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Abstract

This paper is concerned with a mass concentration phenomenon for a two-dimensional nonelliptic
Schrödinger equation. It is well known that this phenomenon occurs when the L4-norm of the solution
blows up in finite time. We extend this result to the case where a mixed norm of the solution blows up in
finite time.

2010 Mathematics subject classification: primary 42B37; secondary 35B30, 35Q55.

Keywords and phrases: Schrödinger equation, restriction theorem, mass concentration.

1. Introduction

We begin with the two-dimensional initial value problem for a nonelliptic nonlinear
Schrödinger equation defined by{

iut + �u + γ|u|2u = 0
u(0, x) = u0(x) ∈ L2(R2)

(1.1)

where γ ∈ R\{0} and � = ∂x1∂x2 . The solution of the linear version of (1.1) (that is, with
γ = 0) can be written as

eit�u0(x) =

∫
R2

e2πi(x·ξ−2πtξ1ξ2)û0(ξ) dξ.

Note that (1.1) is invariant under the scaling

u(t, x1, x2) 7→ (λµ)1/2u(λµt, λx1, µx2)

for any λ, µ > 0. So, we would have to consider rectangles instead of squares when we
decompose R2.

It is well known that, in (1.1), there exist maximal existence times Tmin, Tmax ∈

(0,∞] and a unique solution

u ∈ C((−Tmin, Tmax), L2(R2)) ∩ Lq
loc((−Tmin, Tmax), Lr(R2))

c© 2013 Australian Mathematical Publishing Association Inc. 1446-7887/2013 $16.00

238

https://doi.org/10.1017/S1446788712000377 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000377


[2] Mass concentration for a nonelliptic Schrödinger equation 239

for any admissible pair (q, r). Recall that (q, r) is called an admissible pair for
(1.1) if q, r ≥ 2, 1/q = 1/2 − 1/r and (q, r) , (2,∞). Also ‖u(t)‖L2(R2) = ‖u0‖L2(R2) for
all t ∈ (−Tmin, Tmax), regardless of γ. However, unlike the case of the Schrödinger
equation, we do not know whether this nonelliptic equation has a blow-up solution
related to a given initial datum.

In [12], Rogers and Vargas proved that if ‖u‖L4
t,x([0,Tmax)×R2) =∞ for some Tmax <∞,

then

lim sup
t↗Tmax

sup
a rectangle R
|R|≤Tmax−t

∫
R
|u(t, x)|2 dx > ε (1.2)

where ε is a positive constant depending only on γ and ‖u0‖L2(R2). When
‖u‖L4

t,x((−Tmin,0]×R2) blows up, there is also a result similar to (1.2). In this note, we shall
show that there is also a mass concentration phenomenon for (1.1) when the mixed
norm ‖u‖Lq

t Lr
x

blows up in finite time.
In the elliptic case, Bourgain [2] proved the mass concentration phenomenon for

an L2-critical nonlinear Schrödinger equation with spatial dimension two. This result
was extended to higher-dimensional cases by Bégout and Vargas [1]. They made use
of bilinear extension (adjoint restriction) estimates for the paraboloid due to Tao [14]
in order to get a refinement of the Strichartz estimate which is an essential ingredient
in their argument. Moreover, the case where a mixed norm Lq

t Lr
x of the solution blows

up is considered in [4]. In this case, they utilize a mixed-norm generalization of the
bilinear extension estimates for the paraboloid due to Lee and Vargas [10]. A similar
result for the higher-order Schrödinger equation, iut + (−4)α/2u = ±|u|2α/du, can be
found in [5].

Our result may be stated as follows.

T 1.1. Let (q, r) be an admissible pair with q ≤ r ≤ 6. Also let u be the solution
to (1.1). If ‖u‖Lq

t Lr
x([0,Tmax)×R2) =∞ for some 0 < Tmax <∞ and ‖u‖Lq

t Lr
x([0,t]×R2) <∞ for

all t ∈ (0, Tmax), then

lim sup
t↗Tmax

sup
a rectangle R
|R|≤Tmax−t

∫
R
|u(t, x)|2 dx > ε

where ε is a constant depending only on γ and ‖u0‖L2 .

The proof of Theorem 1.1 basically follows the argument of Rogers and Vargas [12]
which was partially based on a modification of the method of Bougain [2] and some
new ideas essential for handling the hyperbolical situation. In the same manner,
decomposing R2 into rectangles, we obtain a separation condition which satisfies the
hypothesis of [10, Theorem 2.3], and then we define a more general function space Xq,r

p

than Xp in [12] (see Definition 3.1 below). Since [10, Theorem 2.3] is valid not only
for paraboloid cases but also for some hyperbolic cases, a refinement of Strichartz
estimates in [12] could be extended to our mixed-norm case. This refinement is
especially meaningful in that it enables the decomposition of initial data u0(x) into
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a finite sequence of functions, which will be described precisely in Lemma 3.7. We
will also make use of some mixed-norm estimates on the space Xq,r

p which are adapted
from the results in [4].

It is worthwhile to make the following remarks which allow us to restrict the range
of an admissible pair (q, r) to q ≤ r ≤ 6.

R 1.2. It suffices to consider only the case q ≤ r. To see this, observe that if
‖u‖Lq

t Lr
x([0,Tmax)×R2) =∞ for q ≥ r, then ‖u‖L4

t,x([0,Tmax)×R2) =∞ from interpolation with the
mass conservation ‖u‖L∞t L2

x
= ‖u0‖L2

x(R2). Indeed, let (q0, r0) be an admissible pair with
q0 ≥ r0 such that

1
q0

=
1 − θ
∞

+
θ

4
and

1
r0

=
1 − θ

2
+
θ

4
for some θ ∈ (0, 1). If ‖u‖Lq0

t L
r0
x

=∞, then ‖u‖L4
t,x

=∞ follows from

‖u‖Lq0
t L

r0
x
≤

(
sup

t
‖u‖L2

x

)1−θ

‖u‖θ
L4

t,x
and sup

t
‖u‖L2

x
= ‖u0‖L2

x
, 0

by Hölder’s inequality and the conservation of charge. Hence, there exists a mass
concentration phenomenon by the result in [12].

