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EXISTENCE OF DIRICHLET FINITE HARMONIC
MEASURES ON EUCLIDEAN BALLS
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To Professor Makoto Ohtsuka on his seventieth birthday

Divide the ideal boundary of a noncompact Riemannian manifold M into two
parts 0, and 0,. Viewing that M is surrounded by two conducting electrodes J,
and d;, we ask whether (M ; d,, 0,) functions as a condenser in the sense that the
unit electrostatic potential difference between two electrodes is produced by put-
ting a charge of finite energy on one electrode when the other is grounded. The
generalized condenser problem asks whether there exists a subdivision §, U d; of
the ideal boundary of M such that (M ; d,, 0,) functions as a condenser.

Mathematically the problem has two equivalent formulations one of which is
in the geometric and the other in the analytic form. In the geometric formulation
the problem is negatively settled if and only if the linear Royden harmonic bound-
ary A(M) of M is connected. In the analytic formulation the problem is also nega-
tively settled if and only if every Dirichlet finite harmonic measure on M reduces
to a constant on M. A fairy general discussion of the generalized condenser prob-
lem for Riemannian manifolds M was carried out in [22] one of whose consequ-
ences is that the Royden harmonic boundary 4(B") of the Euclidean unit ball B"
in the Euclidean space R” of dimension # > 2 is connected which generalizes the
classical result in the complex function theory that A(B®) is connected (cf. e.g. [3],
[1],[12], [10], [21], [25], etc.).

In this paper we discuss the above generalized condenser problem for the
Euclidean ball B” of dimension # = 2 in a broader potential theoretic setting that
the underlying harmonic structure is given by the p-Laplace equation

—V-(VulMw) =0 A<p=wn),

the solutions of which are the so-called p-harmonic functions. Here the exponent p
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is restricted to 1 < p = » since otherwise the structure reduces to a triviality.
Based upon the p-harmonic structure we consider the nonlinear (in the sense of
not necessarily linear) Royden harmonic boundary A,,(B") with exponent p of the
ball B” (see §5 for the precise definition) in addition to the original linear Royden
harmonic boundary 4,(B") = A(B”") of the ball B". There are many results in the
nonlinear potential theory which are superficially formulation-preserving gener-
alizations of those in the linear case. In the present case of A,, (B™), however, cer-
tain properties of 4,(B”) (p # 2) may differ from those of 4,(B") in an essential
way depending on the exponent p, and our main concern of the generalized conde-
nser problem for the ball B” is then settled in the following fashion.

THE MAIN THEOREM (Geometric form). The Royden harmonic boundary A,,(Bn)
with exponent p (1 < p = n) of the Euclidean ball B" of dimension n = 2 is con-
nected for 2 = p = n but disconmected for 1 < p < 2.

Corresponding to the above result formulated in a geometric form we restate
it in an analytic form. Generalizing the p-Laplace equation we consider a quasi-
linear elliptic equation of the form

—V-d@,Vu) =0 (ded,B),1<p=n

on the ball B”, the solutions of which are usually called &-harmonic on B". Here
&f,,(B") is the family of all strictly monotone elliptic operators & : B” X R" — R"
with A (x, Vi)V = | Vu|* (see §2 for the precise assumptions on ). Since | Vu |’
is locally integrable over B” for #/-harmonic functions  on B"(4 € #,(B")), we
can define the p-Dirichlet integral of # over B” by

D,(u; B") = L”IVu(x) P dz < oo

and we say that u is p-Dirichlet finite on B” if D,(u; B") < oo We denote by
# N v the greatest &/-harmonic minorant of two &/-harmonic functions # and v on
B”. An 4-harmonic function w on B” is said to be an &-harmonic measure on B”
if

wAAd—w =0

on B". Intuitively speaking, a p-Dirichlet finite &/-harmonic measure w on B” is
the “potential” of the “electric field” of a “condenser” formed by a subdivision of
the “ideal boundary” of B”. Then our solution to the generalized condenser prob-
lem for B” may also be stated in the following fashion.
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THE MaIN THEOREM (Analytic form). Ewvery p-Dirichlet finite & -harmonic mea-
sure on B" veduces to a constant for every A in d,(B") with 2 < p < n; neverthe-

less, there exist nonconstant p-Divichlet finite A - harmonic measures on B” for every s
ind,(B") with1 < p < 2.

The paper is organized as follows. In 81 some fundamentals of Sobolev spaces
are stated. Especially the comparison of Sobolev null spaces for different expo-
nents p are discussed. The Maz'ja decomposition of the Sobolev space into the
class of &-harmonic functions and the null space is considered in §2. In particu-
lar the monotoneity of the decomposition is established. In §3 basic properties of
4 -harmonic measures are discussed. The p-capacity of the periphery of the
(n — 1)-dimensional ball in the #-dimensional Euclidean space is calculated in §4
only for the sake of completeness since the result is essentially made use of later.
As the last of the preparatory sections, the p-Royden harmonic boundary is ex-
plained in §5 and the equivalence of the main theorems in the geometric and the
analytic forms is established. After these preliminary discussions in §§1—5, the
proof of the main theorem is given in §6 for the analytic form.

1. Sobolev spaces

1.1. The length Ix] of a point (vector) x = (xl, .. .,xn) in the Euclidean
space R” of dimension # = 2 is given by (X_, @H%"? as usual. We denote by
x-y the inner product of x and y = (y',...,y") so that z-y = >r, 2'y’ and z-x
= |x|2 Our main purpose of this paper is to study potential theoretic nature of
the open unit ball B” in R":

B"={xeR":|z| <1}.

We denote by Bla, #) the open ball {x € R"|x — a| < #} of center a and radius
7 in (0, oo]. Since we are mainly considering balls B(0, ) with center the origin
0 of R”, we simply denote them by B(#) so that B” = B(1) and R" = B(c0),
Throughout this paper the number p stands for an exponent with 1 < p =
and ¢ its conjugate exponent so that 1/p + 1/¢g = 1. The space L,(B) over a
ball B = B(7) is considered with respect to the volume element dz = dz' -+ dx”
on R". The volume (Lebesgue measure) of a measurable set E € R” is denoted by

|E|=fde.

Besides the space L,(B) we consider the product space
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L,B)"=L,B) X -+ X L,(B) (nfactors),

which is the space of measurable vector fields X = (X*,...,X") : B— R" with
the norm

lx:,8"1 = ([ 1 x@ Pdz) <

where | X| = (0, (X)%)"* so that | X| € L,(B) and
HxL,BI=1x;L,B)"].

The space L,(B)" shares the same properties with L,(B). For example, the dual

space (LI,(B)n)* of L,(B)" is L,(B)" (1/p+1/q=1) in the sense that the
. * .

mapping Y~ — Y determined by

Y*(0 = fB X@) Y@dz (X€L,(B)

is an isometric isomorphism between (L,(B)")* and L,(B)". Hence in particular,
L,(B)* is a reflexive Banach space as L,(B) is. The following consequence of the
reflexivity is useful: A subset in L,(B) (L,(B)", resp.) is sequentially weakly
compact if and only if it is bounded in L,(B) (L,(B)", resp.) (cf. e.g. [6; p. 68)).

1.2. Recall that a vector field X € (locL,(B))", the product of # same fac-
tors locL,(B), is a distributional gradient Vu = (9u/dx,...,0u/0x") of a func-
tion u € locL,(B) if

[u@V Y@dz = — [ X@) Y@ dz
B B

for every vector field Y€ C, (B)" = C;(B) X -+ X Cy(B) (n factors). Our
basic function space is the Sobolev space W, (B) of functions f € L,(B) whose dis-
tributional gradient V f € LP(B)n. It is a Banach space equipped with the norm

lrsw,®l=Ilf;L,BI+1vf;L,®B"I

Concerning the smoothness of functions in W;(B) we know that the subspace
W,,l(B) N C”(B) is dense in W,,l(B) with respect to the above norm (cf. e.g. [18;
p. 12)). The closure of C, (B) in W,l(B) is denoted by WPI,O(B). Intuitively speak-
ing, a function f in W,,l(B) belongs to W,,I,O(B) if and only if f “vanishes” on the
“boundary” of B. The meaning will be made more precise after we introduce the
Royden compactification of B in §5.
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We can measure the size of the boundary 0B of B with respect to Wpl,o(B).
We say that B is p-parabolic (i.e. 0B is “small”) or p-hyperbolic (i.e. OB is “large”)
according as 1 € W,,(B) or 1& W, (B). It is seen that B(e) = R" is
n-parabolic (which we do not use in this paper). However we have the following
result.

LemMa 1.1. A finite ball B = B(r) (0 <y < o) is p-hyperbolic, ie. 1€
lIyl
p'O(B)n

Proof. Contrariwise suppose that 1 € W;,O(B) so that there exists a sequ-
ence {¢,} in C; (B) such that
lo,—1; W, (B |—0 (k— o).

Let #(z) = u(z',...,2") = z'. Since u is bounded on B and |V#| = 1, we can
easily check that

(1.1) lug, — u; W,(B) | =0 (k— ).

