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RAMIFICATION GROUPS OF ABELIAN
LOCAL FIELD EXTENSIONS

MURRAY A. MARSHALL

1. Introduction. Let & be a local field; that is, a complete discrete-valued
field having a perfect residue class field. If L is a finite Galois extension of &,
then L is also a local field. Let G denote the Galois group Gy ;. Then the nth
ramification group G, is defined by

G, =10 € G:oa —a € P/ forall « € O}, neZ n=0,

where Oy denotes the ring of integers of L, and Py, is the prime ideal of O;.
The ramification groups form a descending chain of invariant subgroups of G:

) GD2GiD6i26G:D...2G, = 1.

In this paper, an attempt is made to characterize (in terms of the arithmetic
of k) the ramification filters (1) obtained from abelian extensions L|k.
For real x, x = 0, let ¢(x) = ¢z 1x(x) denote the function given by

2 1 X —n
e@ =2 Gogy T Gogo)

i=1
where # is the integer satisfying#z = x <% + 1. Forrealx,n — 1 < x =< n,
we define G, = G,, and we define the xth ramification group (in the upper
numbering) by
G* = Gyp1(n, x real, x = 0.

In this way we obtain a filtration
(2) GDOG'DG'DG*2D...2G = 1.

By the important theorem of Hasse and Arf [3; 1; 13, pp. 101-104],
G, D Gpi1 = ¢(n) is an integer. Because of this theorem, the function ¢ and
the filter (1) can be recovered from (2). Thus, it is enough to characterize
the filters (2) obtained from abelian extensions L|k.

If k€ LC N, and if L|k and N|k are finite Galois extensions, then the
natural restriction Gy — G carries Gy onto Gp;* for all real x = 0; see
[4; 2]. In view of this result, if M|k is any (possibly infinite) Galois extension,

we define the xth ramification group (upper numbering) by inverse limits:
GM]}CI = inv limL(GleZ), X real, X = 0,

where L runs through all finite Galois extensions of & in M.
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In particular, let 4; = Gy, i, where k, denotes the maximal abelian extension
of k. Thus 4, has a ramification filter

3) Ay DAL DA DA22D ... .

The finite abelian extensions L of k are in one-to-one correspondence with the
open subgroups U of 4;. If L corresponds to U, then U = Gz, Goix =2 4/ U,
and Gp* = 4,°U/U. In this way, the filtrations (2) coming from abelian
extensions L|k can all be obtained from (3). Thus, the original problem
reduces to the problem of characterizing the ramification filter (3) as a topo-
logical filtered group.

In Theorem 1, we examine the filtration (3) in the case that the residue
class field % is algebraically closed. This result is a direct application of Serre’s
local class field theory [12]. Theorems 1, 2, and 3 prepare the way for Theorem 4
in which we examine the filtration (3) in the general case. Theorem 5 shows
how the properties of (3) given in Theorem 4 actually characterize this
filtration, provided the homology group Hi(g, Sk[p]) is zero.

In Theorem 6, we examine the ramification filter of an arbitrary finite
abelian extension L|k; in Theorem 7 we show that, provided H, (g, Sk[p]) = 0,
the properties given in Theorem 6 characterize the ramification filters of
finite abelian extensions of k. In this regard, the interested reader should
consult [8], where a somewhat weaker solution is obtained, but for non-
abelian extensions; also see [6, Appendix 2].

Theorem 8 (together with the remark following it) gives various inter-
pretations of the condition Hi(g, Sk[p]) = 0; also see [7].