R 1.3. For the local well-posedness of (1.1) in the mixed-norm space Lq
t Lr

x, we
would check if the inhomogeneous part of the solution is a contraction map. Actually,
by Duhamel’s principle, the solution to (1.1) is given by

u(t, x) = eit�u0(x) + iγ
∫ t

0
ei(t−s)�|u(s)|2u(s) ds. (1.3)

Using (1.3), the inhomogeneous Strichartz estimate in Lemma 2.1 below and Hölder’s
inequality, it follows that for any admissible pairs (q, r) and (q̃, r̃),∥∥∥∥∥∫ T

0
ei(t−s)�[|u(s)|2u(s) − |v(s)|2v(s)] ds

∥∥∥∥∥
Lq

t Lr
x

≤ ‖|u|2u − |v|2v‖Lq̃′
t Lr̃′

x

= ‖(|u|2 − |v|2)u + |v|2(u − v)‖Lq̃′
t Lr̃′

x

= ‖(|u| − |v|)(|u| + |v|)u + |v|2(u − v)‖Lq̃′
t Lr̃′

x

≤ ‖|u − v|((|u| + |v|)|u| + |v|2)‖Lq̃′
t Lr̃′

x

≤C‖(|u|2 + |v|2)|u − v|‖Lq̃′
t Lr̃′

x

≤C‖|u|2 + |v|2‖
L

3
2 q̃′

t L
3
2 r̃′

x

‖u − v‖L3q̃′
t L3r̃′

x

≤C(‖u‖2
L3q̃′

t L3r̃′
x

+ ‖v‖2
L3q̃′

t L3r̃′
x

)‖u − v‖L3q̃′
t L3r̃′

x
.

The conditions q = 3q̃′ and r = 3r̃′ imply that 1/6 ≤ 1/r ≤ 1/3. For this range of r, (1.1)
is locally well-posed in the mixed norm space C([0, T ]; L2(R2)) ∩ Lq([0, T ]; Lr(R2))
for a small time T < Tmax.
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R 1.4. For observing a mass concentration phenomenon, the inhomogeneous
part of the solution does not play a primary role as long as the integral part in (1.3) can
be controlled by the solution u(t, x). For example, there may be a mass concentration
phenomenon for the hyperbolic-elliptic type Davey–Stewartson system, with subsonic
wave packet, which is defined by

iut − ∂
2
x1

u + ∂2
x2

u = (±|u|2 + B(|u|2))u

where

B̂( f )(ξ1, ξ2) =
−γξ2

1

ξ2
1 + ξ2

2

f̂ (ξ1, ξ2) and γ > 0.

A detailed discussion of the Davey–Stewartson system may be found in [13].
In practice, it suffices to show that

‖ ± |u|2u + B(|u|2)u‖Lq̃
t Lr̃

x((T0,T1)×R2) ≤C‖u‖3
Lq

t Lr
x

for q = 3q̃ and r = 3r̃.
Note that ‖B( f )‖Lp

x
≤C‖ f ‖Lp

x
for 1 < p <∞ by the Marcinkiewicz multiplier

theorem. Thus

‖B(|u|2)u‖Lq̃
t Lr̃

x
≤ ‖B(|u|2)‖Lq/2

t Lr/2
x
‖u‖Lq

t Lr
x

≤
∥∥∥C‖ |u|2 ‖Lr/2

x

∥∥∥
Lq/2

t
‖u‖Lq

t Lr
x
≤C‖u‖3

Lq
t Lr

x
.

Using the triangle inequality, we obtain the desired result.

This paper is organized as follows. In Section 2 we obtain some Strichartz estimates
for the operator eit�, which is proved in the same manner as in the case of the
Schrödinger operator eitM. In Section 4 we give a proof of Theorem 1.1. In Section 3
we prove some useful and technical lemmas which are used in Section 4.

2. Strichartz estimates

In this section a brief review of Strichartz estimates will be given. The following
argument may be found in [3, 7] or [15].

To get the dual operator of eit�, we need the following calculation:

〈eit�u0(x), v(t, x)〉 =

∫
R

∫
R2

eit�u0(x)v(t, x) dx dt

=

&
u0(y)e−2πiy·ξe2πi(x·ξ−2πtξ1ξ2)v(t, x) dξ dy dx dt

=

∫
u0(y)

"
v̂(t, ξ)e2πi(y·ξ+2πtξ1ξ2) dξ dt dy.
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Hence, the dual operator of eit�F(x) is
∫

e−it�Ft(x) dt, where F = F(t, x) = Ft(x).

Our claim is that ∥∥∥∥∥∫
R

e−it�Ft dt
∥∥∥∥∥

L2
x(R2)
. ‖F‖Lq′

t Lr′
x (R×R2)

for every F ∈ Lq′

t Lr′
x (R × R2) and any admissible pair (q, r). Here and throughout this

paper, q′ denotes the conjugate exponent of q defined by 1/q + 1/q′ = 1.

Let (q, r) be an admissible pair with 2 ≤ q, r ≤∞ and (q, r) , (2,∞). Then

∥∥∥∥∥∫
R

e−is�Fs ds
∥∥∥∥∥2

L2
x

=

"
e−is�Fs dt

∫
e−it�Ft dt dx

=

"
〈e−is�Fs, e−it�Ft〉 ds dt

=

"
〈ei(t−s)�Fs, Ft〉 ds dt

=

$
ei(t−s)�FsFt(x) dx dt ds

=

$
ei(t−s)�Fs dsFt(x) dt dx

≤

∫ (∫ ∣∣∣∣∣∫ ei(t−s)�Fs ds
∣∣∣∣∣q dt

)1/q(∫
|F|q

′

dt
)1/q′

dx

≤

∥∥∥∥∥∫ ei(t−s)�Fs ds
∥∥∥∥∥

Lq
t Lr

x

‖F‖Lq′
t Lr′

x
.

Now, by Minkowski’s inequality,

∥∥∥∥∥∫ ei(t−s)�Fs ds
∥∥∥∥∥

Lq
t Lr

x

=

(∫ (∫ ∣∣∣∣∣∫ ei(t−s)�Fs ds
∣∣∣∣∣r dx

)q/r

dt
)1/q

≤

∥∥∥∥∥∫
R

‖ei(t−s)�Fs‖Lr
x(R2) ds

∥∥∥∥∥
Lq

t (R)
.

Let us assume for the moment that ‖eit�Ft‖Lr
x(R2) ≤C|t|−2(1/2−1/r)‖Ft‖Lr′

x (R2) for
2 ≤ r ≤∞. Whenever (q, r) is an admissible pair with 2 < q <∞ and 2 < r <∞, it
follows by the Hardy–Littlewood–Sobolev inequality that there is a positive constant C
such that∥∥∥∥∥∫

R

‖ei(t−s)�Fs‖Lr
x(R2) ds

∥∥∥∥∥
Lq

t (R)
≤ C

∥∥∥∥∥∫
R

|t − s|−2(1/2−1/r)‖Fs‖Lr′
x (R2) ds

∥∥∥∥∥
Lq

t (R)

≤ C‖‖Fs‖Lr′
x (R2)‖Lq′

t (R) = C‖F‖Lq′
t Lr′

x
.
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We need to show that ‖eit�Ft‖Lr
x
≤ (2π|t|)−2(1/2−1/r)‖Ft‖Lr′

x
. We begin with

eit�Ft(x) =

∫
F̂t(ξ)e2πi(x·ξ−2πtξ1ξ2) dξ

=

"
F(t, y)e−2πiy·ξ dy e2πi(x·ξ−2πtξ1ξ2) dξ

=

"
e2πi(x−y)·ξe−4πitξ1ξ2 dξF(t, y) dt.

