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Abstract

This paper is concerned with a mass concentration phenomenon for a two-dimensional nonelliptic
Schrédinger equation. Tt is well known that this phenomenon occurs when the L*-norm of the solution
blows up in finite time. We extend this result to the case where a mixed norm of the solution blows up in
finite time.
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1. Introduction

We begin with the two-dimensional initial value problem for a nonelliptic nonlinear
Schrodinger equation defined by
i, + 0u + ylulPu=0 (1.1)
u(0, x) = up(x) € L*(R?) :
where y € R\{0} and O = 9y, d,,. The solution of the linear version of (1.1) (that is, with
y = 0) can be written as

eimuo(x) - f 2 ezni(x.f—zntflfz)%(é:) df.
R

Note that (1.1) is invariant under the scaling

172

l/l(t, X1, -x2) = (/l'Ll) M(/lﬂt, /lxla ,Ll.XQ)

for any A, u > 0. So, we would have to consider rectangles instead of squares when we
decompose R?.

It is well known that, in (1.1), there exist maximal existence times Tiin, T max €
(0, o] and a unique solution

1 € CU(=Tmins Tmax)> L*(R®) N LL (= Tnins Tmax)s L' (R?))

loc
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for any admissible pair (g, r). Recall that (g, r) is called an admissible pair for
(I.)if g, r>2,1/g=1/2~1/r and (g, r) # (2, ). Also [[u(®)ll;2®2) = lluoll;2z2) for
all 1 € (=T'min, Tmax), regardless of y. However, unlike the case of the Schrodinger
equation, we do not know whether this nonelliptic equation has a blow-up solution
related to a given initial datum.

In [12], Rogers and Vargas proved that if |u|| L* ([0, T )XEB2) = for some T < 00,

then
limsup sup f lu(t, x)|> dx > & (1.2)
t,/ Tmax arectangle R JR
|R|STmax_t

where & is a positive constant depending only on y and |luoll2m2). When
[|ue]| L (= Tin O1XE2) blows up, there is also a result similar to (1.2). In this note, we shall
show that there is also a mass concentration phenomenon for (1.1) when the mixed
norm ||u|| o blows up in finite time.

In the elliptic case, Bourgain [2] proved the mass concentration phenomenon for
an L*critical nonlinear Schrodinger equation with spatial dimension two. This result
was extended to higher-dimensional cases by Bégout and Vargas [1]. They made use
of bilinear extension (adjoint restriction) estimates for the paraboloid due to Tao [14]
in order to get a refinement of the Strichartz estimate which is an essential ingredient
in their argument. Moreover, the case where a mixed norm LYL”, of the solution blows
up is considered in [4]. In this case, they utilize a mixed-norm generalization of the
bilinear extension estimates for the paraboloid due to Lee and Vargas [10]. A similar
result for the higher-order Schrodinger equation, iu, + (—A)*?u = +|ul**/?u, can be
found in [5].

Our result may be stated as follows.

Tueorem 1.1. Let (q, r) be an admissible pair with g < r < 6. Also let u be the solution
to (]]) U ”u“LEIL;([O,TmaX)XRZ) = fOr some 0 < Tmax < 0 and ”u”LfIL;([O,t]XRZ) < o0 fOr
all re (0$ Tmax)’ ﬂ’lel’l

limsup sup f lu(t, x)|> dx > &
R

1/ Tmax  arectangle R
|R|§Tmax =t

where € is a constant depending only on 'y and ||ug||;2.

The proof of Theorem 1.1 basically follows the argument of Rogers and Vargas [12]
which was partially based on a modification of the method of Bougain [2] and some
new ideas essential for handling the hyperbolical situation. In the same manner,
decomposing R? into rectangles, we obtain a separation condition which satisfies the
hypothesis of [ 10, Theorem 2.3], and then we define a more general function space XZ”
than X, in [12] (see Definition 3.1 below). Since [10, Theorem 2.3] is valid not only
for paraboloid cases but also for some hyperbolic cases, a refinement of Strichartz
estimates in [12] could be extended to our mixed-norm case. This refinement is
especially meaningful in that it enables the decomposition of initial data uy(x) into
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a finite sequence of functions, which will be described precisely in Lemma 3.7. We
will also make use of some mixed-norm estimates on the space X, which are adapted
from the results in [4].

It is worthwhile to make the following remarks which allow us to restrict the range
of an admissible pair (g, ) to g < r < 6.

Remark 1.2. It suffices to consider only the case ¢ <r. To see this, observe that if
lleell o LE(I0 T 2) = for g > r, then ||u]| LA (10, Typay)xR2) = 0 from 1nterp'ole.1t10n W}th the
mass conservation ||u|| = lletoll 2 (r2)- Indeed, let (go, o) be an admissible pair with

qo > rp such that

1_1—e+9 ond 1_1—9+9
g o 4 o 2 4

for some 6 € (0, 1). If ||I/£||L:10L;o = oo, then |lul|;+ = oo follows from

1-6
6
Il < (suplllls) Ny and  sup lulz = lolz # 0
t WX t

by Hoélder’s inequality and the conservation of charge. Hence, there exists a mass
concentration phenomenon by the result in [12].