2. Preliminary concepts and terminology.

(a) Cohomology and homology of profinite groups. Let G be a profinite group,
and let 4 be a topological G-module. The topological group 4 ¢ (4¢) is defined
to be the largest submodule (quotient module) of A which is fixed by G. If 4
is a discrete G-module satisfying

A = dir limgy(47)

(where U runs through all open subgroups of G), then the discrete cohomology
groups
HY(G, 4), qg =0,

may be defined as in [5] or [14]. Dually, if 4 is a compact G-module satisfying
A = invlimy(4y),
then the compact homology groups
H,(G, 4), qz0,
may be simply defined by Pontryagin duality [10]:
H,(G, A) = xH*(G, x(4)).
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(b) Fields. If k is any field, then &, will denote the maximal abelian extension
of k, and A4, will denote the Galois group Gy, . k4 will denote the additive
group of k, and kX = k — {0}, the multiplicative group. If # is a positive
integer, we let Sy[#] denote the group of #nth roots of unity in k. If #n; is a
multiple of #,, then there is a canonical “index” mapping Si[#ni] — Si[n.]
given by x — x?, where ¢ = (Si[n1]: Si[#.]). We define S; to be the inverse
limit of the groups Si[#] under the above mappings. If L|k is a Galois extension
with Galois group G, then the groups Sy [#] and S, are compact G-modules,
and one may verify that

(Sz[n]) e = SL[”] and (Sp)e = S;.

(c) Local fields. In this paper, a local field is defined as a complete discrete-
valued field with perfect residue class field. If k is a local field, then £ will
denote the residue class field of £, and p will denote the characteristic of .
We define ¢ = v(p), where v denotes the normalized valuation on k. Thus
e = ¢ satisfies 0 < e =< . f = f; will denote the function defined by

f(r) = min{np, n + ¢}, né€Z n>0.

3. The algebraically closed case. The ramification structure in this case
is given by Serre [12]. The results we will need are stated in the following
theorem.

THEOREM 1. Let K be a local field whose residue class field K s algebraically
closed. Let Ag = Ag® D Ax' D Ax? D .. .denote the filter of ramification
subgroups of Ax. Then we have the following:

(i) Ag/Ag! = Sg (canonically);
(ii) If p = 0, then Ag' =
If p #£0,and n = 1, then

(iii) A"/ Az = x(K,), the character group of K;

(iv) The mapping ¢ — o® carries A" into Ax’™.
Let

Put Ax"/ A — A/ ® )4 S m+1

denote the homomorphism derived from (iv). Then
(V) pn is bijective if n = e/ (p — 1);
(vi) If n = e/ (p — 1), we have the exact sequence

0= A"/ B8 470 /4,70 5 Sfp] — 0.

Proof. Let Ux", n = 0, denote the higher unit groups of K, and let r;, ¢ = 0,
denote the homotopy functors. By [12], A" = 71 (Ux"®) for all # = 0. Recall
[11] that if we apply homotopy to an exact sequence of pro-algebraic groups

0-G ->G—->G"—>0
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we obtain a 6-term exact homotopy sequence
0 - m(G") = 11(G) = m(G") = 1(G") = 7(G) — 7(G”") — 0.
If we consider the 6-term homotopy sequence corresponding to the sequence
0 — U1 — Ux" = Ux"/ U1 =0,
and recall that 7o (Ux"*!) = 0, we see that
Ag" /A = 7 (U U™, n = 0.

Now Ug’/Ux! is isomorphic to the multiplicative group KX in a canonical
way, and so Ag/Ax! = m(KX) = Sz (canonically). If # = 1, then
Ug"/ Ut =~ K, and so A"/ A" = 7 (K,). If p = 0, then = (K,) = 0.
Otherwise m;(K,) = x(K,) canonically. Thus we have proved (i), (ii),
and (iii).

If n = 1, then the higher unit groups Ug" satisfy:

(iv)" (U")P & Ux'™.
Let p,: Ux"/ Ug"tt — Ug/™/ Ug/™+1 denote the homomorphism derived from
(iv)’. Then

(v)' P, is bijective if n = ¢/ (p — 1);

(vi) If n = ¢/(p — 1), we have the exact sequence

0 — Sklp] — U™/ U™ — Ux!/® /) Ug/™+1 — (.

