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RAMIFICATION GROUPS OF ABELIAN 
LOCAL FIELD EXTENSIONS 

MURRAY A. MARSHALL 

1. Introduction. Let k be a local field; that is, a complete discrete-valued 
field having a perfect residue class field. If L is a finite Galois extension of ky 

then L is also a local field. Let G denote the Galois group GL\k. Then the nth 
ramification group Gn is defined by 

Gn = {a Ç G: era - a 6 PL
n+1 for all a Ç 0L], n £ Z, n ^ 0, 

where Oz, denotes the ring of integers of L, and P L is the prime ideal of 0L. 
The ramification groups form a descending chain of invariant subgroups of G: 

(1) G 3 G o 2 C i 3 f t 2 . . . 2 G , = l. 

In this paper, an attempt is made to characterize (in terms of the arithmetic 
of k) the ramification filters (1) obtained from abelian extensions L\k. 

For real x, x ^ 0, let <p(x) = (pL\k(x) denote the function given by 

n t 

( \ _ y^ 1 , x — n 
i==i (Go'.Gi) (Go:Gn+i) 

where n is the integer satisfying n ^ x < n + 1. For real x, n — 1 < x ^ n, 
we define Gx = Gw, and we define the xth ramification group (in the upper 
numbering) by 

Gx = G ,̂-i(X), x real, x ^ 0. 

In this way we obtain a filtration 

(2) G 3 G O G 1 D G O . , . D ( ; ^ l . 

By the important theorem of Hasse and Arf [3; 1; 13, pp. 101-104], 
Gn D Gn+i => <p(n) is an integer. Because of this theorem, the function ç and 
the filter (1) can be recovered from (2). Thus, it is enough to characterize 
the filters (2) obtained from abelian extensions L\k. 

If k CI L C N, and if L\k and N\k are finite Galois extensions, then the 
natural restriction GN\k —> GL\k carries GN\k

x onto GL\k for all real x è 0; see 
[4; 2]. In view of this result, if M\k is any (possibly infinite) Galois extension, 
we define the xth ramification group (upper numbering) by inverse limits: 

GM\kx = inv \imL(GL\k
x), x real, x ^ O , 

where L runs through all finite Galois extensions of k in M. 
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In particular, let Ak = Gka\kj where ka denotes the maximal abelian extension 
of k. Thus Ak has a ramification filter 

(3) Ak D Ak« 3 4*1 2 4*2 2 . . . . 

The finite abelian extensions L of k are in one-to-one correspondence with the 
open subgroups U oi Ak. If L corresponds to U, then U = Gka\L, GL\k = Ak/ U, 
and GL\k

x = Ak
zU/U. In this way, the nitrations (2) coming from abelian 

extensions L\k can all be obtained from (3). Thus, the original problem 
reduces to the problem of characterizing the ramification filter (3) as a topo­
logical filtered group. 

In Theorem 1, we examine the filtration (3) in the case that the residue 
class field k is algebraically closed. This result is a direct application of Serre's 
local class field theory [12]. Theorems 1, 2, and 3 prepare the way for Theorem 4 
in which we examine the nitration (3) in the general case. Theorem 5 shows 
how the properties of (3) given in Theorem 4 actually characterize this 
nitration, provided the homology group Hi{g, SK[p]) is zero. 

In Theorem 6, we examine the ramification filter of an arbitrary finite 
abelian extension L\k; in Theorem 7 we show that, provided Hi(g, SK[p]) = 0, 
the properties given in Theorem 6 characterize the ramification filters of 
finite abelian extensions of k. In this regard, the interested reader should 
consult [8], where a somewhat weaker solution is obtained, but for non-
abelian extensions; also see [6, Appendix 2]. 

Theorem 8 (together with the remark following it) gives various inter­
pretations of the condition Hi(g, SK[p]) = 0; also see [7]. 