Remark 1.3. For the local well-posedness of (1.1) in the mixed-norm space L!L’, we
would check if the inhomogeneous part of the solution is a contraction map. Actually,
by Duhamel’s principle, the solution to (1.1) is given by

u(t, x) = e™uy(x) + iy f PN u(s)Pu(s) ds. (1.3)
0

Using (1.3), the inhomogeneous Strichartz estimate in Lemma 2.1 below and Holder’s
inequality, it follows that for any admissible pairs (g, r) and (g, 7),

T
H fo IO u()Pu(s) — W()PV(s)] ds

L
2 2
< e = 1Pl

2 2 2
= ||(ul” = |))u + " —-v)||,7,»
[1Clal™ = 17w+ (e = )l
2
= el = WDl + VD + 1 =)l
2
< et = wICCatl + DIl + VI

2 2
< —_ i

u—v|

2 2
< Cllal + W21 gy 3o lla =il

2 LE
2

2
< .
< C(lulf? Ly

o+ W )l =Vl

The conditions ¢ = 3¢’ and r = 37 imply that 1/6 < 1/r < 1/3. For this range of r, (1.1)
is locally well-posed in the mixed norm space C([0, T]; L>(R?)) N LI([0, T]; L' (R?))
for a small time 7 < Tpax.
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RemMark 1.4. For observing a mass concentration phenomenon, the inhomogeneous
part of the solution does not play a primary role as long as the integral part in (1.3) can
be controlled by the solution u(¢, x). For example, there may be a mass concentration
phenomenon for the hyperbolic-elliptic type Davey—Stewartson system, with subsonic
wave packet, which is defined by

iu, — 0% u+ 0%, u = (xlul* + B(ul)u

where
— - .
B(N)E1. &)= 51 f(€.&) and y>0.
&+
A detailed discussion of the Davey—Stewartson system may be found in [13].
In practice, it suffices to show that

3

2 2
1+ bt + Bl 177, 7, s < Clll

for ¢ = 3G and r = 37.
Note that [|B(f)ll,» < ClIfllz for 1<p<oco by the Marcinkiewicz multiplier
theorem. Thus

2 2
1Beel"yuall 2, < NBeal M or2 o laall g

2 3
< || Cllu 1,2

iy

|L;1/2||M||L§’L; < Cllull

Using the triangle inequality, we obtain the desired result.

This paper is organized as follows. In Section 2 we obtain some Strichartz estimates
for the operator ¢, which is proved in the same manner as in the case of the
Schrodinger operator e**. In Section 4 we give a proof of Theorem 1.1. In Section 3
we prove some useful and technical lemmas which are used in Section 4.

2. Strichartz estimates

In this section a brief review of Strichartz estimates will be given. The following
argument may be found in [3, 7] or [15].
To get the dual operator of €®, we need the following calculation:

<emju0(~x)9 V(t, x)) = f

R

RZ
= f f f ug(y)e W E AT E=IEE) (1 x) dE dy dx dt

:fmﬁgﬁgwwwm@&m@

f e uy(x)v(t, x) dx dt
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Hence, the dual operator of ¢™F(x) is [ e™™F,(x) dt, where F = F(t, x) = Fy(x).

Our claim is that
f e OF, dt
R

for every F € L;’, L” (R x R?) and any admissible pair (g, r). Here and throughout this
paper, ¢’ denotes the conjugate exponent of g defined by 1/g+ 1/¢" = 1.

< Il

q 2
2, LY L7 (RxR2)

Let (g, ) be an admissible pair with 2 < g, r < oo and (g, r) # (2, o). Then

) -
fe_imFS ds :ffe_”DFs dtfe‘”DFl dt dx
R L2
= f f (e7OF, e™™F,) ds dt
= f (e"IFF, F,)yds dt
= f f f IBF F.(x)dxdt ds
= fff e IBF  dsF,(x) dt dx
o g9 \l/q RN
< f ( f ‘ f JBE g dt) ( f IF|¢ dt) dx

f Fds|| Il
Lir; e

<

Now, by Minkowski’s inequality,

eri(’_s)DFs ds = (f(f‘fei(’_s)DFs ds
L

L e P F |l 2y ds

r qlr 1/q
dx) dt)

<

L®)

Let us assume for the moment that [le"F ||z < Cll™> V> VNIF ||,y g2, for
2 <r<oco. Whenever (g, r) is an admissible pair with 2 <g < oo and 2 <r < oo, it
follows by the Hardy-Littlewood—Sobolev inequality that there is a positive constant C

such that
(1~ —2(1/2-1
f”el(t DOF g2 ds <C f|f— s/ /r)||Fs||L;’(R2) ds
R L{(R) R LI(R)
< C|”|FS||L§/(R2)”L?'(R) = CHF”L{L;"
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We need to show that [|e™ F,||; < (27r|t|)‘2(1/2‘1/’)llFtllL;/. We begin with
FOF(x) = f P ()e2mtrEam) g
_ f f F(t, y)e 7€ dy 2riE-2m8) g
= f f PV E T IIEE qeF (1 y) dt.