The Gauss divergence theorem
. p_z e p_z . ‘r
LV ((up) | Vu " Vu)dx j;B (Cup,) |Vu " Vu) mdSz,
where dS, is the area element on 0B, assures that
(1.2) f[ Vul"2Vu- V (wp)dx = 0
B
since ¢, vanishes on 0B and V-(Vu|"™> Vu) = 0 because of the fact that
|Vu Ip—2 Vu = (1,0,...,0). The Holder inequality shows that the difference of the
left hand side of (1.2) and

fqulb—zVu-Vudx=f|Vu Pdx
B B

in absolute value is dominated by
N Vul’ VLB | - |Ve — Vg ; L,B"| < | BI" |u— ug, ; W, (B |,
where 1/p+1/q=1. Thus, by (1.1) and (1.2), we must conclude that

fl Vu lpdx = 0 but on the other hand
R
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fIVulpdx=fdx= |B| > 0.
B B
We have arrived at a contradiction. O

1.3. The following characterization of W;(B) is a part of the Nikodym
theorem (cf. e.g. [16; p. 73], [18; pp. 8-9)): Any # in WPI(B) (possibly modified on
a set of zero measure dr) is absolutely continuous on almost all straight lines
which are parallel to coordinate axes. The distributional gradient of # coincides
with the usual gradient almost everywhere; Conversely, if a function u in L, (B) is
absolutely continuous on almost all straight lines that are parallel to coordinate
axes and the usual gradient of # belongs to L,(B), then it coincides with the dis-
tributional gradient of  and u € W, (B).

Using the above characterization of the class W;(B), we see the following
useful lattice property of W;(B). For two functions f; and f, on B, we define new
functions f; U f, and f; N f, on B by

(f, U £) (@ = max(f,(0), £,(x), (f; N £,) @) = min(f,(2), f,(@))

for each point x in B.
Concerning these lattice operations U and N, the Sobolev space W;(B)
forms a vector lattice; The following identities hold:

lAVA LB +1a05;L,BIF=IfL,BI+1%4;LBI,
VR UL ;LB +IVnf; LB I
=|Vf; LB+ Vs L,B"I;

The mapping (f, @ —=fU g, fN g of W,,l(B) X W,,l(B) to W;(B) is continuous:
if {f,) and {g,)} are sequences in W,,l(B) such that || f, — f; W, (B) |— 0 and
le, — g; W, (B)|— 0 as k— oo for functions f and g in W, (B), then | f, U g,
—fUg;W,B |—0andllf,Ng —fNg; W) B |—0ask— oo

The basic idea of the proofs for these facts can be found e.g. in [4; pp.
69-70, pp. 78-79], in which the dimension # is restricted to 2 and the function
space in consideration is slightly different from the present W,,1 (B).

1.4. We insert here a proof of the following elementary fact for the sake of
completeness. Let B = B(#) be a finite ball and B, = B(#,) a concentric ball such
that B © B, so that 0 < 7 < 7, £ co. With each function f on B, we associate the
function f, on B for each t € (0, #,/7) given pointwise by
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i) =ftr) (x| <r/D.

Lemva 1.2. If f belongs to L,(B,), then f, belongs to L,(B) (0 <t <w#./7)
and

l,inll If=r:L,BIl=o0.

Proof. Fix a closed ball A = B(rz) with » <7, < 7. For an arbitrary num-
ber ¢ > 0 there exists a g in C(A) such that
le—r;L,@A<e
(cf. e.g. [27; p. 69)). Clearly f, € L,(B) (0 < t < #,/7). Observe that
li=riL,Bl=slfi—g:L,BI+lg—g;L,BI+Ig—r;L,B)]

for every t € (0, #,/7). The first term of the right hand side of the above inequal-
ity is, by the change of integrating variable { = tx,

@ — 6@ Paz) = ([1 1) — gt V'dz)
5 B
B <f8 7O~ @ 'pt_ndqw St f— g LA | S,

where tB = B(tr) C A (t € (0, #,/7). Therefore we see that

limsupllf, —f; L,(B) | £ 2¢ +1limsuplg, —g;L,(B) I
t—1 t—1

Since g € C(A), the uniform continuity of g on A D B assures that

limllg, — g;L.(B)|=0.
t—=1

In view of the inequality
le,—g;L,BI=<|BI" g —g;L.BI,
we see that limsup,, | g, — & ; L,(B) | = 0 and therefore

limsup |l £, — f; L,(B) || £ 2e.
t—1
On letting ¢ | 0 we obtain lim,_, || f, — f; L,(B) | = 0. ]

COROLLARY.  If f belongs to L,(B), then f, belongs to L,(B) (0 <t <1) and
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lim| f, = f;L,(B)| = 0.

tT1

Proof. We extend f to R” by setting f= 0 on R"\ B. Then f € LP(R") and Lem-
ma 1.2 implies lim,_, | f, — f; L,(B) | = 0 and in particular the above assertion.

O

1.5. As in the preceding subsections let B = B(#) be a finite ball and B, =
B(r,) the concentric ball with B C B,. As a consequence of Lemma 1.2 we have
the following result.

LemMa 1.3. If f belongs to W,,I(Bl), then f, belongs to W, (B) (0 < t < r,/7)
and

lim| f,—f; W, B | =o0.
t—1
Proof. In view of Lemma 1.2 we only have to prove
(1.3) lim|Vf, —Vf;L,(B)"|=0.
t—1
Observe that

Tow =2 () =t 2w =t V) @
z ox

almost everywhere on B, i.e. 8f,/0x' = t(3f/dx'),, and therefore

n 0 n 0 0 n
v-vis S f’—af|St2(f>——fi|+|1 5|2
i=1 i=11 \gx' or i=1
A fortiori we have
0 0 L2 (7]
wi-vriLwsE| (F) - Line |- i e |
or'’t  or i=1
Since Of/axi €L,B) 1=1,...,n), Lemma 1.2 assures that the first term of
the right hand side of the above inequality tends to zero as t— 1. We can thus
conclude (1.3). O

1.6. Let B = B(») be a finite ball (0 < » < o). It is natural to extend each
¢ in C, (B) to R” by setting ¢ = 0 on R”\ B. In this sense we usually view that
C,(B) € C”(R") and actually

C,(B) = {fe C"(R") : suppfC B}.
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Imitating this situation we extend each g in W,,I,O(B) to R” by setting g =0 on
R"\ B. However, this time, the inclusion W,,(B) C W, (R") may not be entirely
trivial and all the more for the following assertion a proof may be in order.

Lemvia 1.4, Any function f in W,o(B) can be continued to a function in
W; (R™) by setting f= 0 on R"\ B. Conversely any function f in W; (R™) vanishing
on R"/ B belongs to W,(B). In short,

(1. 4) W,o(B) = {fe W,(R") : f| R"\ B = 0}.

Proof. To be precise we denote by f the extension of any function or any
vector field f on B to R" by setting f = 0 on R"\ B. We maintain that g~ be-
longs to W, (R") for any g in W,,(B). For the purpose choose a sequence {¢,} in
C;(B) such that [ ¢, — g ; W, (B) |— 0 (k— ). Consider

f g @V - Ywdx = fg(x) V-Y(x)dx
R" B
for any vector field Y in C:(Rn)". By the Holder inequality, we see that

i_/;g(x)V-Y(x)dx—L¢k(x)7.y(x)dx

sle= ;LB |- V-Y ;LB =0 (k— )

where 1/p +1/q = 1. Hence
[e@ v Y@dz=1im [ 0@ V- Y@ dz.
B B

k—oo

By the Gauss divergence theorem

x
[7-w@rad= [ o@vw grds.=0
where dS, is the area element on 0B, we obtain
[o@ryva=- [ 7@ vads.
Once more by the Holder inequality, we see that

‘ fB Vo, (x) - Y(z)dr — fB Ve Y(@)dz
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=|Ve, —Ve; LB |V ;LB | =0 (k— o),

and therefore we deduce

lim (~ [V, Yadz) = — [Vew Ywdz= - [ 70 @ Y@ da.

k—sc0

We have thus obtained the identity
[e@vY@ir=—- [ 7o @ ¥@dr
R" R"
for every Yin C, (R™”. This shows that the distributional gradient Vg~ of g~ is
(Vg) “on R” and :
I (Ve)~; LR [ =Vg; L,(B)"| < o

sothat g~ &€ WPI(R”) and, by definition, ¢~ =0 on R"\ B.

Conversely let g € W;(Rn) and g| R"\B=10.Sett, =1+ 1/k and g, =
&, ie. g =gtx). By Lemma 13, g € W,(B), and actually g €
W; (R™) and g,(x) = 0 for any xin | x| > k7/(k + 1) and moreover

lim | g, —g; W, (B | = 0.
k—oo

As usual we take a,(x) = ¢ "a(e'x) (¢ > 0) where

-1
—1/(1—1zl?» -1/(-|z!?
a(x)=<fne xdx) e *
B

for | x| <1 and alx) =0 for | x| = 1 and we form the regularization (mollifier)

gk, = [ g — Da, @t
R”
for every e in 0 < & < 7/2(k + 1). Then g, *a, € C, (B) and we can choose ¢,
in0<e, <r/2(k+ 1) sosmall that
lec*a, — &; W,(B) | <1/k.
Then | gka, —g; W;(B) | =0 (k— 0). This assures that g € WP{O(B). O

1. 7. Let B = B(») be a finite ball (0 < » < o). We take a pair (a, b) of
two exponents such that 1 < ¢ £ b = n. By the Holder inequality we see that

(1.5) lrsw,B =B ™If;w,B| A<asb=n
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for any f in locL,(B) with distributional V& (locL,(B))". As a consequence of
the above inequality (1.5) we have the trivial inclusion relation

W) (B) D W, (B) 1<asb=n.
Slightly less trivial is the inclusion
W, (B) D W, (B) (1<a<b=n.