(See Serre (12, § 1.7] for all these results.)

(iv) and (v) follow immediately on applying m; to the results (iv)’ and (v)’.
Now suppose that # = ¢/(p — 1). Taking the 6-term sequence correspond-
ing to (vi), and noting that = (Sk[p]) = 0, w(Sklp]) = Sk[p], and
mo(Ux"/ Ug"t') = 0, we obtain the exact sequence of (vi).

Remark 1. Since n takes only integral values, condition (vi) will be vacuous
if ¢/(p — 1) is not an integer. It is known that ¢/(p — 1) is an integer if
and only if Sx[p] # 0; see [12, § 1.7].

Remark 2. The mappings of the previous Theorem 1 may be given explicitly
as follows.

(1) Ax/Ax' = Sx. Let n be a positive integer prime to p, and let 7= be a
prime of K. If ¢ € Ak, then o Yn/ /7w € Sx[n] = Sg[n]. The mapping
Ag/Ax' — Sg may be defined by ¢ — (¢ 4/7/ \/7), where n runs through
all positive integers prime to p. This mapping is actually independent of the
choice of .

(2) Ax*/ A" = x(K;), n 2 1. Let L|K be a finite abelian extension.

Then we have an exact sequence

0 = Guix"/Grig™+t — U™/ U b+ — Ut/ Ughtt — 0;
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see [12 or 13]. Choosing uniformizing elements in L and K, this sequence
reduces to

0— GLIKn/GLIKn+l - K+ i’ K+ — 0,

where f is an additive polynomial. Let x € x(Grx"/Grix"!). From the theory
of additive polynomials [9], there exists a unique additive polynomial g and
a unique element # € K such that the diagram

0— GLIKn/GLIKn+1 - K+ l’ K+ -0

R

0—Z/pZ —)K’+zK+—>O

commutes. (Here & denotes the additive polynomial x — x? — x, and
u: K, — K, denotes the scalar multiplication x — ux.) In this way, we obtain
an injective homomorphism x (G x*/Grix"™') — K, given by x — u. Pro-
ceeding to the inverse limit, we obtain an injective homomorphism
x (Ax"/ A1) — K, which is, in fact, an isomorphism, by [12]. Dualizing
yields the required isomorphism.

(3) Assume thats = ep/(p — 1) € Z. Then the mapping Ax*/ A"+ — Sk[p]
may be given by ¢ — ¢ \%/7/ ¥/7, where = is a prime of K. This mapping is
independent of the choice of .

4. The general case. Now let & be an arbitrary local field. We wish to
study the ramification filter

A 24 24 2482 ... .

To utilize the results of Theorem 1, we let K denote the maximal unramified
extension of k. Thus K is a discrete-valued field with an algebraically closed
residue class field. Although K is not complete, it is Henselian; thus the ramifi-
cation groups Ag", » = 0, may be identified with the ramification groups

%, n = 0, where K denotes the completion of K. Thus, the results of
Theorem 1 apply to Ag.

Let g = Gk then g acts on the groups 4", # = 0, through inner auto-
morphism:

o — 707! forall ¢ € A" and 7 € g.

(Here, 7 denotes any extension of 7 to K,.) In this way, the groups Ax",

&"/Ag™, n = 0, become compact g-modules. g also acts on the groups
Sz, x (K,), and Sg[p] in the natural way, and one may verify that the mappings
gwven in Theorem 1 are g-module homomorphisms. (For Theorem 1 (iii), one
should be more precise and say that the isomorphism A4g"/Ax"! = x(K.)
will be a g-module isomorphism provided that the prime used to define the
isomorphism Ug"/ Ug"t! = K, is a prime from &.)
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The natural restriction 4x — 4; is a g-module homomorphism, and since
g operates trivially on 4y, we obtain a derived homomorphism (dg), — 4.