If we simplify the phase by making a change of variables,
fe2ﬂix'§e4”il§1§z dé = 2[627![)6'({1%2‘{1(2)647”7({12{%) déy dés
-9 f 2T +x) e—4nit§]2 de f 2T =x) e—4m‘zg§ do

1/2 1/2

2( 1 )/ i(x1+xz)2/4l( 1 )/ i -2 ()

e —] e
4rit

Arit
1
—e

(i/Dx1x)
2t

Therefore,
2mit
Hence, we get two estimates as follows:
' -1
le" Filly < @ty Il

||€ijt||L§ < ||Ft||L§-

eimF,(x) - ! f el‘(Xl*Yl)(Xz*yz)/tF(t’ y) dt.
R2

By interpolating these two estimates, it follows that for 2 < r < oo,
" Fillr @) < Qalt) V2 VN F I g
Hence we have the following lemma.

Lemwma 2.1 (An inhomogeneous Strichartz estimate). Let (g, r) and (G, 7) be admiss-
ible pairs satisfying 2<q,r,§,7 <o, (q,r)# 00 and (g,7) # . Then for every
Fe LI L” (R x R?) and uy € L2(R?),

[R e SOF, ds . < ”F”L?’Li.’(Rsz) (dual homogeneous) (2.1)
and by duality, '
||€”DM0||L;’L; < lluollzey  (homogeneous). (2.2)
Moreover, for ty < t,
!
‘ f e IBF ds SFll,#,» (inhomogeneous). (2.3)
fo Lir:; T

All omitted constants are positive and depend only on (q, r) or (§, F).
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f &INE ds
R

by (2.1) and (2.2). Then (2.3) follows from the Christ-Kiselev lemma in [6].

In fact,

<|Fl,a
L?L; ~ ” ”L? LY

3. Proofs of lemmas

The purpose of this section is to prove Lemmas 3.7 and 3.9. We begin with a new
function space whose definition is adapted from that of X, in [11, 12].

DeriNiTion 3.1. For each k, [ € Z, we break R? up into rectangles R,{l such that
R)Z,l =[71275 G+ D278 x 27!, (o + 1271

where j = (ji, j») € Z*. We define a function space X} by
l/p\r\alril/q
=lpn {1 <
Kl j Rt

for 1 <p,q,r<co. When an index is co, we adopt the usual supremum norm
interpretation for the corresponding norm.

Then we can observe the following properties of XZ’r.

Lemma 3.2. If p < 2 < min{g, r}, then for some 0 < 0 < 1, there exists a constant C such
that

i 1/p\6
Wt <l ) i
ik, R,

Proor. For g < r, we have || f ||X;§" <|If] ||XZ"1- Clearly,

I/p
Il < sup 2 [ ypp) G.1)
Jik, R,

kil

If we show that
A llxss < ClIfll2 (3.2)

for p <2 < s, then, by interpolation between (3.1) and (3.2),

1/p\1-s/q
k+D)(1/p—1/2 N
Il < 1l < (sup 2000/-1/2( f ) )
Ris

Jik,l

as long as we choose s smaller than g.
To prove (3.2), we may assume that |[f]|;- = 1. We decompose f into f™ and f,
where [ = fx o002y and fi = fxy f<as02), TESpECtively.
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First, for p <2 < s, there is a constant C; = C(p) such that

1/pys s/p
2<k+1>(1/p—1/2>( f |fm|p) ) s( k(1 /p=1/2)p f |fm|p)
> ) » N

ikl R 7kl i’

s/p
k+D)(1/p-1/2
:(fzzu)( I /)p|fm|p)
k,l
/
_ ( f S ownasr-i f|p)s !

|f|22(k+1)/2

s/p
_ 2
< Cl(f |f|2p(l/l7 1/2)+]7) — C1||f”L~;/P < Cl'

Using Holder’s inequality, we also know that there is a constant C, = C;(s) such that

1/p\s
(+D(1/p=1/2) » < (k+D)(1/5-1/2)s mis
I (Lﬂ”'))“E )2 ~&Jf|

J okl k J

:f Zz(k+l)(1/s—1/2)5|fm|s
R> 97

_ f Z pk+D)(1/s=1 /2)S| f|s
R

2
f]<2(k+D/2

2s(1/s-1/2 2
sC{fJﬂ“” P = ColfIR, = Ca.
R

As a result, we can choose a constant C = C(p, s) satisfying ||f||x;,~~‘ < C||fllzz when
p<2<s.