In fact, g € W,,(B) means that there exists a sequence {¢,} in Cy (B) such that
lo,— 2 W, (B |—0 (k— o). By (1.5)

lo,—g; W,B =B "o, —g; W, B

and therefore || o, — g ; W, (B) |— 0 (k— ) and a fortiori g € W,,(B).
By the above two inclusion relations we see that

W,,(B) N W, (B) D W,,(B) 1<a=bsn,

which is the best conclusion we can make if we only use the property of B that it
has a finite volume. Due to the nice geometric property of B that the boundary 0B
of B is compact and smooth we can maintain the following important result:

Lemma 1. 5. If B is a finite ball, then
(1.6) W,o(B) N W, (B) = W,o(B) A1<a<b=un.

Proof. We only have to show that the left hand side of (1.6) is contained in
the right hand side of (1.6). For the purpose we take an arbitrary f in WE{O(B) n
W,,X(B) and denote by f the extension of f to R” by setting f =0 on R"\ B.

Since f € Wal,O(B), (1.4) and its proof imply that f € W, (R" and Vf = (Vf)~
on R”. On the other hand, f € W, (B) assures that

L wy®RDI=17; W, B[ <oo

and thus f € W;(R"). Again by (1.4) we conclude that f € W,:O(B). O

2. g/-harmonic functions

2.1. We say that & is a strictly monotone elliptic operator on a ball
B = B() (0 < r £ o) with exponent p € (1, nl if 4 is a mapping of B X R”" to
R” satisfying the following assumptions for some constants 0 < a < 8 < o0
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the function &~ 4 (x, h) is continuous for
(2.1) almost every fixed x € B, and the function
x - d(x, h) is measurable for all fixed » € R”;

for almost every £ € B and for all h € R”

(2.2) d@x, h)-hzalhl,
(2.3) |dx, | =Blal",
(2.4) (A, h) — A, hy)) - (h, —h,) >0

whenever h, ¥ h,, and
(2.5) Az, A) = | 21"2d (x, h)

for all A € R\ {0}.

The class of all operators & on B satisfying (2.1)—(2.5) with the exponent p
in 1 <p =n will be denoted by #,(B). Using & € #,(B) we consider a quasi-
linear elliptic equation

(2.6) —V-dx,Vu) =0

on B. A function # on B is a weak solution of (2.6) if u € lOCW,,l(B) and
(2.7) [ @ 7u@) To@dr=0
B

for every ¢ € C, (B). If u € W,,1 (B), then it is easy to see by the Holder inequal-
ity and #(x,Vu) € L,(B)” (1/p+ 1/ =1) as a consequence of (2.3) that % is
a weak solution of (2.6) if and only if (2.7) is valid for every ¢ € W;_O(B). As
well-known, weak solutions of (2.6) (possibly modified on sets of zero measure dx)
are actually continuous and in fact Holder continuous (cf. e.g. [29], [30]). Hereafter
we say that a function % on B is &-harmonic if u € C(B) N locW, (B) and « is a
weak solution of (2.6) on B. We will denote by

W,,(B) = {u € W,(B) : uis d-harmonic on B}.

A simple characterization of the class W, ,(B) that it is the class of all

p-Dirichlet finite &f/-harmonic functions on B will be given in the next subsection
as (2.9).
The simplest and the most typical operator & in &,(B) is the p-Laplacian

dx, h) =|h|"h
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so that the corresponding elliptic equation is the p-Laplace equation
—V-(Vul’Vuw) =0

whose weak solutions (automatically continuous) are referred to as being
p-harmonic. Observe that 2-harmonic functions are usual classical harmonic func-
tions. We in particular denote by W;,,(B) the space of p-harmonic functions on B
belonging to the class W;(B), ie.

W,,(B) =W, ,(B) (d=|hl""h.

Fundamental properties of &/-harmonic functions are concisely compiled
in e.g. [9] among which we especially use the Harnack inequality (cf. e.g. [26;
pp. 295—-309)): If K is a closed concentric ball in B, then there is a constant ¢ =
c(n, p, a, B, K, B) > 1 such that

supu = c-inf u
K K
for every nonnegative &4/-harmonic function # in B.

2.2. It is convenient to consider another type of Sobolev space L;(B), which
is the class of functions f in locL,(B) whose distributional gradients Vf belong
to L,(B)". Hence L,(B) N L,(B) = W, (B). Since the ball B has the cone proper-
ty (cf. e.g. [18; p. 18]), we have the following generalized Poincaré inequality ([18;
p. 22]): f B= B(») is a finite ball (0 < # < o), then there exists a domain
constant K = K(B) such that there exists a constant ¢(#) with

(2.8) lu—c@);L,B)| = K|Vu;L,(B)"].
Hence we see that
L,(B) =W, (B) (B=B(®),0<r< ),

ie. L,(B) C L,(B).
Recall that the p-Dirichlet integral D,(f ; B) of a function f &€ locL,(B) =
lochl(B) is nothing but the ™ power of the norm ||V f ; L,B"|:

DfiB = [|Vf@ [dr <
B
and f is said to be p-Dirichlet finite if D,(f; B) < oco. We are interested in

p-Dirichlet finite &-harmonic functions (4 € 4,(B)). Concerning these functions
we have, as a consequence of (2.8),
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(2.9) W, ,(B) = {u: u is d-harmonic on B and D,(u ; B) < o)

for any finite ball B and any o € 4,(B).
Still assume that B = B(#) is a finite ball (0 < » < ). The original Poin-
caré inequality (cf. e.g. [16; p. 169]) concerns primarily about ¢ in C, (B):

(2.10) lo: LB | =207"71V0; L(B)"].
The inequality extends to functions @ in WI,I,O(B) by continuity.

2.3. Let B = B(») be a finite ball (0 < # < o). For any f € W, (B) and o
€ d4,(B) there exists a p-Dirichlet finite #-harmonic function # (ie. u €

W, ,(B)) such that u — f € W,(B) (cf [17)). Such a function is seen to be uni-
que. In fact, let u; be in W, ,(B) with u; — f€ W,,(B) (i =1,2). Since

j;yd(x,Vu',)‘V(u,- —Pdz=0 G,j=1,2),
we have
j; (ol (z, Vi) — 4z, Vu)) - (Vu, — Vu,) dz = 0.
The condition (2.4) implies that V (#, — u,) =0 or u, — #, = ¢, a constant, on
B. In view of the fact that

c=uy—uy= (uy—f) — (u,— f) € Wpl,o(B)’

Lemma 1.1 assures that ¢ = 0 so that #; = u, on B.

Since the function # € W, ,(B) with u — f € W,(B) is determined unique-
ly, we denote # by n';f, which will be referred to as the & -harmonic part of f €
W;(B). We also write the p-harmonic part by nff= ﬂgf (Adx, B) =|hh).
We have thus obtained the direct sum decomposition

(2.11) w,(B) = W, _,(B) @ W, (B).

Let {rk} be a strictly increasing sequence in (0, #) converging to # and B, =
B(r) (k=1,2,...) so that {B,} is an exhaustion of B. For any f € W, (B), set

u=rnof
on B and

u, = { TL'Z"f on By,
f on B\ B,.
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We have the following consistency relation (cf. [17]): Vu, — Vu weakly in L,(B)"
and A (x, Vu,) — d(x, Vu) weakly in L,(B)" (1/p+ 1/q=1). Further we
maintain the following consistency relation.

LemMa 2.1. The sequence {u,} is contained in W;(B) and converges to u
strongly in L,(B) :
lim|[lw, —u; L,(B) | =0.

k—oo

Proof. Put g, =f—u, (k—1,2,...) and g = f— u. Since g, € Wpl,o(Bk)
and g, = 0 on B\ B,, (1.4) implies that g, € WPI,O(B) so that %, € W,,l(B). Since

Vg, =Vf—Vu,—~Vg=Vf—Vu

weakly in L,(B)", {IVg,; L,(B)"|} is bounded (cf. 1.1). By the Poincaré inequal-
ity (2.10), {l g,; L,(B) |} is also bounded and so is ]| g; W;(B) I}. In view of
the Rellich-Kondrachov theorem (cf. e.g. [2; p. 144]), the imbedding

W,,(B) — L,(B)

is compact. Therefore, any subsequence of {g,} contains a subsequence {k,} and
an h € L,(B) such that A, — h; L,(B) |[— 0 (k— o). Observe that

j;th~Y¢r= —thkv-de k=1,2,.)

for every Y € C;(B)". Since Vh, — Vg weakly in L,(B)" and h, — h strongly in
L,(B), upon letting k— ©° in the above displayed identity, we obtain

fBVngx: —thV-de

for every Y € C, (B)". This means that Vg = Vh and hence # — g = ¢, a con-
stant, on B. We now maintain that ¢ = 0. Contrariwise suppose that ¢ # 0. Set w,
=¢"'(h, — 8. Then w, € W,,(B), Vw,— 0 weakly in L,(B)", and w,— 1
strongly in L,(B). Take the function v(x) = v(z',...,2") = 2" and the unit vec-
tor e, = (1, 0,...,0). Since v € W, ,(B) and vw, € W,,I,O(B), we have

f |Vol" Vo V(ow,)dx = 0.
B

On the other hand, in view of |Vv Ip_z Vv = e, and

(Vo " Vo V(ow,) =V, (ve)) + w,
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and ve, € L,(B)" (1/p + 1/¢q = 1), we see that
fIVv "2V V(vw)dx = wak-(vel)dx+fwkdr
B B B
— [0-@eydz + [ 1dz=1B| >0
B B

as k— oo which is clearly a contradiction . Hence # = g on B. We have thus
seen that any subsequence of {g,} contains a subsequence converging to g strong-
ly in L,(B). A fortiori |g, —g;L,(B)|—=0 (k— ) so that |u, — u;
LB =0 (k— ). O

2.4. Let B = B(# be a finite ball (0 < » < o). We use the following form
of the maximum principle (cf. [17]): If # and v belong to W;M (B)and (w—v) N O

S W,,I,O(B), then # = v on B. As a consequence we have the following monotoneity
of the operator 7 : W, (B) — W, ,(B).