If we simplify the phase by making a change of variables,∫
e2πix·ξe−4πitξ1ξ2 dξ = 2

∫
e2πix·(ζ1+ζ2,ζ1−ζ2)e−4πit(ζ2

1−ζ
2
2 ) dζ1 dζ2

= 2
∫

e2πi(x1+x2)ζ1 e−4πitζ2
1 dζ1

∫
e2πi(x1−x2)ζ2 e−4πitζ2

2 dζ2

= 2
( 1
4πit

)1/2

ei(x1+x2)2/4t
( 1
4πit

)1/2

ei(x1−x2)2/(−4t)

=
1

2πit
e(i/t)(x1 x2).

Therefore,

eit�Ft(x) =
1

2πit

∫
R2

ei(x1−y1)(x2−y2)/tF(t, y) dt.

Hence, we get two estimates as follows:

‖eit�Ft‖L∞x ≤ (2πt)−1‖Ft‖L1
x

‖eit�Ft‖L2
x
≤ ‖Ft‖L2

x
.

By interpolating these two estimates, it follows that for 2 ≤ r ≤∞,

‖eit�Ft‖Lr(R2) ≤ (2π|t|)−2(1/2−1/r)‖Ft‖Lr′ (R2).

Hence we have the following lemma.

L 2.1 (An inhomogeneous Strichartz estimate). Let (q, r) and (q̃, r̃) be admiss-
ible pairs satisfying 2 ≤ q, r, q̃, r̃ ≤∞, (q, r) ,∞ and (q̃, r̃) ,∞. Then for every
F ∈ Lq̃′

t Lr̃′
x (R × R2) and u0 ∈ L2

x(R2),∥∥∥∥∥∫
R

e−is�Fs ds
∥∥∥∥∥

L2
x(R2)
. ‖F‖Lq̃′

t Lr̃′
x (R×R2) (dual homogeneous) (2.1)

and by duality,
‖eit�u0‖Lq

t Lr
x
. ‖u0‖L2

x(R2) (homogeneous). (2.2)

Moreover, for t0 < t,∥∥∥∥∥∫ t

t0

ei(t−s)�Fs ds
∥∥∥∥∥

Lq
t Lr

x

. ‖F‖Lq̃′
t Lr̃′

x
(inhomogeneous). (2.3)

All omitted constants are positive and depend only on (q, r) or (q̃, r̃).
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In fact, ∥∥∥∥∥∫
R

ei(t−s)�Fs ds
∥∥∥∥∥

Lq
t Lr

x

. ‖F‖Lq̃′
t Lr̃′

x

by (2.1) and (2.2). Then (2.3) follows from the Christ–Kiselev lemma in [6].

3. Proofs of lemmas

The purpose of this section is to prove Lemmas 3.7 and 3.9. We begin with a new
function space whose definition is adapted from that of Xp in [11, 12].

D 3.1. For each k, l ∈ Z, we break R2 up into rectangles R j
k,l such that

R j
k,l = [ j12−k, ( j1 + 1)2−k] × [ j22−l, ( j2 + 1)2−l]

where j = ( j1, j2) ∈ Z2. We define a function space Xq,r
p by

Xq,r
p =

{
f : ‖ f ‖Xq,r

p
=

[∑
k,l

(∑
j

(
2(k+l)(1/p−1/2)

(∫
R j

k,l

| f |p
)1/p)r)q/r]1/q

<∞
}

for 1 ≤ p, q, r ≤∞. When an index is ∞, we adopt the usual supremum norm
interpretation for the corresponding norm.

Then we can observe the following properties of Xq,r
p .

L 3.2. If p < 2 < min{q, r}, then for some 0 < θ < 1, there exists a constant C such
that

‖ f ‖Xq,r
p
≤C sup

j,k,l

(
|R j

k,l|
(1/2−1/p)

(∫
R j

k,l

| f |p
)1/p)θ

‖ f ‖1−θL2 .

P. For q ≤ r, we have ‖ f ‖Xq,r
p
≤ ‖ f ‖Xq,q

p
. Clearly,

‖ f ‖X∞,∞p
≤ sup

j,k,l
2(k+l)(1/p−1/2)

(∫
R j

k,l

| f |p
)1/p

. (3.1)

If we show that
‖ f ‖Xs,s

p
≤C‖ f ‖L2 (3.2)

for p < 2 < s, then, by interpolation between (3.1) and (3.2),

‖ f ‖Xq,r
p
≤ ‖ f ‖Xq,q

p
≤

(
sup
j,k,l

2(k+l)(1/p−1/2)
(∫

R j
k,l

| f |p
)1/p)1−s/q

‖ f ‖s/q
L2

as long as we choose s smaller than q.
To prove (3.2), we may assume that ‖ f ‖L2 = 1. We decompose f into f m and fm

where f m = fχ{| f |≥2(k+l)/2} and fm = fχ{| f |<2(k+l)/2}, respectively.
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First, for p < 2 < s, there is a constant C1 = C1(p) such that

∑
j

∑
k,l

(
2(k+l)(1/p−1/2)

(∫
R j

k,l

| f m|p
)1/p)s

≤

(∑
j

∑
k,l

2(k+l)(1/p−1/2)p
∫

R j
k,l

| f m|p
)s/p

=

(∫ ∑
k,l

2(k+l)(1/p−1/2)p| f m|p
)s/p

=

(∫ ∑
| f |≥2(k+l)/2

2(k+l)(1/p−1/2)p| f |p
)s/p

≤ C1

(∫
| f |2p(1/p−1/2)+p

)s/p

= C1‖ f ‖
2s/p
L2 ≤C1.

Using Hölder’s inequality, we also know that there is a constant C2 = C2(s) such that

∑
j

∑
k,l

(
2(k+l)(1/p−1/2)

(∫
R j

k,l

| fm|
p
)1/p)s

≤
∑

j

∑
k,l

2(k+l)(1/s−1/2)s
∫

R j
k,l

| f m|s

=

∫
R2

∑
k,l

2(k+l)(1/s−1/2)s| fm|
s

=

∫
R2

∑
| f |<2(k+l)/2

2(k+l)(1/s−1/2)s| f |s

≤ C2

∫
R2
| f |2s(1/s−1/2)+s = C2‖ f ‖

2
L2 = C2.

As a result, we can choose a constant C = C(p, s) satisfying ‖ f ‖Xs,s
p
≤C‖ f ‖L2 when

p < 2 < s.

On the other hand, for the case r ≤ q, we have Xr,r
p ⊂ Xq,r

p and so we obtain again the
estimate (3.2) for any 2 < s < r. This completes the proof. �

To prove Lemma 3.5 stated below, we need some results about bilinear extension
estimates on the saddle surface. Fortunately, [10, Theorem 2.3], which is a sort of
mixed-norm generalization of the results in [8, 14, 17], is useful in our case. The
following theorem is taken from [10].