2. Preliminary concepts and terminology. 

(a) Cohomology and homology of pro finite groups. Let G be a profinite group, 
and let A be a topological G-module. The topological group A G (AG) is defined 
to be the largest submodule (quotient module) of A which is fixed by G. If A 
is a discrete G-module satisfying 

A = d i r l i m ^ U ^ ) 

(where U runs through all open subgroups of G), then the discrete cohomology 
groups 

H'(G,A), ^ 0 , 

may be defined as in [5] or [14]. Dually, if A is a compact G-module satisfying 

A = invlimuiAu), 

then the compact homology groups 

H9(G,A), g ^ O , 

may be simply defined by Pontryagin duality [10]: 

Hq{G,A) = xH«(G,x(A)). 
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(b) Fields. If k is any field, then ka will denote the maximal abelian extension 
of k, and Ak will denote the Galois group Gka\k. k+ will denote the additive 
group of k, and kx — k — {0}, the multiplicative group. If n is a positive 
integer, we let Sk[n] denote the group of nth roots of unity in fe. If Wi is a 
multiple of n2l then there is a canonical "index" mapping Sk[ni] —> Sk[n2] 
given by x —»x\ where i = (5fc[»i]: 5^[w2]). We define Sk to be the inverse 
limit of the groups Sk[n] under the above mappings. If L\k is a Galois extension 
with Galois group G, then the groups SL[n] and SL are compact G-modules, 
and one may verify that 

(SL[n])a = Sk[n] and (SL)G ^ Sk. 

(c) Local fields. In this paper, a local field is defined as a complete discrete-
valued field with perfect residue class field. If k is a local field, then k will 
denote the residue class field of k, and p will denote the characteristic of k. 
We define e = fl(£), where z> denotes the normalized valuation on k. Thus 
e — ek satisfies 0 < e ^ oo. / = fk will denote the function defined by 

f(n) = m i n { ^ , n + e\, n G Z, n > 0. 

3. The algebraically closed case. The ramification structure in this case 
is given by Serre [12]. The results we will need are stated in the following 
theorem. 

THEOREM 1. Let K be a local field whose residue class field K is algebraically 
closed. Let AK = AK° 3 AK

l 3 AK
2 3 . . . denote the filter of ramification 

subgroups of AK. Then we have the following: 
(i) AK/AK

X = SK (canonically); 
(ii) lfp = 0, then AK1 = 0. 

If p 7e 0, and n ^ 1, then 
(iii) AK

n/AK
n+1 ^ xC£+), the character group of K+; 

(iv) The mapping <r —> ap carries AK
n into AK

f(n). 
Let 

pn: AK
n/AK^->AK^/AKw+i 

denote the homomorphism derived from (iv). Then 
(v) pn is bijective if n ^ e/(p — 1); 

(vi) If n = e/(p — I)y we have the exact sequence 

0 -* AK
n/AK

n+1 h AK
f(n)/AK

f(n)+1 -> S*[p] -* 0. 

Proof. Let Z7̂ w, n ^ 0, denote the higher unit groups of K, and let iru i ^ 0, 
denote the homotopy functors. By [12], AK

n ^ *i(UK
n) for all n è 0. Recall 

[11] that if we apply homotopy to an exact sequence of pro-algebraic groups 

0 -> G' -> G -> G" -> 0 

https://doi.org/10.4153/CJM-1971-027-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-027-9


274 MURRAY A. MARSHALL 

we obtain a 6-term exact homotopy sequence 

0 - > TX(G') - » 7Tx(G) - » 1Ti(G") - • * 0 ( G ' ) - > 7To(G) " > 7To(G") - > 0 . 

If we consider the 6-term homotopy sequence corresponding to the sequence 

o -> uK
n+l -> uK

n -> t v y £ v + 1 -> o, 

and recall that 7r0( W
+ 1 ) = 0, we see that 

AK
n/AK

n+* ^ «AUK'/UK"*1), n^O. 

Now UR0/ UK1 is isomorphic to the multiplicative group Kx in a canonical 
way, and so AK/AK

l ^ 7n(j£x) ^ S* (canonically). If w è 1, then 
UK

n/UK
n+1 ^ i£+, and so_^ x V-4^ + 1 = TTI(J?+). If p = 0, then in (2?+) = 0. 

Otherwise 7n(i£+) ~ x(^+) canonically. Thus we have proved (i), (ii), 
and (iii). 