Lemva 2.2. If f, and f, belong to W, (B) and f, Z f, on B, then 75 f, Z 74 f,
on B.
Proof. Put whf, = u, and u, — f, = g, € W,,(B) (i =1,2) so that
uy—u, = (fi = f) + (& — &).
Choose a sequence {¢,} < C, (B) such that
(g~ 2) — s W, B =0 (k— )

and set ¢, = (fy — fp) + o, (k=1,2,...).1f t, € (0, #) is chosen close enough
to 7, then we have

pNO0O=fi—f) Te) NO=(—f)N0=0
on {t, <|x| < # and hence ¢, N 0 € W,(B) (k=1,2,...). Observe that
I, — ) — s W, B [ =1 (g, — &) — 0 W,(B) |0 (k— )
and a fortiori, by subsection 1.3,
[, —u) NO—=¢,NO; W,(B) =0 (k— c0).

Therefore we can conclude that (#, — u,) N 0 € W,(B) along with ¢, N 0 €
W,o(B) (k=1,2,...). By the maximum principle stated at the beginning of this
subsection, we obtain that #, 2 #, on B. Ol
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2.5. As in subsection 2.4 the ball B = B(#) is supposed to be finite. Take
an arbitrary &/-harmonic function % on B not necessarily in Wpl_ﬂg(B). By the very
definition of #/-harmonicity that h € locW, (B), we see that h € W, (B(#) for
any t € (0, 7). In view of this we have another type of monotoneity of the oper-
ator 71';.

LEMMA 2.3. If f belongs to W,,I(B) and h is an arbitrary -harmonic function
on B such that f = h (f = h, resp.) on B, then TL'Zfé h (n;f% h, resp.) on B.

Proof. As in subsection 2.3 take a strictly increasing sequence {7} in
(0, ») converging to 7 and put B, = B(»,) (k=1,2,...) so that {B,} is an ex-
haustion of B. Set # = 7., f and

u, = [ﬂz"f on B,,
f on B\ B,.

By Lemma 2.1, we have that # and u, belong to W, (B) and u — u,; L,(B) |
— 0 (k— o0). Hence, by choosing a subsequence if necessary, we can assume
that

lim %, (z) = u(x)

k—oo

almost everywhere on B. Fix an arbitrary ball B(#) (0 < ¢ < #) and choose k so
large that ¢ < #,. Since f and & belong to W, (B,) and f < h (f Z h, resp.) on B,,
Lemma 2.2 implies that

u,=nrf<sath=h (w,=ny}fzn}h=h, resp)
on B, and in particular
u, (@) = h(x) (u,(x) = h(x), resp.)

on B(#. On letting &k — ©°, we see that u(x) = h(x) (u(x) = h(x), resp.) almost
everywhere on B(f) and hence everywhere on B(f) by the continuity of
& -harmonic functions. Since ¢ is arbitrary, we obtain the desired conclusion. O

3. 4 -harmonic measures

3.1. Take an o € d,(B) where B= B(») (0 <7< ). We denote by
uNv=u, ,v=u,yp the greatest #-harmonic minorant of two &-harmonic
functions # and v on B. Thus # A v is characterized as the #/-harmonic function

https://doi.org/10.1017/50027763000004761 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004761

102 MITSURU NAKAI

w on B with the following two properties. First, w = # and v on B. Second, if /4 is
any 4-harmonic function on B such that # = u# and v on B, then # < w on B.
Needless to say, the greatest 4/-harmonic minorant of # and v on B may or may
not exist and once we use the notation # A v, we understand that the existence of
the greatest harmonic minorant of # and v on B is assured. We also use the nota-
tion # V v to indicate — ((— ) A (— v)).

We say that w is an &-harmonic measure on B if w is #/-harmonic on B and
satisfies the condition

(3.1) wAQ—w =0

on B. Observe that 1 — w is an &-harmonic measure along with w since we have
A-—-wANQ-0Q-—w)=Q—w) Aw=wAN A —w) =0. The -constant
functions 1 and O are clearly $f/-harmonic measures and actually these are only
constant harmonic measures and any nonconstant & -harmonic measure w satisfies
0<w<1on B In fact, from (3.1) it follows that 0 < w = 1 on B and hence
both of w and 1 — w are nonnegative &/-harmonic function on B. If w = ¢, a con-
stant, on B, then we see that

cNd—0=wN1d—-w =0,

which shows that ¢ = 0 or 1. By the Harnack inequality we see that w > 0 and
1 —w > 0on B unless w is a constant on B.

An intuitive meaning of (3.1) is that the “boundary values” of w on 0B is a
characteristic function of a set E in 0B and w(x) is the “measure” of E calculated
at . If we view B as an electrostatic condenser bounded by two electrodes 0B\ E
grounded and E electrostatically charged so as to produce a unit potential differ-
ence on E, then the potential of the induced electrostatic field on B is w and the
total energy of the charge on E is D,(w ; B). Hence we are mainly interested in
the existence or nonexistence of nontrivial p-Dirichlet finite &/-harmonic mea-
sures. Such a problem is usually referred to as the gemeralized condenser problem.
The formulation (3.1) of harmonic measures was first introduced by Heins [8] for
2-harmonic functions (cf. also [21], [22], [23]).

3.2. Let B= B(?) be a finite ball (0 <7< ) and & € &,(B). Although
the condition (3.1) is neat, it is not always easy to see whether a given
& -harmonic function satisfies (3.1) or not. Hence we try to reformulate (3.1) for
p-Dirichlet finite & -harmonic functions.
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LemMMA 3.1.  The following three conditions for a p-Dirichlet finite o -harmonic
Sfunction w on B are equivalent by pairs:

@wANQ—w =0mB;

(b) w@ — w) € W,,(B);

(c) w* € W, (B) and mow’ = w.

Proof. First of all we note by (2.9) that w € W,,l(B) (and actually w €
W, (B).1f w1 — w) € W, (B) € W, (B), then the identity

w'=w—wl—w weW,,B),wld—w € W,,(B)

shows that w’ € W;(B) and 71'; w* = w so that (b) implies (c). Conversely, if
w” € W, (B) and 75, w* = w, then

wl —w) = — W' —w) = — @ — 7w’) € W), (B)

so that (c) implies (b). Thus we have seen that (b) and (c) are mutually equivalent.
Suppose (a) is valid so that 0 = w =1 on B. Since 0 = w(l — w) = w and
1 — w on B, we see by the monotoneity of 71'; (Lemma 2.2) that

=750 n,w —w) Saiw=wand 751 —w) =1 — w

on B. Hence 0 < 7y (w(1 — w)) < w A (1 — w) = 0 on B and therefore we have
nZ (w(@ — w)) = 0. By the direct sum decomposition (2.11) we can conclude that
w1l —w) € W,,lvo(B) so that (b) or equivalently (c) is valid.

Finally suppose that (b) or equivalently (c) is valid. We wish to derive (a). By

the monotoneity of nz (Lemma 2.2) we see that w =0 implies
w= 1w’z 1,0 =0,

ie.w = 0 on B. Since w’ =1 — w is also p-Dirichlet finite and #-harmonic on B
along with w such that w'(1 — w") = w1l — w) € W,,IYO(B), w’ also satisfies (b)
and (c). Hence by the same reasoning as above we see that w’ = 0 or w = 1 on B.
Thus we have established that w 2 0 and 1 — w = 0 on B. Next take any
A-harmonic function 4 on B, not necessarily in W, ,(B), such that & < w and
1 — won B. Then we have

1l —w) =w(l —w) and wh=wl — w

on B. By adding these two inequalities, we have # < 2w(1 — w) on B. By the
second form of the monotoneity of nz (Lemma 2.3), we see that
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h<ah@Quwd —w) = 275wl — w) =0

in view of (b), i.e. # = 0 on B. This means that w A (1 — w) = 0 so that (a) is de-
rived. O

3.3. Concerning the ranges of #-harmonic measures we have the following
result.

LEmMA 3.2. If w is a nonconstant p-Dirichlet finite s - harmonic measure (4 €
4,(B)) on a finite ball B, then the range w(B) of w on B is the open interval (0,1):

(3.2) infw=0 and supw = 1.
B B

Proof. Let supyw = a. Since 0 £ w =1 on B, we have 0 = ¢ £ 1. Then
w’ < aw on B. By the characterization (c) of p-Dirichlet finite &/-harmonic mea-
sures in Lemma 3.1 and the monotoneity of 71.'; (Lemma 2.2), we see that

B 2 B
w=m,w = nylaw) = aw

on B. Since w is not a constant, w > 0 and w = aw implies that ¢ = 1. With the
trivial relation @ = 1 we conclude that @ = 1, i.e. supy w = 1.

Observe that 1 — w is also a nonconstant p-Dirichlet finite &/-harmonic mea-
sure along with w. Applying the above result to 1 — w, we see that

=sup1~w)=1~—infw
B B

or infy w = 0. Thus we have derived (3.2). ]

ReEmARK. The above proof is an amelioration of a standard one in the classic-
al 2-harmonic case. In the classical case it is known that w’ is subharmonic and w
is the least harmonic majorant of w” when w is a 2-harmonic measure on B. Using
this fact instead of the operator n'z and its monotoneity, the above lemma 3.2 in
the 2-harmonic case can be proven without the assumption of 2-Dirichlet finite-
ness of w. We gave the above proof in order to show how the standard classical
method can be generalized to the present #/-harmonic case. However we append
here another proof of Lemma 3.2 which dose not make use of the assumption of
the p-Dirichlet finiteness of w.