T 3.3 [10]. Assume that n ≥ 2. Let φ1 and φ2 be smooth functions defined on
[−1, 1]n−1. Define an operator Ei f (x, t), for i = 1, 2, by

Ei f (x, t) =

∫
[−1,1]n−1

ei(x·ξ+tφi(ξ)) f (ξ) dξ.
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Also, denote the Hessian matrix of φ by Hφ. If det Hφi , 0 on [−1, 1]n−1 and for
all ξ, ζ ∈ [−1, 1]n−1,

|〈Hφ−1
i (Oφ1(ξ) − Oφ2(ζ)), Oφ1(ξ) − Oφ2(ζ)〉| ≥ c > 0, (3.3)

then for 2 < q, r satisfying 2/q < min(1, n/4) and 4/q < n(1 − 2/r), there is a
constant C such that

‖E1( f1)E2( f2)‖Lq/2
t Lr/2

x
≤C‖ f1‖L2‖ f2‖L2 . (3.4)

R 3.4. From [9, Theorem 5.1], the condition 4/q < n(1 − 2/r) could be extended
to 2/q < 2 − 1/r when n = 3. Then the range of p in (3.5) or (3.6) is also extended. In
particular, we may substitute 16

13 for the infimum 12
7 of p∗ in Lemma 3.5. Nevertheless,

the conditions in Theorem 3.3 are enough to prove Lemma 3.5.

Note that the line segment 1/q = 1/2 − 1/r with 3 < r ≤ 6 is contained in the area
given by 1/q < 3/8 and 1/q < 3

4 (1 − 2/r). By interpolation between (3.4) and a trivial
L1 − L∞ estimate, we can conclude that there is a constant C such that

‖E1( f1)E2( f2)‖
L

q0/2
t L

r0/2
x
≤C‖ f1‖Lp‖ f2‖Lp (3.5)

for some 1 < p < 2 determined by a given (q0, r0) pair satisfying 1/q0 = 1/2 − 1/r0 and
3 < r0 ≤ 6 (see Figure 1). More precisely, 1/p = 1 − θ/2 with θ = q/q0 = r/r0.

In our case, if R j
k,l and R j′

k,l are separated such that ξ ∈ R j
k,l and ζ ∈ R j′

k,l satisfy (3.3),
a simple change of variables gives us

‖eit� f j
k,le

it� f j′

k,l‖Lq/2
t Lr/2

x
≤C2(k+l)(2/r+2/q−2+2/p)‖ f̂ j

k,l‖Lp‖ f̂ j′

k,l‖Lp (3.6)

where f j
k,l is the inverse Fourier transform of f̂ j

k,l = f̂χR j
k,l

supported in a rectangle R j
k,l.

L 3.5. Let (q, r) be an admissible pair with 2 < q ≤ 4 ≤ r. Then there is a constant
C = C(q, r) such that

‖eit� f ‖Lq
t Lr

x
≤ ‖ f̂ ‖Xq,q

p∗

for some p∗ with 12/7 < p∗ < 2.

P. We use the notation and terminology in [12] to decompose R2. Let R j
k,l be

a rectangle of dimension 2−k × 2−l as in Definition 3.1. We consider the rectangles
R j1

k−1,l−1, R j2
k−1,l and R j3

k,l−1 containing R j
k,l as the mother, father, and stepfather,

respectively. If R j
k,l and R j′

k,l have adjacent mothers, but their fathers and stepfathers

are not adjacent, we use the notation R j
k,l ∼ R j′

k,l or simply j ∼ j′. Then

‖eit� f ‖2Lq
t Lr

x
= ‖eit� f eit� f ‖Lq/2

t Lr/2
x

=

∥∥∥∥∥∥∥∥∥∥∑
k,l

∑
j∼ j′

eit� f j
k,le

it� f j′

k,l

∥∥∥∥∥
Lr/2

x

∥∥∥∥∥
Lq/2

t

.
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0

F 1. For any given admissible pair (q0, r0) with 1/q0 < 3/8, there is a pair (q1, r1) ∈ ∆. So we can
determine p in (3.5) using the ratio of q0 to q1.

Now let us assume for the moment that∥∥∥∥∥∑
k,l

∑
j∼ j′

eit� f j
k,le

it� f j′

k,l

∥∥∥∥∥
Lr/2

x

≤C
(∑

k,l

∑
j∼ j′
‖eit� f j

k,le
it� f j′

k,l‖
q/2

Lr/2
x

)2/q

. (3.7)

Then, using the fact that (q, r) is an admissible pair, together with (3.6) and the
Cauchy–Schwarz inequality, we can say that∥∥∥∥∥∑

k,l

∑
j∼ j′

eit� f j
k,le

it� f j′

k,l

∥∥∥∥∥
Lq/2

t Lr/2
x

≤ C
∥∥∥∥∥(∑

k,l

∑
j∼ j′
‖eit� f j

k,le
it� f j′

k,l‖
q/2

Lr/2
x

)2/q∥∥∥∥∥
Lq/2

t

≤ C
(∑

k,l

∑
j∼ j′
‖eit� f j

k,le
it� f j′

k,l‖
q/2

Lq/2
t Lr/2

x

)2/q

≤ C
(∑

k,l

∑
j∼ j′

(2(k+l)(2/p∗−1)‖ f̂ j
k,l‖Lp∗ ‖ f̂ j′

k,l‖Lp∗ )q/2
)2/q
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≤ C
(∑

k,l

2(k+l)(2/p∗−1)(q/2)
∑

j

‖ f̂ j
k,l‖

q
Lp∗

)2/q

= C
(∑

k,l

∑
j

(2(k+l)(1/p∗−1/2)‖ f̂ j
k,l‖Lp∗ )q

)2/q

for some 12/7 < p∗ < 2 determined by an admissible pair (q, r) by (3.5).
Thus,

‖eit� f ‖Lq
t Lr

x
≤C

(∑
k,l

∑
j

(2(k+l)(1/p∗−1/2)‖ f̂ j
k,l‖Lp∗ )q

)1/q

= C‖ f̂ ‖Xq,q
p∗
.

We now turn to the proof of (3.7) for an admissible pair (q, r). For each t, the support
of the Fourier transform of eit� f̂ j

k,le
it� f̂ j′

k,l in x is contained in R j
k,l + R j′

k,l, which is a subset

of R̃ j
k,l = {(m1, m2) ∈ R2 : |m1 − ( j1 + 3)2−k+1| ≤C2−k, |m2 − ( j2 + 3)2−l+1| ≤C2−l}. It is

easy to verify that
∑

k,l
∑

j∼ j′ χR̃ j
k,l

is bounded and also that 2R̃ j
k,l are almost disjoint. Let

us denote by 2R the rectangle with the same center as R and side lengths twice those
of R. Since (q, r) is admissible and q ≤ r, we have q/2 = (r/2)′ = min(r/2, (r/2)′).
Therefore our claim will follow from the following estimate.

