is g(x) when y = 0 and a—R ^ x ^a+R. Hence, by § 2, w(x, y) —
W(x, y) can be harmonically continued across the segment y = 0, a—R^x^a+R. But
W{x, y) is harmonic in the whole region | z—a | ^ R and so, by varying a, we obtain a
harmonic continuation of w(x,y) across the x-axis, - l | x ^ l .

4. We are now in a position to establish Theorem 1. We can transform the interior of D
conformally into the region x\+y\ < 1, yt > 0 in the Zj-plane, where zt — xx + iyu in such a
way that y becomes the diameter yx = 0, - 1 ^ xx g 1, the transformation being z =/(zi), say.
Then the transformation is conformal in a domain which extends outside D across the arc y
[2, p. 186]. Furthermore, g(s) is transformed into an analytic function of xt.

Let u{x, y) be transformed into the function w^Xj, yt). Then we have the relation be-
tween the normal derivatives

=0 d n

for (x, y) on y, where | / ' (*i) | denotes [}f'(zi) \\ =o> which can be shown to be an analytic
function of xt. Since now the right-hand side of (1) is an analytic function of xu it follows from
§ 3 that «!(*!, j j can be harmonically continued across the segment yt = 0, — 1 ^ xx ^ 1.
On transforming back to the (x, j)-plane, we obtain the result that u(x, y) can be harmonically
continued across the arc y.

5. Suppose for the moment that y is any analytic Jordan arc. Then there is a region D'
containing y the points of which can be said to be on one side or the other of y [1, pp. 192-3].
Let D'+ denote the subregion consisting of points on one side of y and D'_ the subregion
consisting of points on the other side of y, the points of y belonging to both D'+ and D'_. We
can now obtain the extension of Theorem 1.

THEOREM 2. Let D be any region for which there is an analytic Jordan arc y with the property
that if Pis any point ofy then there is a neighbourhood N(P) ofP such that N(P)nD = N(P)nD'+.
Let u(x, y) satisfy the same conditions as in Theorem 1 with respect to D and y. Then u{x, y) can
be harmonically continued across y.

It is clearly possible to construct a subregion of D, Dt say, which is bounded, closed,
simply-connected, and whose boundary consists of y (or any finite part of y if y extends to
infinity) and a finite number of analytic Jordan arcs. Indeed,

/>! <= U {N(P)nD}.
Pey

Also, u{x, y) is harmonic in the interior of Dt. It follows from Theorem 1 that u(x, y) can be
harmonically continued across y, and this is the required result.
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