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Abstract. In 2006, F. Luca and I. E. Shparlinski (Proc. Indian Acad. Sci. (Math.
Sci.) 116(1) (2006), 1–8) proved that there are only finitely many pairs (n, m) of positive
integers which satisfy the Diophantine equation |τ (n!)| = m!, where τ is the Ramanujan
function. In this paper, we follow the same approach of Luca and Shparlinski (Proc.
Indian Acad. Sci. (Math. Sci.) 116(1) (2006), 1–8) to determine all solutions of the
above equation. The proof of our main theorem uses linear forms in two logarithms
and arithmetic properties of the Ramanujan function.

2010 Mathematics Subject Classification. 11F30.

1. Introduction. The Ramanujan tau function is the arithmetic function τ defined
by the expansion

q
∞∏

k=1

(1 − qk)24 =
∞∑

n=1

τ (n)qn,

which is valid for each complex number q such that |q| < 1. The first three values
of τ are τ (1) = 1, τ (2) = −24 and τ (3) = 252. The Ramanujan function possesses
many arithmetic properties. Below, we list some of them which will be used as we find
convenient to do so.
� τ is an integer–valued multiplicative function, that is τ (ab) = τ (a)τ (b) for relatively

prime positive integers a and b.
� For any prime p and an integer r ≥ 0,

τ (pr+2) = τ (pr+1)τ (p) − p11τ (pr).

� It follows, from the above property, that τ (p) | τ (pr) for all odd r. This can be proved
easily by induction on the values of the odd parameter r. This fact plays an important
role at the end of the paper.
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� By the famous result of Deligne (see [7]), for any prime p and a positive integer n,
we have

|τ (p)| ≤ 2p11/2 and |τ (n)| ≤ d(n)n11/2,

where d(n) is the number of divisors of n.
In 2000, Luca [5] found all the positive integer n, m such that f (n!) = m!, where

f is any one of the multiplicative arithmetical functions ϕ, σ , d, which are the Euler
function, the sum of divisors function and the number of divisors function, respectively.
In 2006, Luca and Shparlinski [6] looked at this problem for the Ramanujan function
and proved that there are only finitely many pairs of positive integers (n, m) such that

|τ (n!)| = m!. (1)

In this note, we follow the same approach of [6] and use arithmetic properties of τ

as well as an explicit lower bound for linear forms in two logarithms to determine all
solutions of the above Diophantine equation (1). More precisely, our main result is the
following.

THEOREM 1. The only solutions of the Diophantine equation (1) in positive integers
n and m are (n, m) ∈ {(1, 1), (2, 4)}. Namely, |τ (1!)| = 1! and |τ (2!)| = 4!.

The plan of the proof is to first find an upper bound on n, then one for m, which
will be reduced by using standard facts about the Ramanujan function. We start with
some preliminary lemmas.

2. Preliminary lemmas. One of the possible approaches for studying arithmetic
properties of τ is to remark that the sequence w := (wr)∞r=0 defined by wr = τ (2r) is a
binary recurrent sequence of integers satisfying the recurrence

wr = −24wr−1 − 2048wr−2 for all r ≥ 2,

with the initial conditions w0 = 1 and w1 = −24. Thus

wr = αr+1
1 − βr+1

1

α1 − β1
for r ≥ 0,

where α1 = −12 + 4i
√

119 and β1 = α1 are the zeros of the characteristic polynomial
of w, namely λ2 + 24λ + 2048. If we let α = −3/2 + i

√
119/2 and β = α, then we have

that α1 = 8α and β1 = 8β. Consequently, the sequence u := (ur)∞r=0 given by formula

ur = αr − βr

α − β
for r ≥ 0, (2)

is a binary recurrence sequence satisfying the relation

ur = −3ur−1 − 32ur−2 for all r ≥ 2,

with the initial conditions u0 = 0 and u1 = 1. From the above, it is easy to see that
wr = 8rur+1 for all r ≥ 0. We shall use this fact later.