On the other hand, for the case r < g, we have X,," C X} and so we obtain again the
estimate (3.2) for any 2 < s < r. This completes the proof. O

To prove Lemma 3.5 stated below, we need some results about bilinear extension
estimates on the saddle surface. Fortunately, [10, Theorem 2.3], which is a sort of
mixed-norm generalization of the results in [8, 14, 17], is useful in our case. The

following theorem is taken from [10].

TueorEM 3.3 [10]. Assume that n > 2. Let ¢| and ¢ be smooth functions defined on
[-1, 11"L. Define an operator E;f(x, t), fori=1,2, by

aﬂ&o=j" EIED () i,
[-1,1]%!
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Also, denote the Hessian matrix of ¢ by He. If det Hp; #0 on [—1, 11"~ and for
all 67 g € [_1’ 1]7!—1,

KHe; ' (41(&) = va(0)), Y1) = V(D) = ¢ > 0, (3.3)

then for 2<gq,r satisfying 2/q <min(1,n/4) and 4/q<n(1—-2/r), there is a
constant C such that

IELFOE2 (Pl a2 < CllAN2 N2 (3.4)

RemMark 3.4. From [9, Theorem 5.1], the condition 4/¢g < n(1 — 2/r) could be extended
to 2/q <2 — 1/r when n = 3. Then the range of p in (3.5) or (3.6) is also extended. In
particular, we may substitute ; 6 for the 1nﬁmum 2 of p* in Lemma 3.5. Nevertheless,
the conditions in Theorem 3. 3 are enough to prove Lemma 3.5.

Note that the line segment 1/¢g =1/2 — 1/r with 3 <r <6 is contained in the area
given by 1/g<3/8and 1/g < %(1 — 2/r). By interpolation between (3.4) and a trivial
L' — L™ estimate, we can conclude that there is a constant C such that

IE1(FOE2(P)l o2 o2 < Cllfiller L2l (3.5

for some 1 < p < 2 determined by a given (g, ro) pair satisfying 1/go = 1/2 — 1/rg and
3 <rp <6 (see Figure 1). More precisely, 1/p=1-6/2 w1th 0=q/qo = r/ro

In our case, if R’ and R’ are separated such that £ € R ,and J € R ; satisfy (3.3),
a simple change of Var1ables gives us “ “

i k+D)(2/r+2/q—2+2
e f: J ”kal”L"/z 1 < C2KFDQIr+2/g-2+ /p)”ﬁl“UkaIHLP (3.6)

J - . . o p . . j
where f', is the inverse Fourier transform of f, = f, Xg!, supported in a rectangle R; ;.

Lemma 3.5. Let (g, r) be an admissible pair with2 < g <4 < r. Then there is a constant
C = C(q, r) such that

le™ fllzziz, < 1l
Sfor some p* with 12/7 < p* < 2.

Proor. We use the notation and terminology in [12] to decompose R?. Let Ri , be
a rectangle of dimension 27% x 27" as in Definition 3.1. We consider the rectangles

Ri‘ Lot szl , and Rk3l , containing Ri,/ as the mother, father, and stepfather,

respectively. If R’ and R’ have adjacent mothers, but their fathers and stepfathers

are not adjacent, we use the notation R; ; ~ Ry ; or simply j ~ j’. Then

it J zt\:!
Z Z ¢ fkl

kl j~J

it 2 it it
167 f1,,, = 1™ £ fl g, = '

L q/2 '

https://doi.org/10.1017/51446788712000377 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788712000377

[10] Mass concentration for a nonelliptic Schrodinger equation 247

> N

=

0 |

Q| =

A
~ (=

1
8 6 4 2
FiGure 1. For any given admissible pair (go, rp) with 1/go < 3/8, there is a pair (¢, 1) € A. So we can
determine p in (3.5) using the ratio of gy to g;.

Now let us assume for the moment that

ZZ ”kalemfkl

Kkl j~J

(Z Z e £ ze"kazlljfi) : 3.7)
k.l

J~J

Then, using the fact that (g, r) is an admissible pair, together with (3.6) and the
Cauchy—Schwarz inequality, we can say that

ita ¢Jj _ita ¢J it it q/2
S e e (Z Seesenge)
I 7 T 7

L L;/z - L
2
(S S )
kl j~J
2
< C(Z 3@t *)q/Z) !
kl j~j
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C(Z k+D2/p"=1)(g/2) Z I f’zl”q?* )Z/q
[ j
" " 2/q
= (X Yy, )

Kl j

IA

for some 12/7 < p* < 2 determined by an admissible pair (g, r) by (3.5).
Thus,

. 1/q
i k+D(1/p*=1/2)) £ F
”emjf”Li’Li < C(E E (kD /p=1/ )“fk/,l”L”*)q) = C”f”XZf‘
kl j