L 3.6 [16, Lemma 6.1]. Let Rk be a collection of rectangles in frequency space
such that the dilates 2Rk are almost disjoint, and suppose that fk are a collection of
functions whose Fourier transforms are supported on Rk. Then for all 1 ≤ p ≤∞,∥∥∥∥∥∑

k

fk

∥∥∥∥∥
p
.

(∑
k

‖ fk‖
p∗
p

)1/p∗

,

where p∗ = min(p, p′). �

We are now ready to prove the decomposition lemma for the initial datum.

L 3.7. Suppose that f ∈ L2(R2), 0 < ε ≤ ‖eit� f ‖Lq
t Lr

x
and (q, r) is an admissible

pair. Then there exist a natural number N = N(‖ f ‖L2 , ε) and a finite sequence of
functions { fn}1≤n≤N such that f̂n is supported in a rectangle Rn, | f̂n| ≤ A|Rn|

−1/2 for
some constant A, and ∥∥∥∥∥eit� f −

N∑
n=1

eit� fn

∥∥∥∥∥
Lq

t Lr
x(R3)

< ε.

P. By Lemmas 3.2 and 3.5, there exist p < 2 and a rectangle R1 such that

ε ≤ ‖eit� f ‖Lq
t Lr

x
≤C

(
|R1|

p/2−1
∫

R1

| f̂ |p
)(1/p)(1−θ)

‖ f ‖θL2

for some θ ∈ (0, 1).
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It follows that ∫
R1

| f̂ |p ≥ (ε‖ f ‖−θL2 )p/(1−θ)|R1|
1−p/2 =: c|R1|

1−p/2.

Let λ = (2c−1‖ f ‖2
L2 )1/(2−p)|R1|

−1/2. By Plancherel’s theorem,∫
R1∩{| f̂ |>λ}

| f̂ |p =

∫
R1∩{| f̂ |>λ}

| f̂ |p−2| f̂ |2 ≤ λp−2‖ f ‖2L2 .

On the other hand,∫
R1∩{| f̂ |≤λ}

| f̂ |p =

∫
R1

| f̂ |p −
∫

R1∩{| f̂ |>λ}
| f̂ |p ≥ c|R1|

1−p/2 − λp−2‖ f ‖2L2 . (3.8)

By Hölder’s inequality,∫
R1∩{| f̂ |≤λ}

| f̂ |p ≤
(∫

R1∩{| f̂ |≤λ}
| f̂ |2

)p/2

|R1|
1−p/2,

and hence, by (3.8), ( c
2

)2/p

≤

∫
R1∩{| f̂ |≤λ}

| f̂ |2.

Define f1 and f 1 by f̂1 = f̂χR1∩{| f̂ |≤λ} and f̂ 1 = f̂ − f̂1. Then f̂1 is supported in |R1|

and | f̂1| ≤ λ = A|R1|
−1/2, where

A = (2c−1‖ f ‖2L2 )1/(2−p) = (2(ε‖ f ‖−θL2 )−p/(1−θ)‖ f ‖2L2 )1/(2−p) = (2ε−p/(1−θ)‖ f ‖2+θp/(1−θ)
L2 )1/(2−p).

If ‖eit� f 1‖Lq
t Lr

x
≥ ε, we repeat the above procedure with f 1, a rectangle R2 and

λ1 = (2c−1‖ f 1‖2
L2 )1/(2−p)|R2|

−1/2 in place of f , R1 and λ. Continuing in this way we

get a sequence of functions f̂k−1 = f̂k + f̂ k where f̂k is supported in a rectangle Rk, and

| f̂k| ≤ (2c−1‖ f̂ k−1‖2L2 )1/(2−p)|Rk|
−1/2 ≤ (2ε−p/(1−θ)‖ f ‖2+θp/(1−θ)

L2 )1/(2−p)|Rk|
−1/2 = A|Rk|

−1/2.

Furthermore,∫
| f̂k|

2 ≥

( (ε‖ f̂ k−1‖−θ
L2 )p/(1−θ)

2

)2/p

≥

( (ε‖ f ‖−θ
L2 )p/(1−θ)

2

)2/p

=

( c
2

)2/p

.

Since the Rk are pairwise disjoint by construction,

‖ f̂ ‖2L2 = ‖ f̂1‖
2
L2 + ‖ f̂ − f̂1‖

2
L2 = ‖ f̂1‖

2
L2 + ‖ f̂2‖

2
L2 + ‖ f̂ − f̂1 − f̂2‖

2
L2

and ∥∥∥∥∥ f̂ −
n∑

j=1

f̂ j

∥∥∥∥∥2

L2
= ‖ f̂ ‖2L2 −

n∑
j=1

‖ f̂ j‖
2
L2 ≤ ‖ f̂ ‖2L2 − n

( c
2

)2/p

. (3.9)
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So the Strichartz estimate in Lemma 2.1 and (3.9) imply that∥∥∥∥∥eit� f −
n∑

i=1

eit� f j

∥∥∥∥∥2

Lq
t Lr

x

≤

∥∥∥∥∥ f̂ −
n∑

j=1

f̂ j

∥∥∥∥∥2

L2
≤

∥∥∥∥∥ f̂
∥∥∥∥∥2

L2
− n

( c
2

)2/p

.

As a result, there exists a number N such that∥∥∥∥∥eit� f −
N∑

i=1

eit� f j

∥∥∥∥∥
Lq

t Lr
x

< ε. �

The next observation will be useful for proving Lemma 3.9.

L 3.8. Let 2 < q ≤ r ≤∞. Suppose that f̂ is supported in the unit square. For any
(q, r) satisfying 2/q + 3/r < 3/2, 2/q + 2/r < 2 − 2/q and 2/q > 2(1/2 − 1/r), there
exists a constant C = C(q, r) such that

‖eit� f ‖Lq
t Lr

x
≤C‖ f̂ ‖L∞ .

P. We may assume that ‖ f̂ ‖L∞ = 1. It suffices to show that ‖eit� f ‖Lq
t Lr

x
≤C for some

constant C. Let r∗ = min(r/2, (r/2)′). Then∥∥∥∥∥∑
j∼ j′

eit� f j
k,le

it� f j′

k,l

∥∥∥∥∥
Lq/2

t Lr/2
x

≤ C̃
∥∥∥∥∥(∑

j∼ j′
‖eit� f j

k,le
it� f j′

k,l‖
r∗

Lr/2
x

)1/r∗∥∥∥∥∥
Lq/2

t

≤ C̃
(∑

j∼ j′
‖eit� f j

k,le
it� f j′

k,l‖
q/2

Lq/2
t Lr/2

x

)2/q

≤ C̃
(∑

j∼ j′
(2(k+l)(2/r+2/q−1)‖ f̂ j

k,l‖L2‖ f̂ j′

k,l‖L2 )q/2
)2/q

= C̃2(k+l)(2/r+2/q−1)
(∑

j∼ j′
‖ f̂ j

k,l‖
q/2
L2 ‖ f̂

j′

k,l‖
q/2
L2

)2/q

≤ C̃2(k+l)(2/r+2/q−1)
(∑

j

‖ f̂ j
k,l‖

q
L2

)2/q

.