To prove Theorem 1, we first need to find estimates for log |αs − βs| with s being any
positive integer. In order to do so, we let � := (β/α)s − 1 so that |αs − βs| = |α|s|�|.
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First of all, observe that if |�| > 1/2, then |αs − βs| > |α|s/2, and therefore

log |αs − βs| > s log |α| − log 2. (3)

Let us now suppose that |�| ≤ 1/2. Then, the inequality | log(1 + �)| ≤ 2|�| ≤ 1 holds,
where log refers to the principal branch of the logarithm function.

On the other hand, log(1 + �) = s log(β/α) + 2πNsi, where 
 = arg(β/α) =
2.604842 . . . and Ns is the integer that puts s
 + 2πNs in the interval (−π, π ]. In
fact, one can easily see that Ns is given by

Ns =
⌊

1
2

− s

2π

⌋
,

where, as usual, �·	 denotes the greatest integer function. Notice that if s ≥ 2, then
Ns < 0. If we let k = −Ns, then we can rewrite the expression for log(1 + �) as

log(1 + �) = s log(β/α) − 2k log(−1). (4)

We now get ready to find a lower bound on | log(1 + �)| by using a lower bound for
nonzero linear forms in two logarithms due to Laurent, Mignotte and Nesterenko
[4]. We begin by recalling some standard terminology and notation. For an algebraic
number η we write h(η) for its logarithmic height whose formula is

h(η) := 1
d

(
log a0 +

d∑
i=1

log
(

max{|η(i)|, 1}
))

,

with d being the degree of η over � and

f (X) := a0

d∏
i=1

(X − η(i)) ∈ �[X ],

being the minimal primitive polynomial over the integers having positive leading
coefficient a0 and η as a root.

With the above notation, Laurent, Mignotte and Nesterenko (see Corollary 1 in
[4]) proved the following theorem.

THEOREM 2. Let γ1, γ2 be two non–zero algebraic numbers, and let log γ1 and log γ2

be any determinations of their logarithms. Put D = [�(γ1, γ2) : �]/[�(γ1, γ2) : �], and


 = b2 log γ2 − b1 log γ1,

where b1 and b2 are positive integers. Further, let A1, A2 be real numbers > 1 such that

log Ai ≥ max
{

h(γi),
| log γi|

D
,

1
D

}
, i = 1, 2.

Then, assuming that γ1 and γ2 are multiplicatively independent, we have

log |
| > −30.9D4
(

max
{

log b′,
21
D

,
1
2

})2

log A1 log A2,
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where

b′ = b1

D log A2
+ b2

D log A1
.

In order to apply Theorem 2, we take γ1 := −1, γ2 := β/α, b1 := 2k and b2 := s.
Hence,


 := b2 log γ2 − b1 log γ1.

Note that 
 = log(1 + �) appears in the left-hand side of the relation (4) and satisfies
the inequality |
| ≤ 2|�|. The algebraic number field containing γ1, γ2 is �(i

√
119), so

we can take D = 1. We next observe that

αβ(x − β/α)(x − α/β) = αβx2 − ((α + β)2 − 2αβ)x + αβ,

is a polynomial with integer coefficients and so the above polynomial is a multiple of
the minimal primitive polynomial of β/α over the integers. Therefore, we deduce that

h(γ2) ≤ 1
2

log |αβ| = log |α|.

From the above, and taking into account that 
 < (8/5) log |α|, it follows that we can
take A1 and A2 such that log A1 = π and log A2 = (8/5) log |α|. So

b′ = 5k
4 log |α| + s

π
.