If n ^ 1, then the higher unit groups UK
n satisfy: 

(iv) ; (UK
n)pQ UK

m-
Let pn: UK

n/UK
n+1 -» UK

f(n)/ UK
f{n)+1 denote the homomorphism derived from 

(iv)'. Then 
(v)' pn is bijective if n ^ e/(£ — 1); 
(vi)' If n = e/(p — 1), we have the exact sequence 

0-*SK[p] -> UK
n/UK

n+l -> UK
m/UK

f™+1 -> 0. 

(See Serre [12, § 1.7] for all these results.) 
(iv) and (v) follow immediately on applying ir\ to the results (iv)' and (v)'. 

Now suppose that n = e/(/> — 1). Taking the 6-term sequence correspond­
ing to (vi)', and noting that in(SK\p\) = 0, iro(SK[p]) = SK[p]y and 
7ro(UK

n/'UK
n+l) = 0, we obtain the exact sequence of (vi). 

Remark 1. Since n takes only integral values, condition (vi) will be vacuous 
if e/(p — 1) is not an integer. It is known that e/(p — 1) is an integer if 
and only if SK[p] ^ 0; see [12, §1.7]. 

Remark 2. The mappings of the previous Theorem 1 may be given explicitly 
as follows. 

(1) AK/AK
l = SK- Let n be a positive integer prime to p, and let w be a 

prime of K. If a Ç ̂ , then a^/w/ ^/TT £ S#[w] = Sx[n]. The mapping 
AK/AK

l —» 5x may be denned by â —> (<r -^V/ -^V)n where w runs through 
all positive integers prime to p. This mapping is actually independent of the 
choice of x. 

(2) AK
n/AK

n+1^x(%+), n è 1. Let L|i£ be a finite abelian extension. 
Then we have an exact sequence 

0 -> GL\K
n/GL\K

n+l - * UL+W/UL*™*1 -> UK
n/UK

n+l -> 0; 
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see [12 or 13]. Choosing uniformizing elements in L and K, this sequence 
reduces to 

0 -> GLlK
n/GLlK

n+1 ^ ^ X i + - , 0 , 

where/ is an additive polynomial. Let % G x(GL\K
n/GL\K

n+1). From the theory 
of additive polynomials [9], there exists a unique additive polynomial g and 
a unique element u £ K such that the diagram 

0 -> G £ | / / G i l / + 1 -» i?+ -£ 2?+ -> 0 

O^Z/pZ ->K+^K+-^0 

commutes. (Here ^ denotes the additive polynomial and 
ZJ: K+ —» X + denotes the scalar multiplication ) In this way, we obtain 
an infective homomorphism x(GL\K

n/GL\K
n+1) —» X"+ given by x ~^ ^- Pro­

ceeding to the inverse limit, we obtain an infective homomorphism 
x(AK

n/AK
n+1) -^ K+ which is, in fact, an isomorphism, by [12]. Dualizing 

yields the required isomorphism. 
(3) Assume that s = ep/(p - 1) £ Z. Then the mapping AK

S/AK
S+1 ->SK[p] 

may be given by ê —» a ̂ T/ -yf/ir, where x is a prime of K. This mapping is 
independent of the choice of ir. 

4. The general case. Now let k be an arbitrary local field. We wish to 
study the ramification filter 

4* 2 4*° 2 4 * *2 4** 2 . . . . 

To utilize the results of Theorem 1, we let K denote the maximal unramified 
extension of k. Thus K is a discrete-valued field with an algebraically closed 
residue class field. Although K is not complete, it is Henselian; thus the ramifi­
cation groups i / , n ^ 0, may be identified with the ramification groups 
AK1, n ^ 0, where K denotes the completion of K. Thus, the results of 
Theorem 1 apply to AK. 

Let g = GK\jc\ then g acts on the groups AK1, W ^ O , through inner auto­
morphism: 

a —» for - 1 for all a Ç AK
n and r Ç g. 

(Here, f denotes any extension of r to Ka.) In this way, the groups AK
n, 

AK
n/AK

n+1, n ^ 0, become compact g-modules. g also acts on the groups 
SK, X(K+),

 a n d SK[p] in the natural way, and one may verify that the mappings 
given in Theorem 1 are g-module homomorphisms. (For Theorem 1 (iii), one 
should be more precise and say that the isomorphism AK

n/AK
n+1 = xC^-h) 

will be a g-module isomorphism provided that the prime used to define the 
isomorphism UK'/UK1^1 ~ K+ is a prime from k.) 
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The natural restriction AK—> Ak is a g-module homomorphism, and since 
g operates trivially on Ak, we obtain a derived homomorphism (AK)g —* Ak. 