‘We now turn to the proof of (3.7) for an admissible pair (g, 7). For each ¢, the support
of the Fourier transform of e/® Tri€ il it fk ,in xis contained in R; / + R/ 1.» Which is a subset
Of R, = ((my,my) € B2 s Imy — (jy +3)2741 < €27, |, - (jz +3)27% < 27 Tt
easy to verify that 35y ; ;. 7 XK, is bounded and also that 2R , are almost disjoint. Let
us denote by 2R the rectangle w1th the same center as R and 51de lengths twice those
of R. Since (g, r) is admissible and ¢ <r, we have ¢/2 = (r/2)’ = min(r/2, (r/2)’).
Therefore our claim will follow from the following estimate.

Lemma 3.6 [16, Lemma 6.1]. Let Ry be a collection of rectangles in frequency space
such that the dilates 2Ry are almost disjoint, and suppose that f; are a collection of
Sfunctions whose Fourier transforms are supported on Ry. Then for all 1 < p < oo,

AL/p*
Zk:fk ps(zk:||ﬁ||ﬁ) :

where p* = min(p, p’). O

We are now ready to prove the decomposition lemma for the initial datum.

Lemma 3.7. Suppose that f € L>(R?), 0<e< ||€ith||L;1L; and (g, r) is an admissible
pair. Then there exist a natural number N = N(||f||;2, €) and a finite sequence of
functions {f,}1<n<y such that f, is supported in a rectangle R,, |f,| < A|R,I"'? for

some constant A, and
N

eith _ Z eit[]fn

n=1

<é&.
LILL®Y)

Proor. By Lemmas 3.2 and 3.5, there exist p < 2 and a rectangle R; such that

)(1/17)(1—9)

7 2-1 7 6
e <1l < (iR [ 17y A1
R

for some 6 € (0, 1).
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It follows that

£fp —6\p/(1-6) 1-p/2 _. 1-p/2
> i = )
Lf17 = Cellfll2) IR clR|
R
Let A =(2c! ||f||i2)1/(2‘”)|R1|‘1/2. By Plancherel’s theorem,

f = f PR < R
Rin{lfI>4} Rin{lfI>4)

On the other hand,

f = f AP - f AR - AR, (38
RiN{IfI<4} R RiN{|fI>4}

By Holder’s inequality,

2 A2 ri2 1-p/2
f A Ifl"S(f A |f|) T
Rin{lfI<A} Rin{lfI<A}

2/p

c N

"< ]
Rin{lfl<A}

Define f; and f' by /i = fXle{‘ﬂS/]} and f' = f — . Then f, is supported in |R,|
and |fi| < A= AIR,|""/2, where

and hence, by (3.8),

_ _ —O~— - — — — 2+0p/(1-0 —
A= QNP = QI PO fIE) P = e 0O f 20Oy ),

If ||e'™ fllngL; > &, we repeat the above procedure with f!, a rectangle R, and
A= (2(3_1||flIIiz)l/(z_”)lel‘l/2 in place of f, R; and A. Continuing in this way we
get a sequence of functions feer = fi + f" where f; is supported in a rectangle Ry, and

2 —1y k- - - —p/(1= 2+0p/(1-6 - - -
il < Qe IR YO PIR T < e PO 7PN VPR T2 = ARy,
Furthermore,

f|f;|2 § (<.s||f"—1||;f>1’/<l-f’> )z/p > ((8I|fllg§)"/““’) )zm _ (0)2/”.

2 2 2

Since the Ry are pairwise disjoint by construction,

A2 1 E IR P22 NEIR . AR F_ 2 _ 22
WAL = WAl + 11 = Al = AN + AN +11f = A = £l

-3

and

2 N o R c\2/p
=W = YU <A (5] (3.9)
=1
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So the Strichartz estimate in Lemma 2.1 and (3.9) imply that

o0 _Z ”DfJ Hf_;nlsz slf;—n(g)zm.

i=1 L
As a result, there exists a number N such that

N
itQ ita
emp- Y ey,
i=1

The next observation will be useful for proving Lemma 3.9.

LiL;

<é&.