It then follows that

‖eit� f ‖2Lq
t Lr

x
≤

∑
k,l

∥∥∥∥∥∑
j∼ j′

eit� f j
k,le

it� f j′

k,l

∥∥∥∥∥
Lq/2

t Lr/2
x

= C̃
∑

k+l≥0

2(k+l)(2/r+2/q−1)
(∑

j

‖ f̂ j
k,l‖

q
L2

)2/q

+ C̃
∑

k+l<0

2(k+l)(2/r+2/q−1)
(∑

j

‖ f̂ j
k,l‖

q
L2

)2/q

=: I + II.
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First, by Hölder’s inequality,(∑
j

‖ f̂ j
k,l‖

q
L2

)2/q

≤

(∑
j

‖ f̂ j
k,l‖

q
Lq

)2/q

2(k+l)(2/q−1) ≤ 2(k+l)(2/q−1)‖ f̂ ‖2Lq .

Hence,
I ≤ C̃

∑
k+l≥0

2(k+l)(4/q+2/r−2)‖ f̂ ‖2Lq ≤C1‖ f̂ ‖
2
Lq ≤C1.

The last inequality follows from the fact that f̂ is supported in the unit square and
‖ f̂ ‖L∞ = 1.

On the other hand, since 2 < q and 2/r + 2/q − 1 > 0,

II ≤ C̃
∑

k+l<0

2(k+l)(2/r+2/q−1)
∑

j

‖ f̂ j
k,l‖

2
L2 = C̃

∑
k+l<0

2(k+l)(2/r+2/q−1)‖ f̂ ‖2L2 ≤C2.

Combining these two estimates, we can conclude that there exists a constant
C = C(q, r) such that ‖eit� f ‖Lq

t Lr
x
≤C. �

From the following lemma, we could find the mass concentrating region.

L 3.9. Let (q, r) be an admissible pair. Suppose that f ∈ L2(R2) and its Fourier
transform f̂ is supported in a rectangle R with center ζ = (ζ1, ζ2) and also that
| f̂ | ≤ A|R|−1/2 for some constant A > 0. Let ε > 0 be given. Then there exists a finite
sequence of sets {Qn}1≤n≤N(A,‖ f ‖L2 ,ε) defined by Qn = {(t, x) ∈ R × R2 : (x1 − 2πtζ2, x2 −

2πtζ1) ∈ Rn, t ∈ In}, where Rn is a rectangle of measure |R|−1 and In is an interval of
length |R|−1, such that

‖eit� f ‖Lq
t Lr

x(R3\∪Qn) < ε.

P. Suppose that a rectangle R has dimensions 2a × 2b and center ζ. Then
| f̂ | ≤ A(ab)−1/2. Now, we make use of a change of variables after a translation
ξ 7→ ξ + ζ to get a function supported in the unit square:

|eit� f (x)| =
∣∣∣∣∣∫ f̂ (ξ)e2πi(x·ξ−2πtξ1ξ2) dξ

∣∣∣∣∣
=

∣∣∣∣∣∫
|ξ1 |≤a,|ξ2 |≤b

f̂ (ξ + ζ)e2πi(x·(ξ+ζ)−2πt(ξ1+ζ1)(ξ2+ζ2)) dξ
∣∣∣∣∣

=

∣∣∣∣∣∫
|ξ1 |≤a,|ξ2 |≤b

f̂ (ξ + ζ)e2πi((x1−2πtζ2,x2−2πtζ1)·(ξ1,ξ2)−2πtξ1ξ2) dξ
∣∣∣∣∣

=

∣∣∣∣∣∫
|ξ̄1 |≤1,|ξ̄2 |≤1

f̂ ((aξ̄1, bξ̄2) + ζ)

× e2πi((x1−2πtζ2,x2−2πtζ1)·(aξ̄1,bξ̄2)−2πtabξ̄1 ξ̄2)(ab) dξ̄1 dξ̄2

∣∣∣∣∣
= (ab)1/2|eit′� f ′(x′)|
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where
f̂ ′(ξ1, ξ2) = (ab)1/2 f̂ ((aξ1, bξ2) + ζ), t′ = abt

and
x′ = (a(x1 − 2πζ2), b(x2 − 2πtζ1)).

Note that f̂ ′ is supported in the unit square and that | f̂ ′| ≤ (ab)1/2| f̂ | ≤ A. By
Lemma 3.8, for any admissible pair (q, r), we can find a pair (q̄, r̄) such that q̄ < q,
r̄ < r and r̄/q̄ = r/q, and there is a constant C such that ‖eit′� f ′‖Lq̄

t′
Lr̄

x′
≤C‖ f̂ ′‖L∞ .

Let E ⊂ R × R2 be the set defined by {(t′, x′) ∈ R × R2 : |eit′� f ′(x′)| < λ} for some λ.
Then

‖eit′� f ′‖q
Lq

t′
Lr

x′
(E)

=

∫
R

(∫
Et′

|eit′� f ′(x′)|r̄+r−r̄ dx′
)q/r

dt′

≤ λ(r−r̄)q/r‖eit′� f ′‖q̄
Lq̄

t′
Lr̄

x′
≤Cλ(r−r̄)q/r‖ f̂ ′‖q̄L∞ ≤Cλ(r−r̄)q/rAq̄,

where Et = {x ∈ R2 : (t, x) ∈ E}. For a given ε, if we choose

λ0 ≤min{2−1(C−1A−q̄εq2
)r/q(r−r̄), 1

4 A}

sufficiently small, we have ‖eit′� f ′‖Lq
t′

Lr
x′

(Ẽ) ≤ ε
q where Ẽ = {(t′, x′) : |eit′� f ′(x′)| < 2λ0}.

Since f̂ ′ is supported in the unit square and | f̂ ′| ≤ A, it follows that |eit′� f ′(x′) −
eit′′� f ′(x′′)| ≤ cA(|x′ − x′′| + |t′ − t′′|) for some constant c > 1. If |x′ − x′′| ≤ λ0/2cA
and |t′ − t′′| ≤ λ0/2cA, then |eit′� f ′(x′)| < λ0 implies that |eit′′� f ′(x′′)| < 2λ0.