THEOREM 2. The sequence 

0->(AK)g-*Ak-±Ak->0 

is split-exact. 

Proof. At this point we introduce a notation which will also be used later: 
If G is a profinite group and Z is a prime integer, then G (I) will denote the 
maximal pro-/-factor of G. In particular, if G is abelian, then the natural 
mapping G —» Hi G (I) will be an isomorphism. 

To prove Theorem 2, it is enough to show that, for each prime /, the sequence 

(4) 0 -> (AK)g(l) -*Ak(l) ->At(l) - 0 

is split-exact. We note immediately that (AK)g(l) = (AK(l))g. Let H = GKa\k. 
Then we have the exact sequence 

0->AK->H->g-+0. 

Applying the dualized form of the 5-term exact sequence [5, p. 160], we obtain 

->ff2(g, ZX)-*HMK, Z , ) , - > # ! ( # , Zl)->H1(g, Zl) ->0 . 

Since Hi{G, Zt) is the maximal abelian pro-/-factor group of G, this reduces to 

(5) ->H2(g, Z,) -> (AK(l))g-+Ak(l) ->Ak(l) - * 0 . 

In case I = p,g has cohomological ^-dimension not greater than one [5, p. 203], 
and so H2(g, Zp) = 0. Further, Ak(p) is a free abelian pro-^-group; thus the 
mapping Ak{p) —• Ak(p) splits. If I ^ />, then - 4 ^ ( 0 = 0, and hence AK(l) = 
( ^ M ^ ) ( 0 ^ 5 x ( 0 ; thus O M Z ) ) , ^ (Sx(l))g = (5X),(Z). Thus (5) takes 
the form 

(6) ^ ( Z ) ^ ( Z ) - + , 4 , ( Z ) - > 0 . 

Let 7T be a prime of k, and suppose that k contains a primitive lnth root of 
unity. Then k(l*Ç/ir) is cyclic of degree ln over &, and aB: a —» a tyir/ ^/TT 
defines a homomorphism from Ak onto S*[ZW]. In this way, we obtain a homo­
morphism a: Ak(l) —>Sk(l). One checks immediately that ay = 1; thus (6) 
(and hence (4)) is split-exact. 

THEOREM 3. C4j8:
n)„ ^ 4 * * and {AK

n/AK
n^)g^Ak

n/Ak
n+l for all n ^ 0. 

Proof. By the previous theorem we have (^4^°)^ = Ak°. H p = 0, then 
.4X

W = Ak = 0 for n ^ 1, and the result is trivial. Assume that p ^ 0 and 
that we have already proved (^4^w)^ = Ak

n. Then from the exact sequence 

0 -> , 4 ^ + 1 -> 4 * n -» A^/A^1 -> 0 

we obtain the homology sequence 

H,{g, AK
n/AR

n+1) h (AK
n+1)g -» 4*» -* U X V ^ 4 / + 1 ) 9 - 0. 
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If n > 0, then AK
n/AK

n+1 ^ x(K+); thus H^g, AK
n/AK

n+l) = 0 by additive 
Galois cohomology. On the other hand, (AK®/AK

l)(p) = 0; hence also 
Hi(g, AK

Q/AK
l)(p) = 0. But (AK

l)g is a pro-^-group. Thus 50 must be trivial. 
Hence for all n ^ 0, dn is trivial, and so we have the exact sequence 

(7) 0 -> {AK
n^)g -» ^ / -» U Z / i ^ 1 ) , -» 0. 

Since the image of (AK
n+1)g in Ak

n is ^4 / + 1 (by ramification theory), we have 
(AK

n+1)g = Ak
n+1. Comparing (7) with the exact sequence 

0 -> Ak
n+* -» Ak

n -> Af/A,»*1 -> 0, 

we see that G4x
w/-4xn+1)* = Ak

n/Ak
n+l. Thus, by induction, the result is true 

for all n §; 0. 