LiL;

[13]

Lemma 3.8. Let 2 < g < r < oo. Suppose that f is supported in the unit square. For any
(g, r) satisfying 2/q+3/r<3/2, 2/q+2/r<2—-2/q and 2/q>2(1/2 —1/r), there

exists a constant C = C(q, r) such that

e fllzar; < Cliflle.
t x

Proor. We may assume that || f Iz = 1. It suffices to show that ||® f]| oz, < C for some

constant C. Let r* = min(r/2, (r/2)"). Then

. ., L/
it J it J 1 1
IS emriems] . < § A e )
~T

L;J/Z L;/Z L?/Z

A ita ¢j i gj 11q/2 2l
< C( E lle fk,le ka”Lq/er/z)
~7 o

IA

= (kD2 +2/q- 1)(2 ”fkl“q/Zkal”q/z)

i~

. 2/q
A (k+D)Q2/r+2/g—1 3
< Cok+D2/r+2/q )( § ”fkjl“Z2)
j

It then follows that

e fI2,,, <

ita i ita ¢
§ e fe
Kl 51| .
7 L"/ Lx/2

_é Z (kD2 /r+2/q~ “(Z “fle )

k+1>0

v, Z (k+D(2/r+2/q~ 1)(2 ||fk,|| )

k+1<0
=1+1I
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First, by Holder’s inequality,
2y ) 21 Vo1 < HkEDRIg-Dy 72
(D) < (X ng,) 2koeren < pwne by,

7 7

Hence,
~ k+D(4/q+2/r=2) || £112 7112
1<C Y 202 fif, < Clfi, < €.
k+120

The last inequality follows from the fact that f is supported in the unit square and

Iflles = 1.
On the other hand, since 2 <gand 2/r +2/qg—1>0,

~ k+D(2/r+2/q-1 22 ~ k+D)(2/r+2/q=1))] £12
1< C Y 20CI2lah 3o flig, = ¢ 7 2602l fiR, < Cy.
k+1<0 i k+1<0

Combining these two estimates, we can conclude that there exists a constant
C = C(qg, r) such that [|e" fl| ¢, < C. O

From the following lemma, we could find the mass concentrating region.

Lemma 3.9. Let (g, r) be an admissible pair. Suppose that f € L*(R?) and its Fourier
transform f is supported in a rectangle R with center { = ({1, {2) and also that
|| < AIRI™/? for some constant A > 0. Let & >0 be given. Then there exists a finite
sequence of sets {Qn}lsnsN(A,Hflle ) defined by O, = {(t, x) e R X R2: (xy — 2ntl, x7 —
2ntl1) € Ry, t € 1,), where R, is a rectangle of measure |R|™" and I, is an interval of
length |R|™", such that

||eith||L:7L;(R3\UQn) <e.

Proor. Suppose that a rectangle R has dimensions 2a X 2b and center {. Then
|f| < A(ab)™'?. Now, we make use of a change of variables after a translation
& &+  to get a function supported in the unit square:

2p) = | [ frepenine e ge
= f f(f+g)ehi(x-(&{)dm(gl+§1)(§2+_(2)) df’
[€11<a.l6|<b

= f f(é:+g)e2m’((xl—2ﬂz{2,xz—27rt{1)~(§1,fz)—2m§1§2) df’
[é11<alél<b

= f  f(aé1, bé) + )
[€11<1,16 (<1

x e2ﬂi((X1—27U§2,x2—27rt{1)'(af_l,bf_z)—%mbf_lgz)(ab) dé?l d§?2

(ab) 1" f(x)
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where A
(&1, &) = (ab)' " f((ag 1, b&) + ), 1 =abt

and
X' =(a(x; = 2n8y), b(xy — 2mtly)).

Note that f is supported in the unit square and that |f’| < (ab)'/?|f|<A. By
Lemma 3.8, for any admissible pair (g, ), we can find a pair (g, 7) such that g < ¢,
7 <rand F/q = r/q, and there is a constant C such that IIei"Df’IILq/L;-/ < C|If" |l

Let E c R x R? be the set defined by {(#, ') € R x R? : Iei’/Df’(X’)l < A} for some A.
Then

qlr
it'a e 4 _ it’0 g1 NPT ’ ’
le f||L;,,L;,(E)—fR(L/ €T ) dr
r

< AT, < CATPL < AT AT,

where E, = {x € R : (t, x) € E}. For a given &, if we choose
Ao <min{271(CTT AT y a0 14y

sufficiently small, we have ||e/® Fllig s, @) < €7 where E={(,x): " f (x)] < 22}

Since f” is supported in the unit square and |f’| < A, it follows that |¢/®f’(x") —
"B (X < cA(lx’ — x| + |’ —t”]) for some constant ¢ > 1. If |x" — x| < Ap/2cA
and |’ — 1’| < Ay/2cA, then | P f'(x")| < A implies that | P f"(x"")] < 2A0.

So, for some index set S, we can choose a family of sets (P,);es = (J;, K)res C
R x R? such that, for (¢, x') € {|e"° f'(x’)| > 240}, K, is a square of center x’” with |K,| =
(1p/cA)* <1/16 and J. C R is a closed interval of center ' with |J,| = Ap/cA < 1/4.
Also, (P,)res satisfies the following: for (7, s) € S X § with r # s, Int(P,) N Int(Py) =0
and

1" ()] = 220} < ) P, < {1 (x)] = Ao}
reS

where Int(P,) is the interior of P,.