The proof depends upon the monotoneity of # A v in # and v. Since w is a
nonconstant & -harmonic measure, we at least know that 0 < w <1 on B. Set
a=supgwsothat w=<agon Band 0 <a=1 Observethatl —w=1—a on
B.Since0 =1 —~a<1and 0<w<1onB, we have
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w21 —aw and 1—a=1A—aw
on B. Hence we see that
0O=wAN(Q—-wa2wAl—a2{0-aw AN{Ql—aw=0—-adw=0

on B and a fortiori (1 — @w = 0 on B, which implies that @ = 1 or supy w = 1.
Considering 1 — w instead of w in the above argument we see that supy (1 —
w) = 1 or infyw = 0.

3.4. The following lemma will be made essential use of later in the construc-
tion of a nonconstant p-Dirichlet finite #/-harmonic measure on B" (f €
4 ,(B™) for pin (1,2).

LEmMA 3.3.  The - harmonic part Ty f of an f in W, (B) with the property
(3.3) fa—f e whB)
is a p-Dirichlet finite 4 -harmonic measure on B.

Proof. We only have to show that w = nﬁf is an 4 -harmonic measure. We
have the unique decomposition

f=w+g (g € W,,(B).
We also have the trivial identity
fP=ft e (&= —fA—N € W®B).
Replacing f by w + g, in the above identity we have
w+g)=w+g)+eg
and therefore we can write
w'=w+ g2,

where g, = g, + g, — Qw + g)) g, is seen to belong to W;_O(B). Thus the above
identity is the unique decomposition of w’ into the harmonic part w and the part
g, in WI,I,O(B) so that

B 2 _
TW = w,

which shows, by Lemma 3.1, that w is an 4/-harmonic measure on B. ]
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4. Capacity

4.1. Since we denote by B” the unit ball {| x| < 1} in the Euclidean space
R” of dimension # 2 2, the unit sphere {| x| =1} in R” is denoted by dB". We
denote by X" the unit sphere in the (# — 1)-dimensional subspace {x” = 0}
considered in R” :

X'=@B) N{x=(x',... 2" €ER": 2" = 0}.
Take the tubular neighborhood
T"(H) = {x € R" : distance(z, 2 <8 (0<t<1)

of X" in R”. Consider the p-capacity cap,(Z"; ) of 2" relative to the open set
T"(®) defined by

(4.1) cap,X"; H = infj;’lIV(p(x) Pdr A <p=wn

where the infimum is taken with respect to ¢ which runs over all functions ¢ in
Cy (R™) with supports in T"(f) such that 0 £ @ <1 on R” and ¢ =1 on a
neighborhood of 2", Here C; (R™) may be replaced by WI,I,O(R'L) N C(R™) since
C;(R™ is dense in WPI_O(R") N C(R™) with respect to the convergence given
jointly by the norm of W;,O(R") and the local uniform convergence and moreover
W;,O(R") is closed under lattice operations U and N where f U g = max(f, g)
and f N g = min(f, g) pointwise (cf. Subsection 1.3).

The value of cap,(Z”;#) depends upon the choice of p € (1, #] and t €
(0,1). We give a proof for the sake of completeness to the following fact which
will be made use of later in §6:

(4.2) cap,(XZ";H =0 1<p=20<t<1).

The proof will be given in 4.2—4.4.

4.2. Since 1 < p = 2, the Holder inequality implies that
capﬁ(zn , t)l/p é ‘ Tn(t) ll/p—l/z Capz(zn : t) 172

where | T"(#) | is the volume of T"(#). In view of this we only have to prove (4.2)
for the sole p = 2:cap,(X";6) =0 (0 <t<1).

Let G(x, y; T"(D) be the 2-harmonic Green kernel on 7" () and du(y) the
(n — 2)-dimensional surface element on >,". We consider the 2-harmonic Green
potential
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w(x) = j;n G,y ; T"®))duly)

of the measure y defined on T"(f). The potential w is lower semicontinuous on
T"(#) and harmonic on T"(#) \ 2" and has boundary values zero on 07" (f). We
extend w to R” by setting w = 0 on R"\ T"(¢). As for the behavior of w on X"
we maintain

(4.3) wix) =+c0 (xeX".

If the dimension # = 2, then X.° consists of two points ¢ = (1,0) and — e
and 4 = 0, + 0_,, where 0, is the Dirac measure with its support at @. Thus

w@ = G, e; T'W)) + Glx, —e; T°®)

and (4.3) is clearly satisfied. Hence we may confine ourselves to the case # = 3
for the proof of (4.3). In this case, instead of proving (4.3) directly, we consider

v = [

of the measure u¢ on R”. Since there exists a constant K in (1, ) such that

the Newtonian potential

1
m dp(y)

— L GGy T @y,

|z — yl

we see that K 'v(x) £ w(x) (x € ). Therefore, for the proof of (4.3), we only
have to show that

K—l

(4.4) v(@) =+ (xe 2.

4.3. The proof of (4.4) is only computational. Let V be an arbitrary rotation
around x”"-axis. Since g is invariant under V, we see that ¥(Vz) = v(x) for any x
in R”. Hence v(x) = v(e,) for any x in X" where ¢, = (1,0, .. .,0). Hence the
proof of (4.4) is reduced to that of v(e,) = + 0. Since y in 2" has the form (',

oy, 0), we see that

1
vie) = jz; m du(y)

1
B duy).
‘/‘;n (' — 1D+ (yz)z 4 e 4+ (y”—l)Z)(n-—z)/z 1y
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Here y € X" means that (y)* + @H*+ -+ + @"? =1 and thus

1
vie) = j;,, @0 — )" dp(y)

— on-1 1
=92 ~[1"'” (2(1 —_ yl))(n—z)/z dl{,l(y),

where I"={z=(&',... 2" 0:]lzl=1,2'20 G=1,2,...,n— 1)}. By
the change of variables

y1 = cosf’
y' = sinf' cosf’
y" % = sinf" - - sinf@”""* cosf”
y" = sinf" - sin" " cosh"’
the integrating domain rr corresponds to the domain
0" =1{(0",..,6":0<0" /2 (i=1,...,n— 2)}

and therefore v(e)) is equal to

w1 [ (sin@M)"3(sin@®**- - - (sin6""%)
or (2 (1 _ COS@I)) n—2)/2

which is, by the Fubini theorem,

zj;n/z jo-n/z (-L-n/zvsiri_%d#)

sin
2

2

de'de’ --- de"de"

X (sin@?)"™* -+ (sin@"" % d6’ - - - d6"3de"*

e .lo-:z/z o j;n/z (joqm Sinn:g:_zzn—sa d0>

X (sin€*"™* --- (sin@” 7 db’ - - - d6”"°d6" .
Observe that

/4 gin"*Hcos” 0 s 4 1 —m-vs2 71
It > — n — = o0
j; g dé = (1/vV2) -lo. snd dg =2 -/o‘ df = +

sin o
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and a fortiori v(e;) = + ©°. We have thus completed the proof of (4.3).

4.4. By the Sard theorem (cf. e.g. [15; p.16]) we can find an increasing sequ-
ence {1,} of positive numbers A, divergent to + © such that each A, is noncritic-
al value of w (k = 1,2,...). Observe that, by the Gauss divergence theorem and
V-Vw= Aw = 0,

[ vwni)@ld=[  vwvVwz=[ 7 @7wde
T"(t) {0<w<Agt {0<w<A,}
= [ whwds = WV w-vdS
210<w<a,) w=21,)
= A Vw-vdS = CA,
{w=2;}
where v is the outer unit normal and dS is the area element on {0 < w
<A} and C= Vw - vdS = Vw - vdS is a constant independent of k
{w=2,} {w=0}

which is usually referred to as the flux of w across {w = A,} and also {w = 0}.
The function

fi= N A) /A,
belongs to W,o(R™) N C(R") and actually a competing function for (4.1) with
p=2 (k=1,2,...). Therefore we see that
cap, (=" ) éfR Vi@ =30 [ [Pwn )@ [ dz
n N t
=A.2CA,=C/2,—0 (k— ),
which proves (4.2) for p = 2.

4.5. As an application of (4.2) we obtain the following result.

LemMa 4.1.  There exists a strictly decreasing sequence {t,} in (0,1) convergent
to zevo and a sequence {x,} in C”(R") such that 0 = 3, =1 om R”", x, =0 on
T"(t,), X =1 on R\ T"(t), and D,(x, ; R") < 27" for every integer k Z 1.

Proof. First choose an arbitrary but then fixed ¢ in (0, 1). Since cap,(X”;

t) =0, there exists a ¢, in C,; (R”) such that 0 £ ¢, £ 1 on R”, the support of
@, is contained in T"(T}), ¢, =1 in a neighborhood of X" and D,(¢,;
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R™) < 27! We set x, =1 — ¢, and choose t, in (0, t,/2) such that %, = 0 on
T"(t,). After we have chosen x,,...,X; and t,,...,t,,, as reuired, we take @,,, in
Cy (R") such that 0 < ¢,,;, =1 on R” the support of ¢,,, is contained in
T"(tes)), ©4sy = 1 in a neighborhood of =", and D, (@, ; R™) <27V Such a
®r41 certainly exists by virtue of the fact that cap,(X"; £,,,) = 0. We then set
Xis1 = 1 = @4, and choose a t,,, in (0, ¢,,,/2) such that x,,;, = 0 on T"(t,,,).
By the mathematical induction, the construction of the required {¢,} and {¢,} is
thus complete. O

5. Royden harmonic boundaries

5.1. Let B = B(») be a finite ball (0 < # < o), We denote by M,(B) the
class of bounded continuous functions f on B with distributional gradients Vf in
L,(B)". Thus in the present case of B we have

(5.1) M,B)=W,(B)NL.(BANCWB A<p=n).
The class M, (B) forms a commutative Banach algebra equipped with the norm
Ifs MBI =17;L.BI+IVf;L,B"

which is referred to as the Royden algebra with exponent p or simply p-Royden
algebra over B

An important subalgebra M, ,(B) of M,(B) is defined as the totality of f €
M,(B) such that there exists a sequence {¢,} in C, (B) with the following three
conditions: |V, — Vf;L,(B)"[|—0 (k— ) ;sup,ll¢;; Lo(B) | < o0 ; {g,}
converges to f locally uniformly on B. The class M, ,(B) is not only a subalgebra
of M,(B) but also an ideal of M,(B) and is called the p-Royden potential subalgeb-
ra of M,(B). In the present case of B we have, as a counterpart of (5.1), the fol-
lowing expression of M, ,(B) :

(5.2) M,o(B) = W} (B) N L.(B) N C(B).