THEOREM 4. Le/ k be a local field. Then the ramification filter 

satisfies the following: 
(i) Ak is a profinite abelian group, Ak is a closed subgroup of Ak for all 

^ 0 , and Dn=oAk
n = 0; 

(ii) Ak/Ak° = Ak (topologically), awd £/^ exac/ sequence 

0->Ak°-*Ak->Ak-*0 

splits by a topological homomorphism; 
(iii) Ak

Q/Ah
l is topologically isomorphic to Sk; 

(iv) lfp = 0, then A*1 = 0. 
If p 9e 0, and if n ^ 1, //zew 

(v) Ak
n/Ak

n+1 is topologically isomorphic to x(k+); 
(vi) TTze mapping a —> ap maps Ak

n into Ak
fin). 

Let pn: Ak
n/Ak

n+l -+ Ak
f(n)/Ak

fw+1 denote the homomorphism derived from (vi); 
then: 

(vii) pn is bijective if n ^ e/ (p — 1); 
(viii) If n = e/(p — 1), then we have the exact sequence 

o ->#i (« f sK[p}) - ^ * 7 ^ * " + 1 ^ ^ / < B ) M / ( M ) + 1 - s»&>] -» o. 
Proof, (i) is well-known, and (ii) follows immediately from Theorem 2. 

To prove (iii) and (v), note that Ak
n/Ak

n+1 ^ (AK
n/AK

n+l)gi by Theorem 3. 
If n = 0, then AJ/AJ+1 = SK by Theorem 1, and since (SK)g = S*, (iii) 
follows. If n ^ 1, then A^/A^1 ^ x(#+) by Theorem 1. Also, (x (£+)) , = 
x(Kd) = x(k+). Thus (v) follows, (vi) is immediate from Theorem 1 together 
with the surjectivity of the homomorphism AK

n —>Ak
n. (vii) follows from 

Theorem 1 together with the isomorphism Ak
n/Ak

n+1 ^ (AK
n/AK

n+1)g. To 
prove (viii), consider the exact sequence of Theorem 1 (vi). Applying 
homology and Theorem 3, this yields the exact sequence 

->Ak™/Ak™+*->Sk[p]-+0. 
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Since AK™/AK'™+l2*x(K+), the group Hx{g, AK™/AK™+1) = 0. This 
yields (viii). 

THEOREM 5. Suppose that Hi(g, SK[p]) = 0, or that p = 0. Then properties 
(i)—(viii) of Theorem 4 completely characterize Ak as a topological filtered group. 
(That is, if A 3 A0 3 A1 3 A2 3 • • • is another topological filtered group 
satisfying (i)-(viii), then A is topologically and filter-isomorphic to Ak.) 

Proof. If p = 0, then i t = i f X i / = 4 X 5i, and our proof is complete. 
If p 9^ 0, then let 7 denote the set of integers i satisfying 0 < i < ep/ (p — 1), 
(p, i) = 1. Choose topological generators xjy j Ç 7 for x(k) so that x(k) = 
Hjej (XJ) (direct product). Thus 7 is the dimension of k as a vector space 
over Z/pZ. If i £ 7, we have A^/A^*1 ~ x(k); thus there is a continuous 
homomorphism pt: Ak

l —» x(&)- Choose a continuous function <pt: x(k) —> A^ 
such that finpi = 1 (see [5, p. 166]), and define xtj = <Pi(xf) for all j G 7. 
Let X = {xi3: i € IJ £ J}. (If 5*[>] F^ 1, let 5 = ep/(p - 1); we enlarge X 
to include an additional element xs Ç ^4/ such that the image of xs under the 
canonical mapping Ak

s —•> Sk[p] generates Sk[p].) The set X converges to 
zero as in [5, p. 198]. The surjectivity properties of the mappings pn assures 
us that X generates Ak

l topologically. Further, the injectivity of the pn 

(since H\(g, SK[p]) = 0), assures us that X is a set of free generators for Ak
l. 

Thus Ak
l = TLX£X {%) (direct product), where (x) ~ Zp denotes the closed 

subgroup of Ak
l generated by x. 

