ON HARMONIC CONTINUATION

by M. S. P. EASTHAM

(Received 3 May, 1962)

1. Let D be a bounded, closed, simply-connected domain whose boundary C consists of a finite number of analytic Jordan curves. Let γ be any analytic arc of C. Then we shall prove the following theorem.

THEOREM 1. Let u(x, y) be harmonic in the interior of D and continuous on γ , and let $\partial u(x, y)/\partial n = g(s)$ when (x, y) is on γ , where g(s) is an analytic function of arc-length s along γ . Then u(x, y) can be harmonically continued across γ .

Here, $\partial/\partial n$ denotes differentiation along the inner normal. A similar result for the case in which u(x, y) is analytic on γ is known [3, pp. 220-3]. The proof of Theorem 1 is given in §§ 2-4, and an extension to the case in which D is a more general region is given in § 5.

2. First let $v(r, \theta)$ be any function which is harmonic in r < R, $0 < \theta < \pi$, and continuous in the closure of this region, r, θ being polar coordinates. Also, let $\partial v(r, \theta)/\partial y$ tend to zero as $y \to 0$, when -R < x < R. Define $v(\theta)$ by $v(\theta) = v(R, \theta)$ if $0 \le \theta \le \pi$, and $v(\theta) = v(R, 2\pi - \theta)$ if $\pi \le \theta \le 2\pi$. Then it is proved in [4] (with a different notation) that the function

$$V(r,\theta) = \frac{R^2 - r^2}{2\pi} \int_0^{2\pi} \frac{v(\phi)}{R^2 + r^2 - 2Rr\cos(\theta - \phi)} d\phi,$$

which is harmonic in r < R and continuous in $r \le R$, is equal to $v(r, \theta)$ in $r \le R$, $0 \le \theta \le \pi$. Thus $V(r, \theta)$ is a harmonic continuation of $v(r, \theta)$ into the lower half of the region $r \le R$.

3. Next, let w(x, y) be harmonic in $x^2 + y^2 < 1$, y > 0 and continuous in $x^2 + y^2 < 1$, $y \ge 0$, and let $\partial w(x, y)/\partial y$ tend to g(x) as $y \to 0$ when -1 < x < 1, where g(x) is analytic in -1 < x < 1. If -1 < a < 1, we have

$$g(x) = \sum_{n=0}^{\infty} c_n (x-a)^n,$$

the expansion being valid in some neighbourhood of a. Then the series $\sum c_n(z-a)^n$, where z=x+iy, represents an analytic function of z, g(z) say, in some region $|z-a| \le R$, and we can take R to satisfy -1 < a - R < a + R < 1.

Let
$$G(z) = \sum_{n=0}^{\infty} \frac{c_n(z-a)^{n+1}}{n+1}$$
,

and let W(x, y) = im G(z). Then G(z) is analytic in $|z-a| \le R$, and so W(x, y) is harmonic there. Also,

$$\frac{\partial W(x, y)}{\partial y} = \frac{\partial}{\partial x} \{ \text{re } G(z) \},\,$$

and the right-hand side is g(x) when y = 0 and $a - R \le x \le a + R$. Hence, by § 2, w(x, y) - W(x, y) can be harmonically continued across the segment y = 0, $a - R \le x \le a + R$. But W(x, y) is harmonic in the whole region $|z - a| \le R$ and so, by varying a, we obtain a harmonic continuation of w(x, y) across the x-axis, $-1 \le x \le 1$.

4. We are now in a position to establish Theorem 1. We can transform the interior of D conformally into the region $x_1^2 + y_1^2 < 1$, $y_1 > 0$ in the z_1 -plane, where $z_1 = x_1 + iy_1$, in such a way that γ becomes the diameter $y_1 = 0$, $-1 \le x_1 \le 1$, the transformation being $z = f(z_1)$, say. Then the transformation is conformal in a domain which extends outside D across the arc γ [2, p. 186]. Furthermore, g(s) is transformed into an analytic function of x_1 .

Let u(x, y) be transformed into the function $u_1(x_1, y_1)$. Then we have the relation between the normal derivatives

$$\left[\frac{\partial u_1(x_1, y_1)}{\partial y_1} \right]_{y_1 = 0} = |f'(x_1)| \frac{\partial u(x, y)}{\partial n}$$
 (1)

for (x, y) on γ , where $|f'(x_1)|$ denotes $[|f'(z_1)|]_{y_1=0}$, which can be shown to be an analytic function of x_1 . Since now the right-hand side of (1) is an analytic function of x_1 , it follows from § 3 that $u_1(x_1, y_1)$ can be harmonically continued across the segment $y_1 = 0$, $-1 \le x_1 \le 1$. On transforming back to the (x, y)-plane, we obtain the result that u(x, y) can be harmonically continued across the arc γ .

5. Suppose for the moment that γ is any analytic Jordan arc. Then there is a region D' containing γ the points of which can be said to be on one side or the other of γ [1, pp. 192-3]. Let D'_+ denote the subregion consisting of points on one side of γ and D'_- the subregion consisting of points on the other side of γ , the points of γ belonging to both D'_+ and D'_- . We can now obtain the extension of Theorem 1.

THEOREM 2. Let D be any region for which there is an analytic Jordan arc γ with the property that if P is any point of γ then there is a neighbourhood N(P) of P such that $N(P) \cap D = N(P) \cap D'_+$. Let u(x, y) satisfy the same conditions as in Theorem 1 with respect to D and γ . Then u(x, y) can be harmonically continued across γ .

It is clearly possible to construct a subregion of D, D_1 say, which is bounded, closed, simply-connected, and whose boundary consists of γ (or any finite part of γ if γ extends to infinity) and a finite number of analytic Jordan arcs. Indeed,

$$D_1 \subset \bigcup_{P \in \gamma} \{N(P) \cap D\}.$$

Also, u(x, y) is harmonic in the interior of D_1 . It follows from Theorem 1 that u(x, y) can be harmonically continued across γ , and this is the required result.

REFERENCES

- 1. L. V. Ahlfors, Complex analysis (New York, 1953).
- 2. Z. Nehari, Conformal mapping (New York, 1952).
- 3. W. J. Sternberg and T. L. Smith, The theory of potential and spherical harmonics (Toronto, 1946).
 - 4. T. Ugaeri, On the harmonic prolongation, J. Math. Soc. Japan 1 (1949), 262-5.

MERTON COLLEGE

OXFORD