Let N be the cardinality of §. Then, by the Strichartz inequality, N is bounded. In
fact,

N(ﬁf _

” < (e = ol

Ue

reS

—4y it 4 -4 4 —4y) o4
S /10 ”elt Df,”L4(R3) S /10 ”f,”LZ = /l() ”f”LZ

Since {|"Pf'(x")| > 2o} is covered by {P,,}1<n<n,

o alr
f(f |elt Dfl(x/)lr dx/) dll <£q
RAP,
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N
W
[98)

where

N
P, = {x’ eR%: (. ¥) € R3\ U P,,}.
n=1

Foreach 1 <n <N, let Q, be the set

n

{(t ) 2l i 2t Y| ] ‘t ot }
, X)X = 2ntdy — — | < —, |x = 2mtdy — == = =< =—
! S /PR YT 4p ab| " 8ab

where (1"; x, x5) = ("; x") denotes the center of P,.

Let O, ={x eR*: (Y, x) €
R\ U Q,}. Then

ita g9
e
I flILZ’LQ(R3\UQn)

, Ir
= (ab)?? f ( f |e’“jf'(x')|rdx)q dt
RAQ,

— (ab)q/2 ( |€iabmf'(a(x ) _ r I
= i 1 ntly), b(xy —2mt{y))|" dx| dt
RO,

5 . 1 alr 1 _

< (ab)? f ( le"™ f' (%1, )| — da‘c) — df
r\Jp, ab ab

_ q/2—(q/r+1))) Lifa pr)q q/2—(q/r+1) ~q

= (ab) lle"= f ||L7L;(R3\UP”) < (ab) &7,

Therefore, we may conclude that

; 1/2-(1/r+1
le™ fll 7300, < (ab) [rrl/ag = g

4. Mass concentration phenomenon

The following result implies Theorem 1.1, as was observed in Remarks 1.2 and 1.3.

THeoREM 4.1. Suppose that u = u(t, x) is a solution to

i, + 0u + ylulPu=0
u(0, x) = up(x) € L*(R?)

for some y € R\{0}. Let (g, r) be an admissible pair with g < r < 6. Suppose that the
solution satisfies ||ull 117 o,xr2) < 0 for 0 <t < Tinax and that |ullze:o1,,0xw2) = -
Then

1/2
limsup sup (f |u(z, x)I? dx) >¢
t/ Tmax arectangle R\JR

|R‘S(Tmax_t)

where & is a constant depending only on vy and ||uo||2g2).
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Proor. For a small fixed 7 > 0, and for all times Ty < Thax, there exists T} < Tpax such
that lullzs 7 (7,,7,)xz2) = - By Duhamel’s principle, for 7 € (T, Tmax),

f
u(x) = TPy (x) + iy f P 9)Puls) ds.
Ty

Step 1. Controlling the inhomogeneous part.
For any ¢ € (T, Ty), let us set F(u) = iy thO 90 (s)[Pu(s) ds. It follows that

2 3 3
IF Oy o 2y < WICHTulull o = YICHull,, = YIC

by (2.3) and Remark 1.3.
Hence, if we choose r7 small enough such that

n < G20 + D) M < (1 + o) ™2, 4.1

it follows that

i(t-To)o

3 3
lle MTO||L;1L;((TO,T1)xR2) >n—-WICny >n".

Step 2. Decomposing the initial data.
We start with

T qlr
nqu (f |u|’dx) di
To R2
T
s3‘1(1+11+f (f |u|?
T() RZ

T) ) qlr
1= f ( f |u|2|u(x,t)—e’<f—T0>DuTO|’—2dx) dt
To R?2
T\ No
e f ( f M
T() RZ

£it=To)n ur, — Z /t=To)o £
n=1
and { fn}fjgl is as in the proof of Lemma 3.7 below.
Using Hoélder’s inequality with r/2 and r/(r — 2), we estimate

T qlr
= f ( P IF )2 dx) dt

To R2
T 2/r (r=2)/r\q/r

< f (( |u|fdx) ( f |F(u)|rdx) ) dr
T R? R?
T, 2q/r* q(r=2)/r

- f ( |u|’dx) ( f IF(u)Irdx) dt
Ty \JR? R?

No

. r=2 q/r
3 et f,,‘ ax) " ar)

n=1

where

2 qlr
dx) dt
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T qlr 2/r T, qlr (r=2)/r
< ( f ( f ul’ dx) dt) ( f ( \F Q) dx) dt)
T R2 T R2

0 0

2 -2 -
= [l 72 I GolZy 2" < P9 (y1Cp?) 721 = (I C)

because of the fact that 3g — 4q/r=q + 4.
Similarly, by Lemma 3.7,

No

ei(szo)D ur, — Z ei(t—To)D £

n=1

2q/r w2 Ire 3nq(r=2)/ +4
r r=2)/r

1l < ”u”L"L’ <M () =7,

T ‘X

L

Therefore, by (4.1),

T: No r=2 q/r q
2 i(t-To)o Ui
u E e dx) dt> —.
\fro (LZ i s fn‘ 342

Then there exists an integer ny between 1 and Ny and a function fg = fno such that for

some gy > 0,
T) ) qlr
f (f |uaf* €™ T8 f=2 dx) dt > &
T, “JR?

where f; is supported in R and |fy| < A|R|""/? from Lemma 3.7.