Define Xn = {x*/n(î): i £ / , ; ' £ 7}, wrhere n(i) is the minimal integer such 
that n ^ /*<*> (i). (If Sk[p] yé 1, we adjoin to Xn the element xs

pn(s\ where n(s) 
is the minimal integer such that n ^fn(s)(s).) One sees immediately that 
Ak

n = TLyex
n (y) (direct product). These remarks show that the filter 

Afc1 3 Ak
2 3 . . . is completely characterized by properties (v)-(viii) of 

Theorem 4. 
On the other hand, since Ak

l is a pro-£-group whereas Ak°/Ak
l is prime to 

p, we see that the sequence 

0->Aki-+Ako_+Ako/Aki_>0 

splits. Taking this together with property (ii), we see that Ak ~Ak/Ak° X 
Ajf/At1 X A j,1 ^ Ak X Sk X Ak\ This completes the proof. 

5. Applications to finite abelian extensions. 

THEOREM 6. Let L\k be any finite abelian extension, and let G denote the 
Galois group GL\k. Then the filter of ramification subgroups 

G 3 G° 3 G1 3 G2 3 • • • 3 Gr = 1 

has the following properties: 
(i) There is a continuous homomorphism <p: Ak—> G such that the derived 

homomorphism <p: Ak —» C7/G0 is surjective; 
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(ii) G0/G1 is cyclic; the number m = (G0:G1) being such that k contains a 
primitive mth root of unity; 

(iii) If p = 0, then G1 = 1. 
If p 7* 0, and if n ^ 1, then 

(iv) Gn/Gn+1 is an elementary p-group whose rank is not greater than the 
dimension of the vector space k over Z/pZ; 

(v) (Gn)p C Gm. 
Let pn: Gn/Gn+1 —» Gf(Jl)/Gf(Jl)+l denote the homomorphism derived from (v). Then 

(vi) pn is surjective if n ^ e/ {p — 1); 
(vii) If n = e/(p — 1), then the cokernel of pn is isomorphic to a subgroup 

Proof. The natural restriction homomorphism Ak —» G carries Ak
n onto Gn 

for all n ^ 0. Thus Theorem 6 follows immediately from Theorem 4. 

THEOREM 7. Suppose that either Hi(g,SK\p\) = 0 or p = 0 awd ^a / 

is any finite abelian filtered group which satisfies conditions (i)-(vii) of Theorem 6. 
Then there exists a finite abelian extension L\k and an isomorphism y: GL\k —> G 
such that y(GL\k

n) = Gn for all n ^ 0. 

Proof. It is enough to construct a continuous homomorphism \j/\ Ak—>G 
(onto) such that i[/(Ak

n) = Gn for all n ^ 0. (For if such \j/ is given, we can 
choose L to be the fixed field of the kernel of \j/.) By Theorem 4 (ii), 
Akz=Ak°XAk. Thus it is enough to construct \p0: Ak° —>G° such that 
\l/0(Ak

n) = Gn for all n ^ 0. For if such \f/0 is given, then combining with ç 
given by (i), we can define ^: Ak —* G by \p(a, 13) = \f/0(a)(p((3). Similar con­
siderations show that we can reduce the problem another stage: It is enough 
to construct a continuous homomorphism \//i: Ak

l —-> G1 such that \//i(Ak
n) = Gn 

for all w ^ l . 
If p = 0, then ^U1 = G1 = 1, and our proof is complete. Otherwise, we 

define a subset F C G analogous to the X defined in the proof of Theorem 5. 
We define F to consist of the elements yij} i £ I, j G / , where y ^ G G1 for 
all j G / , and such that the cosets Jij £ Gl/Gi+l, j £ / , generate Gi/Gi+1. 
(If Sk[p] 5* 1, we include an additional element ys such that ys £ Gs and ys 

generates Gep/(p~1)/(Ge/(-p~1))p.) The surjectivity properties of the mappings 
pn: Gn/Gn+l -> G / (n)/G / (n)+1 assures us that F generates G; and if Fra is defined 
analogously to Xn, we see that Yn generates Gn. The natural mapping X —> F 
yields a continuous homomorphism ^i : ^4^ —* G1 (since ^l*1 is a free abelian 
pro-£-group on X) . Since Xn maps onto Fw, we see that ^^A^) — Gn, n ^ 1. 
Thus, the proof is complete. 