For a proof for the above expression take an arbitrary f € M,,,O(B) and its
associated sequence {g,} € C;(B). The condition |Vo, — Vf;L,(B)"[—0
(k~ o0) in particular assures that {V¢,} is a Cauchy sequence in L,(B)". Then,
by the Poincaré inequality, {¢,} forms a Cauchy sequence in L,(B) and therefore
{p,} forms a Cauchy sequence in W, (B). Hence there exists a g € W, (B) such
that | @, — g ; W, (B) | =0 (k— ). Since | ¢, — g; L,(B) | =0 (k— ), a
suitable subsequence of {¢,} converges to g almost everywhere on B. However,
since {¢,} converges to f locally uniformly on B, we see that f= g € Wpl,O(B) )
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that in particular f belongs to the right hand side of (5.2).

Conversely choose an arbitrary f € WDI,O(B) N L.(B) N C(B). We extend f
to R” by setting f=0 on R"\B. Then, by Lemma 1.4, we see that f€
W;(R") N L.(R") N C(R"\0B). First, consider f, (1 <t < ) defined in 1.4
and observe that, by Lemma 1.3, [Vf, =V f; LI,(B)" |[—0 (¢! 1) and, obvious-
1y, sup,s, | f;; Lo (R™ | < || f; L.(B) || and f,— f locally uniformly on B by the
uniform continuity of f on each compact subset of B. Next, let f, ¥ a, €
C, (R™) (¢ > 0) be the regularization of f, as in 1.6. Since V(f,* a,) = (Vf) %
a,, we see that [V(f,*xa,) —Vf;L,(B) =0 (¢ | 0). We also see that f, ¥ a,
— £, locally uniformly on B(1/1%) since f, € C(B(1/1)). Clearly sup,,| f, * . ;
L.BI=f;L.BI=|f;L.(B) | Finally, by choosing t, | 1 and ¢, | 0
suitably and by setting ¢, = f,k *a, , we see that {¢,} is a required sequence for
f to ensure f € M, ,(B). The proof of (5.2) is herewith complete.

5.2. The maximal ideal space B;k of M,(B) is a compact Hausdorff space
which we call the Royden compactification of B with exponent p or simply
p-Royden compactification of B since we see that the space B with its original
topology is an open and dense subspace of B;k. Functions in M,(B) are uniquely
continued to B;k so as to be continuous on B;k, and in this sense, by the Weier-
strass approximation theorem, M,(B) is a dense subspace of C(B:) with respect
to the supremum norm on B;{‘ We single out the important part of the Royden
boundary B:\B as follows:

(5.3) 4,(B) = {C € B, : f(Q) =0 for every f € M, ,(B)}

which is referred to as the Royden harmonic boundary with exponent p or simply
p-Royden harmonic boundary.

The Euler-Lagrange equation of the variation of J;l Vf(x) |pdx is the
nonlinear equation (p-Laplace equation)
—V-(Vul?Vu) =0
which reduces to the usual Laplace equation
—Adu=V-Vu=0

for p = 2. For this reason M,(B) is sometimes called the linear Royden algebra
whereas M, (B) for general p € (1,n] the nonlinear Royden algebra in the sense
that it is not necessarily linear. Concerning the linear Royden compactifications,
see e.g. [4; pp. 96—109], [28; pp. 145-221], [19], [20], [7], etc. among many others
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and for the nonlinear Royden compactifications, see e.g. [14], [13], [24], [32], [31],
ete.

5.3. The following relation dual to (5.3) is important in treating the Royden
compactification, to which we give a proof different from many others known in
literature for the sake of completeness.

Lemma 5.1 (Duality). A function f in M,(B) belongs to M, o(B) if and only if f
vanishes on 4,(B)

(5.4) M, (B) = {fe M,(B) : f| 4,(B) = 0}.

Proof. That the left hand side of (5.4) is contained in the right hand side of
(5.4) is nothing but the definition (5.3) of 4,(B). Thus we only have to show that
f€ M,,(B) if f€ M,(B) satisfies f|4,(B) =0. Set ¢=max{| f(Q]:{€
B:} and choose an arbitrary & > 0. Consider the open subset U= {{ € B;k:
| £(Q | <&} which is a neighborhood of 4,(B). Since any { € R*\ U is not the
common zeros of functions in M, ,(B), there exists an f; € M, ,(B) such that
f(0) # 0. It is easy to see that M,q(B) also forms a vector lattice with lattice
operations U and N along with W, ,(B) (cf. 1.3). Hence upon replacing f; by
(@/£@)f) U0, we can assume that we could choose f, € M, (B) such that
£:(©) =2 and f, 2 0 on B, Observe that V, = {y € B} : () > 1} is an open
neighborhood of { so that

U ¥, 2B \U.
teBi\U
By the compactness of B:\ U, there exists a finite set of points {,,...,{, in B:\U
such that

UV, 2B, \U.
=1

j

Then consider the function
m
g=(&f)N1
=1

on B:. First of all, as above, it belongs to M, ,(B). Clearly 0 < g =1 on B;k and
g=1lon B;k\ U. Hence we have the inequality

—e—cg<f<e+tcg

https://doi.org/10.1017/50027763000004761 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004761

HARMONIC MEASURES ON EUCLIDEAN BALLS 113

on B, and in particular on B. Observe that
To(t (et cg)) =+ (c+enig =*e

on B since g € M, ,(B) C W,,llo(B). By the monotoneity of n; (Lemma 2.2) we
have

— =7rf;,(~e—cg)§n§f§7r§,(s+cg)=e

on B. On letting ¢ | 0 we obtain that n2f= 0. By the direct sum decomposition
(2.11) we see that fE€ W;,O(B). By (5.2) and f€ M,(B), we conclude that f €
M, ,(B). O

5.4. Corresponding to the class W, ,(B) (¢ € 4,(B)) introduced in 2.1
we now consider the subspace M, ,(B) of M,(B) given by

M, ,(B) = {u € M,(B) : uis d-harmonic on B}.

Hence # € M, ,(B) if and only if # is p-Dirichlet finite, bounded, and
d-harmonic on B, or u € M, ,(B)if and only if € W, (B) and |u;
L. (B) | <oo. Corresponding to the direct sum decomposition (2.11), we have the
so-called Royden decomposition of M,(B) :

(5.5) M,(B) =M, ,(B) DM,,B).
For a proof, take an arbitrary f € M,(B). By (2.11) we have
f=utg WEW,,B), g W, (B).

By the monotoneity of n’f} (Lemma 2.3) we see that u = n:;,f is bounded on B and
so is g. Since # is continuous, the continuity of f implies that of g. Thus f=u + g
is a decomposition of f in (5.5). The unicity of the decomposition follows from that
of (2.11). This completes the proof of (5.5).

The Royden harmonic boundary 4,(B) of B plays important roles in the
Dirichlet problem for &/-harmonic functions. That it is an essential boundary for
functions in M, ,(B) is seen by the following maximum principle (comparison prin-
ciple): If u, and u, are in M, ,(B) and satisfy %, = u, on 4,(B), then u, = u, on
B. Hence in particular, any # € M, ,(B) is uniquely determined by u|4,(B).
For example, a # € M, ,(B) is constant on B if and only if # is constant on
4,.,(B).

For a proof of the above maximum principle, note that (#, — u,) N 0 €
M,,(B) c W;,O(B). Hence by the maximum principle quoted in 2.4, we conclude
that #, = u, on B.
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5.5. We mentioned in 3.1 that, intuitively speaking, an &/-harmonic measure
on B is an d-harmonic function whose boundary values is a characteristic func-
tion on the boundary of B. This is precisely realized for p-Dirichlet finite
#A-harmonic measures (# € &,(B)) on the p-Royden harmonic boundary. As we
have been assuming in this section, let B = B(#) be a finite ball (0 <7
< ) and & be any elliptic operator with & € &,(B). Any p-Dirichlet finite
& -harmonic measure w is continuous on B and 0 = w = 1 on B and hence w €
M, ,(B) so that w is continuous on B,

LEMMA 5.2.  For any p-Dirichlet finite A -harmonic measure w on B, therve exists
an open and compact subset K of the compact space A,(B) such that w = xx on
A,(B) where xx is the characteristic function of K on A,(B), Conversely, for any open
and compact subset K of the compact space A,(B), there exists a p-Dirichlet finite
A - harmonic measure w on B such that w = x, on 4,(B).

Proof. Let w be a p-Dirichlet finite 4/-harmonic measure on B. By Lemma
3.1 we have w(1 — w) € W,(B) so that w(1l — w) € M, ,(B). Thus w(l — w)
= 0 on 4,(B) and therefore w takes only two values 0 and 1 on 4,(B). Put

K=1{C€ 4,8 :w)=1.