So, for some index set S , we can choose a family of sets (Pr)r∈S = (Jr, Kr)r∈S ⊂

R × R2 such that, for (t′, x′) ∈ {|eit′� f ′(x′)| ≥ 2λ0}, Kr is a square of center x′ with |Kr | =

(λ0/cA)2 ≤ 1/16 and Jr ⊂ R is a closed interval of center t′ with |Jr | = λ0/cA ≤ 1/4.
Also, (Pr)r∈S satisfies the following: for (r, s) ∈ S × S with r , s, Int(Pr) ∩ Int(Ps) = ∅

and
{|eit′� f ′(x′)| ≥ 2λ0} ⊂

⋃
r∈S

Pr ⊂ {|e
it′� f ′(x′)| ≥ λ0}

where Int(Pr) is the interior of Pr.
Let N be the cardinality of S . Then, by the Strichartz inequality, N is bounded. In

fact,

N
(
λ0

cA

)3

=

∣∣∣∣∣⋃
r∈S

Pr

∣∣∣∣∣ ≤ |{|eit′� f ′(x′)| ≥ λ0}|

≤ λ−4
0 ‖e

it′� f ′‖4L4(R3) ≤ λ
−4
0 ‖ f

′‖4L2 = λ−4
0 ‖ f ‖

4
L2 .

Since {|eit′� f ′(x′)| ≥ 2λ0} is covered by {Pn}1≤n≤N ,∫
R

(∫
P̄t

|eit′� f ′(x′)|r dx′
)q/r

dt′ < εq
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where

P̄t =

{
x′ ∈ R2 : (t′, x′) ∈ R3

∖ N⋃
n=1

Pn

}
.

For each 1 ≤ n ≤ N, let Qn be the set{
(t, x) :

∣∣∣∣∣x1 − 2πtζ2 −
xn

1

a

∣∣∣∣∣ < 1
4a
,

∣∣∣∣∣x2 − 2πtζ1 −
xn

2

b

∣∣∣∣∣ < 1
4b
,

∣∣∣∣∣t − tn

ab

∣∣∣∣∣ < 1
8ab

}
where (tn; xn

1, xn
2) = (tn; xn) denotes the center of Pn. Let Q̄t = {x′ ∈ R2 : (t′, x′) ∈

R3\
⋃

Qn}. Then

‖eit� f ‖q
Lq

t Lr
x(R3\∪Qn)

= (ab)q/2
∫
R

(∫
Q̄t

|eit′� f ′(x′)|r dx
)q/r

dt

= (ab)q/2
∫
R

(∫
Q̄t

|eiabt� f ′(a(x1 − 2πtζ2), b(x2 − 2πtζ1))|r dx
)q/r

dt

≤ (ab)q/2
∫
R

(∫
P̄t

|eit̄� f ′(x̄1, x̄2)|r
1
ab

dx̄
)q/r 1

ab
dt̄

= (ab)q/2−(q/r+1)‖eit̄� f ′‖q
Lq

t Lr
x(R3\∪Pn)

< (ab)q/2−(q/r+1)εq.

Therefore, we may conclude that

‖eit� f ‖Lq
t Lr

x(R3\∪Qn) < (ab)1/2−(1/r+1/q)ε = ε. �

4. Mass concentration phenomenon

The following result implies Theorem 1.1, as was observed in Remarks 1.2 and 1.3.

T 4.1. Suppose that u = u(t, x) is a solution to{
iut + �u + γ|u|2u = 0
u(0, x) = u0(x) ∈ L2(R2)

for some γ ∈ R\{0}. Let (q, r) be an admissible pair with q ≤ r ≤ 6. Suppose that the
solution satisfies ‖u‖Lq

t Lr
x([0,t)×R2) <∞ for 0 < t < Tmax and that ‖u‖Lq

t Lr
x([0,Tmax)×R2) =∞.

Then

lim sup
t↗Tmax

sup
a rectangle R
|R|≤(Tmax−t)

(∫
R
|u(t, x)|2 dx

)1/2

> ε

where ε is a constant depending only on γ and ‖u0‖L2(R2).
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P. For a small fixed η > 0, and for all times T0 < Tmax, there exists T1 < Tmax such
that ‖u‖Lq

t Lr
x((T0,T1)×R2) = η. By Duhamel’s principle, for t ∈ (T0, Tmax),

ut(x) = ei(t−T0)�uT0 (x) + iγ
∫ t

T0

ei(t−s)�|u(s)|2u(s) ds.

Step 1. Controlling the inhomogeneous part.
For any t ∈ (T0, T1), let us set F(u) = iγ

∫ t

T0
ei(t−s)�|u(s)|2u(s) ds. It follows that

‖F(u)‖Lq
t Lr

x((T0,T1)×R2) ≤ |γ|C‖ |u|
2u‖Lq̃′

t Lr̃′
x

= |γ|C‖u‖3
Lq

t Lr
x
= |γ|Cη3

by (2.3) and Remark 1.3.
Hence, if we choose η small enough such that

η ≤ (3q2((|γ|C)2 + 1))−1/4 ≤ (1 + |γ|C)−1/2, (4.1)

it follows that
‖ei(t−T0)�uT0‖Lq

t Lr
x((T0,T1)×R2) ≥ η − |γ|Cη

3 ≥ η3.

Step 2. Decomposing the initial data.
We start with

ηq =

∫ T1

T0

(∫
R2
|u|r dx

)q/r

dt

≤ 3q
(
I + II +

∫ T1

T0

(∫
R2
|u|2

∣∣∣∣∣ N0∑
n=1

ei(t−T0)� fn

∣∣∣∣∣r−2

dx
)q/r

dt
)

where

I =

∫ T1

T0

(∫
R2
|u|2|u(x, t) − ei(t−T0)�uT0 |

r−2 dx
)q/r

dt

II =

∫ T1

T0

(∫
R2
|u|2

∣∣∣∣∣ei(t−T0)�uT0 −

N0∑
n=1

ei(t−T0)� fn

∣∣∣∣∣r−2

dx
)q/r

dt

and { fn}
N0
n=1 is as in the proof of Lemma 3.7 below.

Using Hölder’s inequality with r/2 and r/(r − 2), we estimate

I =

∫ T1

T0

(∫
R2
|u|2|F(u)|r−2 dx

)q/r

dt

≤

∫ T1

T0

((∫
R2
|u|r dx

)2/r(∫
R2
|F(u)|r dx

)(r−2)/r)q/r

dt

=

∫ T1

T0

(∫
R2
|u|r dx

)2q/r2(∫
R2
|F(u)|r dx

)q(r−2)/r2

dt
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≤

(∫ T1

T0

(∫
R2
|u|r dx

)q/r

dt
)2/r(∫ T1

T0

(∫
R2
|F(u)|r dx

)q/r

dt
)(r−2)/r

= ‖u‖2q/r
Lq

t Lr
x
‖F(u)‖q(r−2)/r

Lq
t Lr

x
≤ η2q/r(|γ|Cη3)q(r−2)/r = (|γ|C)2ηq+4

because of the fact that 3q − 4q/r = q + 4.
Similarly, by Lemma 3.7,

II ≤ ‖u‖2q/r
Lq

t Lr
x

∥∥∥∥∥ei(t−T0)�uT0 −

N0∑
n=1

ei(t−T0)� fn

∥∥∥∥∥q(r−2)/r

Lq
t Lr

x

≤ η2q/r(η3)q(r−2)/r = ηq+4.