We need an upper bound on b′. Since | log(1 + �)| ≤ 2|�| ≤ 1, we get that

|2πki| = |s log(β/α) − log(1 + �)| ≤ s
 + 1,

giving

b′ ≤ 5(1 + s
)
8π log |α| + s

π
<

7s
10

,

which holds for all s ≥ 2. Finally, the fact that γ1 and γ2 are multiplicatively independent
follows from the fact that α/β is not a root of unity. Therefore, we can apply
Theorem 2 to the linear form appearing in relation (4) and get that

log |
| ≥ − 30.9 (max {log(7s/10), 21, 1/2})2 · π · (8/5) log |α|
> − 22370 log2(1 + s) log |α|,

where we have used the fact that max {log(7s/10), 21, 1/2} < 12 log(1 + s) for all s ≥ 5,
which is easily seen. Consequently, for s ≥ 5, we obtain that

log |αs − βs| = s log |α| + log |�| ≥ s log |α| + log(|
|/2)

> s log |α| − 22370 log2(1 + s) log |α| − log 2

> s log |α| − 22400 log2(1 + s) log |α|. (5)

But one checks easily that the above inequality (5) is also valid for s = 1, 2, 3, 4.
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Finally, and going in the other direction, the inequality

log |αs − βs| = s log |α| + log |�| ≤ s log |α| + log 2, (6)

clearly holds for all s ≥ 1. Let us summarize what we have proved so far as a lemma.

LEMMA 1. There is a positive number c, which can be taken as 22400, such that for
s ≥ 1,

| log |αs − βs| − s log |α|| < c log2(s + 1) log |α|.

Proof. This lemma follows immediately from (3) and (5), together with the
comment following it, and (6). �

For any integer t ≥ 1, we denote the tth cyclotomic polynomial in α and β by
�t(α, β), so

�t(α, β) =
t∏

k=1
gcd(k,t)=1

(α − ζ k
t β),

where ζt is a primitive tth root of unity. These polynomials are linked to Lucas sequences
by the formula

αt − βt =
∏
d|t

�d(α, β). (7)

For any positive integer t let μ(t) denote the Möbius function of t. Then, it follows
from (7) that

�t(α, β) =
∏
d|t

(αt/d − βt/d)μ(d). (8)

We may now deduce, following the approach of [8, Lemma 4.1], our next result.

LEMMA 2. For t > 2 × 1011,(
2t log log t

2c′(log log t)2 + 5
− ct1/3 log2(1 + t)

)
log |α| < log |�t(α, β)|,

where c = 22400 and c′ = 1.781072417990198.

Proof. In view of Lemma 1 and the relation (8), and taking into account the known
formula ϕ(t) = ∑

d|t(t/d)μ(d), which holds for all t ≥ 1, we have that

|log |�t(α, β)| − ϕ(t) log |α|| ≤
∑
d|t

|μ(d)|
∣∣∣log |αt/d − βt/d | − t

d
log |α|

∣∣∣
<

∑
d|t

μ(d)�=0

c log2
(

1 + t
d

)
log |α|

< 2ω(t)c log2(1 + t) log |α|,
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where ω(t) denotes the number of distinct prime divisors of t. In particular, we obtain
the following inequality

(
ϕ(t) − 2ω(t)c log2(1 + t)

)
log |α| < log |�t(α, β)|. (9)

Robin [3, Theorem 13] showed that

ω(t) ≤ log t
log log t − 1.1714

for all t ≥ 26.

Using the above bound, we deduce that 2ω(t) < t1/3 holds for all t > 2 × 1011. Now the
lemma follows immediately from (9) and by using the fact that

t
ϕ(t)

< c′ log log t + 5
2 log log t

,

(see [1, Theorem 15]) which is valid for all t ≥ 3 except when t = 223092870. �

3. Absolute upper bounds. Assume throughout that equation (1) holds. We will
get some upper bounds on n and m. To begin with, note that

m! = |τ (n!)| ≤ d(n!)(n!)11/2 < 2(n!)6,

where we made use of the inequality d(t) < 2
√

t which holds for all integers t ≥ 1;
hence, m! < 2(n!)6. From this we deduce that m < 6n, since otherwise we would have
that m! ≥ n!(2n!)5 > 2(n!)6, where we have used the fact that

(tn + 1) × · · · × (t + 1)n
n!

=
(

(t + 1)n
tn

)
,

is an integer at least 2 for all t = 1, . . . , 5.
We now consider the sequence v := (vr)∞r=2 defined by vr = �r(α, β). An important

known fact is that vr | ur for all r ≥ 2, which is easily deduced from (2) and (7). If we
write vr = ArBr, where Ar and Br > 0 are integers, Br containing all primitive prime
divisors of ur, then it is known (see [2]) that every prime factor of Br is congruent
to ±1 (mod r).