Since K= A4,(B) N w™'(1), it is a compact subset of 4,(B). On the other hand,
by the fact that

K=1{{€ A,B) :w®) >0,

it is an open subset of the space 4,(B). Thus K is compact and open in
4,(B) and w = x, on 4,(B).

Conversely, let K be any compact and open subset of 4,(B). Then By, —
1) € C(4,(B)). By the Urysohn theorem we can find a ¢ € C(B;k) such that
@ =3xx — 1 on 4,(B). Since M,(B) is dense in C(B;k) with respect to the sup-
remum norm on B,, we can find a g € M,(B) such that | g — ¢| <1 on B,.
Finally let

f=@EuUo NI,

which is in M,(B) by the lattice property of M,(B). By the construction, we see
that f= xx on 4,(B). Then clearly f(1 — f) =0 on 4,(B) and therefore, by
Lemma 3.3,

w=7rf¢f
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is a p-Dirichlet finite &/-harmonic measure on B, and w = f = y,on 4,(B). [

5.6. The equivalence of our main theorems in geometric and analytic forms
can now be concluded as a result of the above lemma 5.2.

LEmMA 5.3.  The following thrvee conditions ave equivalent by pairs :

(a) The p-Royden harmonic boundary 4,(B) is connected ;

(b) There exist no nonconstant p-Dirichlet finite of-harmonic measures on B for
every d € d,(B) ;

(¢) There exist no nonconstant p-Divichlet finite & - harmonic measures on B for
some 4 € A ,(B).

Proof. The condition (b) trivially implies (c). Next, suppose (c) is valid and,
contrariwise assume that 4,(B) is not connected. Then there exists an open and
closed subset K of the compact space 4,(B) such that K% @ and 4,(B) \ K #
@ . By Lemma 5.2, there exists a p-Dirichlet finite &/-harmonic measure w with
w = xgxon 4,(B). Since w = xy is not constant on 4,(B), w is not constant on B,
which contradicts (¢). Thus we have seen that (c) implies (a). Finally suppose (a) is
valid and take any &/ € 4,(B) and any p-Dirichlet finite &-harmonic measure w
on B. We wish to show that w is constant on B. Contrariwise, suppose w is not
constant on B. Again by Lemma 5.2, there exists an open and compact subset K of
4,(B) such that w = x, on 4,(B). Since w is not constant on B, w = x is not
constant on 4,(B) so that K # @ and 4,(B)\K # @. Thus K U (4,(B)\ K) is
a disjoint decomposition of 4,(B) into two nonempty mutually disjoint compact
sets and thus A, (B) cannot be connected, which contradicts (a). ]

COROLLARY. The main theovem wm geometric form and that in analytic form are
equivalent.

6. Proof of the main theorem

6.1. In this final section we prove the main theorem in the analytic form. By
Corollary to Lemma 5.3, the proof of the main theorem in the geometric form will
then also be complete. Recall that B” = B(0,1) = B(1) = {x € R":|z| <1} is
the open unit ball in the Euclidean space R” of dimension # = 2.

In the former (latter, resp.) half, subsections 6.1-6.4 (6.5—6.6, resp.), of this
proof in 6.1-6.6, we prove the nonexistence (existence, resp.) of nonconstant
o -harmonic measures with finite p-Dirichlet integrals for any elliptic operator
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4 € o ,(B") with exponent p in [2,1] ((1,2), resp.).

Thus in 6.1—6.4 we fix an arbitrary p with 2 < p < # and an arbitrary
elliptic operator & € #,(B"). In 6.1—6.3 we first give a direct proof (cf. [22] for
an indirect one) for that there exist no nonconstant 2-Dirichlet finite 2-harmonic
(i.e. the usual classical harmonic) measures on B” and then the assertion is gener-
alized to an arbitrary #/-harmonic measures (¢ € o,(B")) in 6.4.

Contrariwise suppose that there exists a nonconstant 2-Dirichlet finite
2-harmonic measure w on B”. By Lemma 3.2 the supremum (infimum, resp.) of w
on B" is 1 (0, resp.). By the Sard theorem (cf. e.g. [15; p. 16]) we can find two
noncritical values A and g of w with 0 < A <y <1 so that the level surfaces
{w = A} and {w = 1} are smooth. We arbitrary choose and then fix a connected
component A of the open set {4 < w < g} so that A is a subregion of B" with
smooth, possibly noncompact relative boundary dzA relative to B”.

Observe that w(l — w) € W;,O(B") by Lemma 3.1. Put ¢ = A(1 — ) /4 so
that 0 < ¢ < 1. Since W;,O(B") is closed under lattice operations (cf. 1.3), we see
that

x={UwA—=wlNec/c

again belongs to W;O(B”) along with w(1 — w) and ¥ = 1 in a neighborhood of A
U 8z0A4 in B”". Since x € W,,,(B"), there exists a sequence {x,} in Cy(B") such
that

(6.1) lx = x; Wo (BY =0 (k— o0).

6.2. At this point it is convenient to consider k-forms (k = 0,1,...,n)

a=al@= X a;..,, @dx™ A -0 A dx'
1< o<ty
on a ball B= B(») (0 <7< o) as a Riemannian manifold with the Euclidean
metric (cf. e.g. [5; p. 99]). We denote by % the Hodge star operator with respect to
the Euclidean metric on B so that

* j -
xa= X a.., @dc" N ANdx™
Jy<eee<ip-k
where
" 1 2 ......... n
(lj‘ jn—k - 2 5( . .« . )(l,l iy
i< o<y [ 7Y SR P
and
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is the generalized Kronecker delta so that it is 1 (— 1, resp.) if Gy, ...,5, /1. . .,
Ja—p) is an even (odd, resp.) permutation of (1,...,%) and O if some two of 7,,. ..,
T4) J1r+ « «»Jneys are identical. We consider the pointwise inner product <a, 8> of «
and B on B given by

la, B =La(n), Bl@)> = 2 a,.., @b,.., (1)

i <o <iy

where B is also a k-form on B with coefficients b, ...; . Then the pointwise norm
| | of @ on B is given by

lal’ =<a, 0y = = (a,..., ).

i< eee<iy Tk
We will use the Schwarz ineguality: | <&, 8 | < | a|| B]. It is easily seen that
la, B dr = La, Pdx, N - ANdx" = a A *j
where dr = dx'+-- dz” = dz' A -++ A dz" is the volume element on the Eucli-

dean ball B. We set

(@ P = (a B)B=_f;<a(x),ﬁ(x)> dxszaA*ﬁ

and
2 2 - 2 _
laf=lal=@ o= [lawd= [anr*a

If ar is differentiable in the sense that a;,...,, are differentiable, then da is defined
as usual by

i<

da= X da,., Ndzx" A - Adz"
...(ik

where df = X1_, (8f/0z")dx’ for a differentiable function f on B.
Now we return to the function w introduced in 6.1. Note that d % dw =
— % (V-Vw) = — % Aw = 0 since w is 2-harmonic. This means that * dw is a
C” closed (m — 1)-form on B” Then, by the Poincaré lemma (cf. eg. [L1; p.
273)), we can find a C* (n — 2)-form
a=a@= X a.. @dc" A Adz™

i) <eee<ip_,y
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on B” such that * dw = da. Observe that
ldalf =1 *dwl* = | dw |’ = D,(w; B") <
based upon the fact that the Hodge * operator is an isometry. Consider

q,=a,@= X a..,_ (Dd" A Adx"™*
11<eee<iy o
for each o in (0,1), which is also a C* (# — 2)-form not only on B” but also on
the larger ball {| x| < 1/p} containing the closed ball B" = {x € R" : | x| < 1}.
Hence in particular the function

@ = I (,.

ij<eee<iy ,

(02)*

sty

is bounded on B”. If we denote

da(x) — Z dail"'in—z (.T) A\ dril A 0 A dxin-z

i) <s oo <iy_y
by
da() = X b, @dz" A Adz™
j1<...<;‘”_1

Then b,,...,, , € L,(B") N C"(B") Gi< -+ <J,-y) and
da,(x) = 2 pb;

1<+ <dp-1

(ox)dx™ N -+ A dx’™.

*tin-1

Thus de, is C” on {| x| < 1/p} that contains B" and we have
| da— da, [ = [ | da@ ~ de, @ [ da

= Z fnl bi..., . @ — pob,...;  (o2) " dx

2o <jpq

= 2 " bjl-.-j”_l - p(bjl...,”_l),, ) LZ(B”) "2

Jy<eee<Ipy

where j:,(x) = f(ox) (0 < p < 1) for any function f on B” as in 1.4.
In order to conclude that

(6.2) lda — da,|—0 (1 1),

we only have to show that | f— of, ; L,(B") | =0 (o T 1) for any function f in
L,(B™). This follows from the simple inequality

lf=ofy; LBY 1= Q=0 I f; LBY I+ ol f—£;L,BY |
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and Corollary to Lemma 1.2: || f—f,; L,(B") |—=0 (o 1 1) for any function f
in L,(B").

6.3. We denote by (-,*), and || - ||, the inner product and the norm, respec-
tively, considered for forms on the region A introduced in 6.1. If we simply write
(+,*) and [| . [| then they are considered on B”.