Remark 3. Theorem 7 holds even if Hi(g, SK[p]) ^ 0, provided we deal 
only with groups G satisfying Gep/^p~1) = 1. 
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Remark 4. In applying Theorem 7 or Remark 3, condition (i) of Theorem 6 
is certainly the least pleasing since, among all the conditions, it is non-
arithmetic. A rather drastic cure would be to restrict our attention to totally 
ramified extensions: then condition (i) becomes vacuous (this is certainly 
permissible when k is algebraically closed). In a similar vein, if we restrict 
our attention to ^-extensions, then (by additive Kummer Theory), con­
dition (i) may be replaced by: 

(i)' The rank of the ^>-group G/G° is not greater than the dimension of 
k/0>(k) over Z/pZ. 

An important special case is when k is quasi-finite [13]. In this case, 
g = inv limw Z/nZ, and condition (i) may be replaced by the simple condition: 

(i)" G/G° is cyclic. 

Example. Let L\k be a cyclic extension, and let i± < i2 < . . . < iT be the 
set of (upper) jumps of L\k which are larger than zero. Define / as before, 
namely, / consists of all positive integers less than ep/(p — 1) which are not 
divisible by p (if Sk[p] ^ 1, then we enlarge / to include ep/{p — 1)). Then 
by straightforward computation we see that: Conditions (v), (vi), and (vii) 
of Theorem 6 (or 7) are equivalent to 

(v)' ii G I, and 
(vi)' if n ^ 1, then either in+1 £ / and in+1 > f(in), or in+1 = f(in). 

In particular, if in ^ e/(p — 1), then in+1 = in + e. Thus the ramification 
eventually ''stabilizes" if e < oo, and it may even stabilize immediately as in 
the case e = 1. 

6. The condition Hi(g,SK[p]) = 0. Let Gk = Gks\k, where ks denotes the 
maximal separable extension of k. In view of [7], we can now prove the 
following interesting result. 

THEOREM 8. Suppose that p ^ 0. Then the following statements are equivalent: 
(i) Ak(p) is a free abelian pro-p-group; 

(ii) Ak
l is a free abelian pro-p-group; 

(iii) #!(£,£*[£]) = 0 ; 
(iv) Gk(p) is a free pro-p-group. 

Proof. Taking p-iactors of Theorem 4 (ii), we obtain 

(8) 0 -> AJ -> Ak(p) -» A-k(p) -> 0. 

Since Ak(p) is a free abelian pro-£-group, (8) splits, and we obtain 
Ak(p) = Ak

l X Ak(p). Thus the torsion part of Ak(p) is the same as that of 
Ak

l. Hence, the equivalence of (i) and (ii). 
To prove the equivalence of (ii) and (iii), we note that, if Hi(g, SK[p]) = 0, 

then (ii) follows from the proof of Theorem 5. Conversely, if Hi(g, SK[p]) 9e 0, 
then by Theorem 4 (viii), there exists a Ç Ak

e/<*-l) - Ak
eKv~l)+l such that 

av ç. Akep/(p-»+im B u t s i n c e pn. Ak
n/Ak

n+l ->Ak
n+e/Ak

n+e+1 is surjective for all 
n > e/(p - 1), we deduce that Ak

ep/^~1)+1 = (Ak
e/<?-»+1)p. Thus there is an 
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element r £ Ak
e/(p~1)+1 such that rv = ap. Thus or - 1 is a non-trivial torsion 

element of Ak
l, and so ^U1 is not a free abelian pro-^-group. 

Finally, we note that the equivalence of (iii) and (iv) is a direct consequence 
of the results in [7]. 

Remark 5. A concrete interpretation of the group Hi(g} SK[p]) is given in 
[7] and in [6, p. 101]. Specifically, we have 

(i) If e/(p — 1) is not an integer (i.e. e/(p — 1) is rational or oo), then 
#ife,S*[>]) = 0 ; 

(ii) If e/(p — 1) is an integer, then H1(g, SK[p]) corresponds to a certain 
class *$ of extension fields of degree p over k, and Hi(g, SK[p]) = 0 if 
and only if fê = 0. If Sk[p] ^ 1, then ^ is precisely the class of cyclic 
extensions of degree p over k. If Sk[p] = 1, then ^ consists of certain 
non-Galois extensions. An important corollary is: If k is quasi-finite 
and ifSjtlp] = 1, then Hx(g, SK[p]) = 0. 
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