Recall that, for a sequence (tn)n, a primitive prime divisor of a term tn is a prime p
that divides tn, but does not divide ti for any i with 1 ≤ i < n.

Moreover, we have the following remarkable property.

LEMMA 3. In the notation above, Ar always divides r.

Proof. First, one can check by hand that the assertion of the lemma holds for
r = 2. To see why the lemma holds for r > 2, let p be a prime divisor of Ar. By [2,
Proposition 2.3], p does not divide αβ = 32 and r = mppk, where k ≥ 0 and mp is the
order of appearance of p in the sequence u. Since p is not a primitive divisor of ur, then
we have one of the following possibilities:

r = mppk with k ≥ 1, or r = mp and p | (α − β)2 = −7 · 17.
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If r = mppk with k ≥ 1, then mp | r/p implying that p | ur/p. Since p � 32, we have that
p > 2 and so, by [2, Proposition 2.1(vi)], we deduce that p || ur/u(r/p). Since r/p | r and
r > 2, it follows now from the expression (17) of [2] that vr | ur/u(r/p). Hence, p || vr.

We now suppose that mp = r and p | 7 · 17. In this case, in view of Corollary 2.2
and Proposition 2.1(viii) from [2], we get that mp = r = p and p || up = ur. Thus, p || Ar.

From the above, we have that, in any case, Ar | r. �
Let a(n) be the order at which the prime 2 appears in the prime factorization of

n!. Observe that, if n ≥ 4, then n/2 < a(n) < n. Also, it follows by (1), and because
of the fact that τ is multiplicative, that wa(n) | m!. In fact, the following properties of
divisibility hold

Ba(n)+1 | va(n)+1 | ua(n)+1 | wa(n) | m!.

We now argue exactly as in [6, Section 3]. Since Ba(n)+1 | m! and m < 6n, it follows
that all prime factors � of Ba(n)+1 satisfy � < 6n. Since a(n) > n/2, there are at most 26
primes � < 6n with � ≡ ±1 (mod a(n) + 1). Furthermore, again since Ba(n)+1 | m! and
m < 6n, and all prime factors � of Ba(n)+1 satisfy � ≡ ±1 (mod a(n) + 1), it follows that
�14 � Ba(n)+1. Hence, Ba(n)+1 < (6n)338 (338 = 26 × 13), and so

log |�a(n)+1(α, β)| = log |va(n)+1| = log |Aa(n)+1| + log Ba(n)+1

< log(a(n) + 1) + 338 log(6n)

< 339 log(6n). (10)

Notice that if n ≥ 5 × 1012, then a(n) + 1 > n/2 + 1 > 2 × 1011, and so we can apply
Lemma 2 by taking t = a(n) + 1 and obtain that(

(n + 2) log log(n/2 + 1)
2c′(log log n)2 + 5

− cn1/3 log2(n + 1)
)

log |α| < log |�a(n)+1(α, β)|, (11)

where c and c′ are those given in Lemma 2, and where we have used additionally the
fact that n/2 < a(n) < n. Consequently, the above inequality (10) combined with (11)
yields (

(n + 2) log log(n/2 + 1)
2c′(log log n)2 + 5

− cn1/3 log2(n + 1)
)

log |α| < 339 log(6n),

which gives, by using Mathematica, that n < 5 × 1012, which is a contradiction. Hence,
n < 5 × 1012 and therefore m < 3 × 1013. Let us record what we have just proved.

LEMMA 4. If (n, m) is a solution in positive integers n and m of equation (1), then

n < 5 × 1012 and m < 3 × 1013.

4. Reducing the bounds. After finding an upper bound on n and m the next step
is to reduce them to a range in which the solutions of the equation (1) can be identified
by using a computer. To do this, we use several times the following lemma, which plays
a crucial role in this task.
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LEMMA 5. Let m0 and n� be positive integers, and let p a prime number such that
P(τ (p)) ≥ m0, where P(t) denotes the largest prime factor of t if t > 1 and P(1) = 1.