To compute (dw, * d(x,a,)), for any p in (0,1) and any integer k = 1, we
choose a ball B = B(») (0 < » < 1) containing the support of x,, where {x,} is
the sequence in C, (B") introduced in 6.1. Then, by the Stokes formula, we com-
pute as follows:

(dw, *d(xa)) s = (— n"! j;dw A d(ya,) = j;nB d(x,) N\ dw

= xkap/\dw=<f + >XkapAdw
(A NB ANoB

d(ANB)

where the boundary operator @ = 0g» is considered with respect to B”. The first
term on the right most side of the above vanishes because dw = 0 along 04, and
the second also vanishes because x, = 0 on 0B. Thus we can conclude that

(dw, *d(xa,)), =0

for every p in (0,1) and every integer k 2 1.
Next we compute (dw, * da,), for any fixed p in (0,1). For any integer k = 1
we evaluate | (dw, *da,), | as follows:

| (dw, *da,),|=|(dw, *da,), — (dw, *d(x,a,)), |
= | (dw, *d(xa,)), — (dw, *d(a)),|
< lldwl,ld(G = xDa) . = lawll|d((x — xDa, .

Here the fact that the Hodge * operator is an isometry is again used. We further
estimate the second factor of the term on the right most side of the above inequali-
ties. Since

dl(x — xJda,) = (dx — dy,) Na,+ (x — x,) da,,
we see that

l (dwy *dap)A |

< |l dw] ((fB| Wy — dy) Aa, | dx)w + (fB| (x — 1 da, lzdx)m).
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Since @, and da, are C” on {| x| < 1/0} containing B”", there exists a positive
constant K, such that

| @y —dx) ANa,P<K:dy —dyx, =K |Vy = Vx|’
and
I(X_Xk)da'pIngple_Xklz

on B”. Therefore we obtain that

|G, xde), | = laul (&,([17x ~Valar) + K ([ 1x=xla) )

=K ldw| Vx = Vx,; L,BY" |+l x — x; LB D
=K, lawllx—x.; W, BY =0 (k1 o)

by (6.1). We have thus deduced that
(dw, *da,), =0

for every p in (0,1).
Finally we see by recalling % dw = da and the isometry of the Hodge
operator that

ldwl = (dw, dw), = (dw, (— 1)" " *da), = | (dw, *da),|
= | (dw, *da), — (dw, *da,),| < | dwl, | da — da, |,
< | dwllda —da,| =0 (1 1)
by (6.2). Hence || dw |, = 0 and w is a constant on A. By the unicity theorem for
2-harmonic functions, we see that w is a constant on B", which contradicts our
original assumption made in 6.1 that w is nonconstant on B”.

We have thus established that there exist no nonconstant 2-Dirichlet finite
2-harmonic measures on B”.

6.4. Given an arbitrary elliptic operator & : B” X R"— R" of exponent p in
2=p=nie dE d,(B") (cf. 2.1). We now maintain that there exist no noncon-
stant p-Dirichlet finite &/ -harmonic measures on B”.

For this aim we take any p-Dirichlet finite #/-harmonic measure w on B” so
that w € W, (B"). We are to show that w is a constant. Since 2 < p, we have

W, (B" > W, (B"

and similarly
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W, (B") D W,,(B"
as we saw in 1.7. By Lemma 3.1 we have that
w(l — w) € W,,(B".
Hence by the above inclusion relation we also have that
w(l —w) € W;O(B").

By Lemma 3.3, the 2-harmonic part nfnw of w € W, (B") is a 2-Dirichlet finite
2-harmonic measure on Bn, which must be a constant ¢ on B” as we have shown
in 6.1-6.3. Thus we have the decomposition

w=c+g (g€ W,(B").

Since actually w &€ W;(Bn) and trivially ¢ & WPI(B"), we see that g &
W, (B") and hence g € W,,(B") N W, (B"). Recall that

W,,(B" N W, (B") = W,,(B"
(cf. (1.6)). Therefore we have the decomposition (2.11) for w on B” :
w=c+g (€W, (B, g W, (B.
On the other hand
w=w+0 weW,,B",0eW,,(B")

is another decomposition of w in (2.11) and the uniqueness of the decomposition
n
implies that w = 71:; w = ¢, a constant. We have thus shown that w is a constant.

6.5. Given an arbitrary p in 1 < p < 2 and an arbitrary elliptic operator
A :B" X R"— R" of exponent p, i.e. & € o,(B"). We will show that there exists
a nonconstant p-Dirichlet finite #/-harmonic measure on B”.

For the purpose we consider two surfaces 7,: 2" = 0 and 7,: 2" = 27'(1 —
z’]) in B" where we denote x = (z,...,2""", z”) by (z/, ") so that z’ = (z',
..., x" ™). Note that 7, may be identified with the ball B”™" in the subspace {z €
R":z" = 0} which is viewed as the (n — 1)-dimensional Euclidean space R" ™.
The ball B” is divided into three parts B; (i = 0,1,2) : By(B,, resp.) is the part
of B" below 7, (above 7y, resp.); B, is the part between 7, and 7, We consider a
function

j (Iij,j:O,l),

-1
£k 22" /1 — |2’ @€ B,y
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on B”. Clearly g € C(B") N L_(B" and g is absolutely continuous on all lines
in B” parallel to coordinate axes. We will see below that the ordinary gradient
Vg of gis pth integrable on B”. Hence by the Nikodym theorem (cf. 1.3) we can
conclude that g € W, (B").

The ordinary gradient Vg of g is given as follows:

_ 0 (xr e B0 U Bl)v
(6.3) Ve(x) = {(Vfg(x), 2/(1—|2’) @e B\ =0

where V,, = (8/0z",...,0/0z""") so that
Veg) =22"A — |2’ N7 /2], 2" /27 )
for x € B, \ {x’ = 0}. Observe that
Iveg; L, BN | =|Vg;L,(B)"].
Here by

|[Vgl"=(V,.gl’+|oag/ax"|%""*
< (V.gl+ogroz" )’ <2°(v,gl” + | ag/ox" )

we see that
Vg ; L,(B)"| = 2’]1; (Vg |’ + | ogx) /0x" |")dx.
The right hand side of the above equals, by the Fubini theorem,
(1—-lz’' /2
¢f ([ @ra-1zh?+1/a- 1l hart) i
B*1 \Wo
= 1— |2 D' "da’
o f, a-lah e
where ¢=4"1/2""'(p + 1) +1/2). Observe that %"= 3B" N {z" = 0} (cf.

4.1) is the boundary dB" ™' of B"™' considered in the (# — 1)-dimensional sub-
space {£”" = 0} of R”. If we denote by dw,_, the area element on BB'H, then we

have
Q-2 D' Pdx = 1 A —»"""%r)do,_,
Ln—x ‘L‘B”“(]O‘

1
<|oB" |f0 A= »"dr=]0B""]/@2 —p) < o
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where | @B"™'| is the area of dB" ™" under the convention of | dB"| = 2 with dw,
= dd, + dd_, (e = (1,0)) when n = 2. Here the assumption 1 < p < 2 is essen-
tially made use of. Thus [|[Vg ; L,(B")"| < oo and we have established that g €
W, (B"). Since g € C(B") N L. (B"), we actually have that g € M,(B").

One step further we maintain that

(6.4) gl — g € W, (B"

in addition to g(1 — g) € WPI(B") already established above. For simplicity we
seth=g(1—g € W,,l(B"). Take the sequence {x,} in Lemma 4.1 and set

h, =x:h (k=1.2,...).

(Do not be confused with the sequence {yx,} constructed in 6.1 and used in 6.3.)
Clearly h, belongs to W, (B") and the support of &, is contained in B” so that we
see that h, € W,,(B"). Therefore we can conclude that & € W, (B") if

(6.5) I —=hy; W, B =l oh; W,BYI—-0 k1 )

is assured, where ¢, =1 — x,. To see this we first note that
Lo s LBY Y = [ | 0,@h@ [ dz—0 Gk 1 o)

by the Lebesgue dominated convergence theorem since the integrand is dominated
by the integrable function | 2(z) |” and ¢,— 0 (k T ) on B" (cf. Lemma 4.1).
Next observe that

1V (eh) ; L,(BM"|

< (L@ P17 ) + ([ 0@ PI7h@ P dz)

The first term of the right hand side of the above inequality is dominated by
Ih; LB I D,(p,; BN =27 h; L.(B) |20 (kT )
(cf. Lemma 4.1) and the second term by

(frwlvzm) faz) ([ ivn dr) =0 (k1 )

(cf. Lemma 4.1) since | X" | = 0. We have thus completed the proof of (6.5) and
hence of (6.4).
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6.6. Finally take the &/-harmonic part w = nzng of g on B". By Lemma 3.3
and (6.4) we see that w is a p-Dirichlet finite s/-harmonic measure on B”". The
proof will be over if we show that w is nonconstant on B". Contrariwise we
assume that w is a constant ¢ on B". Then g — ¢ € W,,(B"). Observe that the
particular function

(@) =v(x,... 2" =x2"
is a p-Dirichlet finite p-harmonic function on B” in the genuine sense:
V-(1Vo|**Vv) =V-(0,...,0,1) = 0.

Hence in particular v is a weak solution of V(| Vu " *Vu) = 0 so that
f Vo) P2Vo(2) -Ve(x) de = f Vo) P2Vu@)  Viglx) — ¢)dx =0
B" B"

since g— ¢ € Wpl'o(B”). On the other hand, by Vv = (0,...,0,1) and (6.3), we
must have, based on the Fubini theorem, that

[170@ Pvo@ Ve = [ 20— |2’ da
B” B,

(-lz’h/2 -1 -1
=[ ([ 2a-12D"d")dr =B g >0,
B! o

where | B*™ IRn-l is the volume of B"™* considered in the space R"™' and thus we
arrived at a contradiction. Therefore w is nonconstant.
The proof of the main theorem in the analytic form is herewith complete.
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