Therefore, by (4.1),∫ T1

T0

(∫
R2
|u|2

∣∣∣∣∣ N0∑
n=1

ei(t−T0)� fn

∣∣∣∣∣r−2

dx
)q/r

dt ≥
ηq

3q2
.

Then there exists an integer n0 between 1 and N0 and a function f̂0 = f̂n0 such that for
some ε0 > 0, ∫ T1

T0

(∫
R2
|u|2|ei(t−T0)� f0|

r−2 dx
)q/r

dt ≥ ε0

where f̂0 is supported in R and | f̂0| ≤ A|R|−1/2 from Lemma 3.7.

Step 3. Figuring out the concentration region.
From Lemma 3.9, we can show that there exist an integer N1 and a set of

rectangles {Qn}1≤n≤N1 , where Qn = {(t, x) ∈ R3 : (x1 − 2πtζ2, x2 − 2πtζ1) ∈ Rn, t ∈ In},
Rn is a rectangle of measure |R|−1, and In is an interval of length |R|−1 such that

‖ei(t−T0)� f0‖Lq
t Lr

x(R×R2\
⋃N1

n=1 Qn) <
(
ε0

2η2q/r

)r/q(r−2)

.

By Hölder’s inequality with 2/r + (r − 2)/r = 1, on

Q̃t =

{
x ∈ R2 : (t, x) ∈ ((T0, T1) × R2)

∖ N1⋃
n=1

Qn

}
,

we have ∫ T1

T0

(∫
Q̃t

|u|2|ei(t−T0)� f0|
r−2 dx

)q/r

dt

≤ ‖u‖2q/r
Lq

t Lr
x
‖ei(t−T0)� f0‖

q(r−2)/r

Lq
t Lr

x(((T0,T1)×R2)\
⋃N1

n=1 Qn)

< η2q/r
(
ε0

2η2q/r

)
=
ε0

2
.
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It follows that, on ((T0, T1) × R2) ∩ (
⋃N1

n=1 Qn),∫ T1

T0

(∫
Q̃t
|u|2|ei(t−T0)� f0|

r−2 dx
)q/r

dt ≥
ε0

2

where

Q̃t =

{
x ∈ R2 : (t, x) ∈ ((T0, T1) × R2) ∩

( N1⋃
n=1

Qn

)}
.

Hence there exists a rectangle Q0 = R0 × I0 ∈ {Qn}
N1
n=1 such that∫

(T0,T1)∩I0

(∫
Qt

0

|u(x, t)|2|ei(t−T0)� f0|
r−2 dx

)q/r

dt ≥
ε0

2N1
=: ε1

where Qt
0 = {x ∈ R2 : (x1 − 2πtζ2, x2 − 2πtζ1) ∈ R0, t ∈ I0}, R0 is a rectangle of measure

|R|−1 and I0 is an interval of length |R|−1.

Step 4. Determining the size of windows.
Since | f̂0| ≤ A|R|−1/2 and f̂0 is supported in R,

|ei(t−T0)� f0| ≤
∫

R
| f̂ | ≤ |R|A|R|−1/2 = A|R|1/2,

and

ε1 ≤

∫
(T0,T1)∩I0

(∫
Qt

0

|u(t, x)|2|ei(t−T0)� f0|
r−2 dx

)q/r

dt

≤ (A|R|1/2)q(r−2)/r
∫

(T0,T1)∩I0

(∫
Qt

0

|u(t, x)|2 dx
)q/r

dt

≤ (A|R|1/2)q(r−2)/r(T1 − T0)‖u0‖
2q/r
L2(R2)

.

Thus
T1 − T0 ≥

ε1

(A|R|1/2)q(r−2)/r‖u0‖
2q/r
L2(R2)

=: θ.

We can observe that∫ T1

T1−
1
2 θ

(∫
Qt

0

|u(t, x)|2|ei(t−T0)� f0|
r−2 dx

)q/r

dt ≤
1
2
θ(A|R|1/2)q(r−2)/r‖u0‖

2q/r
L2 =

ε1

2
.

So

ε1

2
≤

∫
(T0,T1−

1
2 θ)∩I0

(∫
Qt

0

|u|2|ei(t−T0)� f0|
r−2

)q/r

dt

≤ |I0| sup
t∈(T0,T1−

1
2 θ)

(∫
Qt

0

|u|2|ei(t−T0)� f0|
r−2

)q/r

≤ |R|−1(A|R|1/2)q(r−2)/r
(

sup
t∈(T0,T1−

1
2 θ)

∫
Qt

0

|u|2 dx
)q/r

.
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Then we can say that

sup
t∈(T0,T1−

1
2 θ)

(∫
Qt

0

|u|2 dx
)q/r

≥
ε1

2Aq(r−2)/r
,

or

sup
t∈(T0,T1−

1
2 θ)

∫
Qt

0

|u|2 dx ≥C
(
ε1

2

)r/q

where C = 1/Ar−2.
Therefore, for all T0 < Tmax, there exist t0 ∈ (T0, T1 − 1/2θ) and a rectangle Qt0

0 such
that ∫

Q
t0
0

|u(t0, x)|2 dx >
C
4

(
ε1

2

)r/q

.

Note that

t0 ≤ Tmax −
1
2
θ = Tmax −

ε2

|R|q(r−2)/2r

where ε2 = ε1(2Aq(r−2)/r‖u0‖
2q/r
L2 )−1.

Because (q, r) is an admissible pair, q(r − 2)/2r = q/2 − q/r = 1. Then

|Qt0
0 | =

1
|R|
≤

1
ε2

(Tmax − t0).

Dividing Qt0
0 into m = d1/ε2e rectangles, there exists a rectangle R′ such that

|R′| ≤ Tmax − t0. Therefore,∫
R′
|u(t0, x)|2 dx >

C
4m

(
ε1

2

)r/q

=: ε3. (4.2)

Step 5. Conclusion.
We consider a sequence {Tn} such that 0 = T1 < T2 < · · · < Tn < Tn+1 < · · · < Tmax

and ‖u‖Lq
t Lr

x((Tn,Tn+1)×R2) = η. For each interval (Tn, Tn+1), there exist tn ∈ (Tn, Tn+1) such
that

sup
a rectangle R
|R|≤(Tmax−tn)

(∫
R
|u(tn, x)|2 dx

)1/2

>
√
ε3

by (4.2). Thus we get a sequence {tn} of time such that tn→ Tmax as n→∞. This gives
the conclusion of the theorem with ε =

√
ε3. �
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