Step 3. Figuring out the concentration region.

From Lemma 3.9, we can show that there exist an integer N; and a set of
rectangles {Q,}1<n<n,, Where Q, ={(t, x) € R3: (x; = 27tls, xo = 27tL1) ER,, t € 1),
R, is a rectangle of measure |R|™', and I, is an interval of length |R|~! such that

o 0 r/q(r-2)
—10 240/
lle Iollpo ey Y, 0, < (2772"”)

By Holder’s inequality with 2/r + (r — 2)/r =1, on
Ny
0,={xe®: (0 € (Mo, Ty xR\ [ €},
n=1

we have

T\ ) qlr
f ( |u|2|ez(l—To)Df0|r—2 dX) dt
Ty Qz

2/r 1 i=To)D ¢ 1 a(r=2)/r
<||lu e
I ”L?Li” f 0”L§’L;<(<To,rl>xR2>\ U, o

2q/r( €0\ _ €0
R (2n2q/r)‘2‘
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It follows that, on ((To, T1) X R2) N (UM, 0,),

Ty ) qlr &
f ( |M|2|el(t—To)E|f0|r—2 dx) dt> €0
T, o 2

0

where

0'= {x €R”: (1, x) € (To, T1) xR*) N (CJ Qn)}'
Pt

Hence there exists a rectangle Qg = Ry X Iy € {Q,,}f:’:‘1 such that

. qlr &
f ( lu(x, l‘)|2|€l(t_T0)Df0|r_2 dx) dt > =0 =&
(To. TN \J @) 2N,

where Q) = {x € R2: (x| = 27tls, xo — 27tly) € Ry, t € Iy}, Ry is a rectangle of measure
IR|™! and I, is an interval of length |R|™".

Step 4. Determining the size of windows.
Since |fy| < A|R|™"/? and f; is supported in R,
TR g < [ 1< IRARI = AR,
R

and

. qlr
g < f ( lu(t, )" T08 £ =2 dx) dt
(To, T1)NIH J O

< (A|R|1/2)q(r—2)/r f

(To. TNy

_ 2
< (AR DIy = To)lugl7407

qlr
( lu(t, x) dx) dt
Q9

Thus
€]

Ni=Toz 1/2)\q(r=2)/ 2q/r
(A|R| )q r r””OHLZ(RZ)

‘We can observe that

g 21 it=To)a £ |r=2 a/r 1 1/2vg(r=2)/ryy,, (12a/r _ €1
f ([t 0PI TR o ) e < SoAR 2 gl = 5
T30 \J Q) 2 2

So

& . qlr
El < f ( |u|2|el(t—Tg)DfO|r—2) dt
(To.T1-30NI \J Q)

. qlr
<tol swp ([ e sr2)
1e(To, T1~16) WY 0

qlr
S|R|’1(A|R|”2)‘1(”2)/’( sup f |u|2dx) .
0

1e(To,T1-10) YO
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Then we can say that

qlr &

2 1
>
u d") = 2Adr-2/r

sup ( f
1€(To, T1-36) Y Q

e \/a
sup ul> dx > C(—l)
1e(Ty,T1-16) Y Q) 2

!
0

or

where C = 1/A"2.
Therefore, for all Ty < Thax, there exist g € (Tg, T1 — 1/26) and a rectangle Qg’ such

that /
C rlq
f lu(ty, X)|> dx > —(ﬂ) .
Qg) 4 2

< T~ 20=T, 2
o= max = 0= Lmax = ooty

Note that

where &, = & (244217 lug|247)1.
Because (g, r) is an admissible pair, g(r —2)/2r = q/2 — g/r = 1. Then

1 1
01 =— < —(Tmax — o).
|Q0| |R| = 82( max 0)
Dividing Qg’ into m =[1/g,] rectangles, there exists a rectangle R’ such that
IR'| € Tax — to. Therefore,

C (g1\/4
f lu(to, 0 dx > —(—‘) = & 4.2)
R 4m\ 2
Step 5. Conclusion.
We consider a sequence {T,} such that 0=T| <Tr, <---<T, <Tps1 <+ < Tax
and |u]| LILL(Ty Ty xR2) = 11- For each interval (T, T,+1), there exist t,, € (T, T,,»1) such
that

12
sup ( f |u(tn,x)|2dx) > V&
R

arectangle R
|R|§(Tmnx*tn)

by (4.2). Thus we get a sequence {t,} of time such that 7, — T,x as n — oo. This gives
the conclusion of the theorem with & = +/e3. m]
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