(a) If n� < p2 and a = �n�/p	 is an odd number, then there is no solution to the
equation (1) in positive integers n and m with

n ∈ {ap, ap + 1, . . . , ap + p − 1} and m < m0.

(b) There is no solution to the equation (1) in positive integers n and m with

p ≤ n < 2p and m < m0.

Proof. To prove (a), we write n as n = ap + b for some integer b with 0 ≤ b < p.
Then, it is known that a is the order at which p appears in the prime factorization
of n!. Using this and the fact that a is an odd number, as well as the fact that τ is a
multiplicative function, we get that τ (p) | τ (pa) | m!, giving that P(τ (p)) | m!. Hence,
P(τ (p)) ≤ m < m0 which is impossible. Thus, equation (1) has no solutions in this
range for n and m. Part (b) of the lemma follows immediately from part (a) by taking
n� = p. �

Let us now use Lemma 5 to reduce our bounds. In order to do so, we take n0 =
5 × 1012 and m0 = 3 × 1013, and we first put n� = n0/10. With the help of Mathematica
we search for a set P1 of 50 prime numbers, all of them greater than

√
n0 and spaced

a distance of at least 10,000, with the property that P(τ (p)) ≥ m0 for all p ∈ P1. Some
elements of the set P1 are

P1 = {2246099, 2266129, 2276137, 2286139, . . . , 2776733, 2786741, 2796751}.

Next, we find a prime number p1 ∈ P1 such that a1 = �n�/p1	 is an odd number. It
then follows from Lemma 5(a) that there is no solution to the equation (1) in positive
integers n and m with n ∈ {a1p1, a1p1 + 1, . . . , a1p1 + p1 − 1} and m < m0.

We now take n� = a1p1 + p1 and find a prime number, say p2 ∈ P1, which satisfies
that a2 = �n�/p2	 is an odd number. Using Lemma 5(a) once more, we conclude
that there is no solution to equation (1) with n ∈ {a2p2, a2p2 + 1, . . . , a2p2 + p2 − 1}
and m < m0. Again, we take n� = a2p2 + p2 and repeat the process as many times as
possible in order to remove some intervals located on the right of n�. To do this, we
use a simple code written in Mathematica, and we finally achieve n0, that is, we reduce
the upper bound on n a factor of 10. Namely n < n0/10 = 5 × 1011, and therefore
m < 3 × 1012.

Now, we update the values of n0 and m0 and repeat the process to reduce the new
upper bounds even more. In fact, taking n0 = 5 × 1011, m0 = 3 × 1012, and the same
set of primes P1, we reduce the upper bounds on n and m a new factor of 10. This
process was done three times more and we finally conclude that n < n0 = 5 × 107 and
m < m0 = 3 × 108.

At this point, we were not successful in finding primes p ∈ P1 such that �n�/p	 is
an odd number. Hence, we search for a new set P2 of 30 prime numbers, all of them
bigger than

√
n0 and spaced a distance of at least 1000, such that P(τ (p)) ≥ m0 for all

p ∈ P2. Below, we present some elements of the set P2.

P2 = {7079, 9091, 10093, 11113, . . . , 39451, 40459, 41467, 42473}.
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With this new list of primes we get that n < n0 = 5 × 104 and m < m0 = 3 × 105.
Also, we generate a third set of primes to obtain that n < n0 = 5 × 102 and m < m0 =
3 × 103.

Since we have now more comfortable upper bounds for n and m, we use
Lemma 5(b) in our argument to reduce the bounds. Indeed, taking a prime p,
p < n0 < 2p, such that P(τ (p)) ≥ m0, we reduce n0 by almost half. After doing
this several times, and update n0 and m0, we finally obtain the range 1 ≤ n ≤ 12,
1 ≤ m ≤ 72.

Finally, we used Mathematica and checked that the only solutions of the
equation (1) in this range are those given by Theorem 1.

Theorem 1 is therefore proved.
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