THEOREM 2. The sequence
0— (Ax);—> Ar— 45— 0
is split-exact.

Proof. At this point we introduce a notation which will also be used later:
If G is a profinite group and [ is a prime integer, then G(!) will denote the
maximal pro-I-factor of G. In particular, if G is abelian, then the natural
mapping G — II, G (1) will be an isomorphism.

To prove Theorem 2, it is enough to show that, for each prime /, the sequence
4) 0— (Ag),()) = Ax()) = Az() — 0
is split-exact. We note immediately that (dg),(!) = (Ax()),. Let H = G,
Then we have the exact sequence

0> Ax—H—g—0.
Applying the dualized form of the 5-term exact sequence [5, p. 160], we obtain
— Hy(g, Z;) — Hy(Ag, Z,),— H\(H,Z,)— Hi(g, Z,) - 0.
Since H,(G, Z)) is the maximal abelian pro-/-factor group of G, this reduces to
(5) — Ha(g, Z;) — (Ax (1)) — Ax(1) — 4z () — 0.
In case ! = p, g has cohomological p-dimension not greater than one [5, p. 203],
and so H:(g, Z,) = 0. Further, Az(p) is a free abelian pro-p-group; thus the
mapping A;(p) — Az(p) splits. If I 5 p, then Ax'(!) = 0, and hence A (I) =

(Ax/Ax") () = Sx(); thus (Ax(D), = (Se()), = (Sz),(1). Thus (5) takes
the form

(6) Si() L 4,@0) — 4:(0) — 0.

Let = be a prime of %, and suppose that £ contains a primitive /*th root of
unity. Then k(I3/x) is cyclic of degree I* over k, and ay: o ax/T/ /T
defines a homomorphism from A4, onto Sg[l"]. In this way, we obtain a homo-
morphism a: A;(l) — Sz(!). One checks immediately that ey = 1; thus (6)
(and hence (4)) is split-exact.

THEOREM 3. (AKn)g = Akn and (AKn/AKn+l)g ot Akﬂ/Akn+l f01’ all n _Z_ 0.

Proof. By the previous theorem we have (4x%), =2 A4,% If p = 0, then
Ag* = A" = 0 for » = 1, and the result is trivial. Assume that p % 0 and
that we have already proved (4x"), =2 A;". Then from the exact sequence

0 __)AK"+1 b d AKn ad AKn/AKﬂ+l - O
we obtain the homology sequence

n n an n n n n
Hi(g, A" /AL =5 (A", — 48 — (A" /A", — 0.
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If > 0, then Ag"/Ag = x(K,); thus H,(g, Ax"/Ax™') = 0 by additive
Galois cohomology. On the other hand, (4x% Ax!)(p) = 0; hence also
Hy(g, A’/ Ax') (p) = 0. But (4x'), is a pro-p-group. Thus §, must be trivial.
Hence for all = 0, §, is trivial, and so we have the exact sequence

(7) 0 band (AK’H'I)‘, —_ Akn —_ (AKn/AKﬂ-f-l)a g 0.

Since the image of (4x"*!), in 4;* is A;*t! (by ramification theory), we have
(A", = A;»+1. Comparing (7) with the exact sequence

0> A — A — Ae/A+ — 0,

we see that (Ag"/ A", = A/ A, Thus, by induction, the result is true
for all » = 0.

THEOREM 4. Let k be a local field. Then the ramification filter
Ay 24 248 24822 ...

satisfies the following:
(i) Ax s a profinite abelian group, A" is a closed subgroup of Ax for all
n =0, and Ny—o A" = 0,
(i1) Ax/A® = Ay (topologically), and the exact sequence

0> 4> A4, > A4A;—0

splits by a topological homomorphism;

(ii1) A%/ A is topologically isomorphic to Sx;

) If p = 0, then A' =
If p #0,and if n = 1, then

(v) A/ A+ is topologically isomorphic to x (ky);

(vi) The mapping o — o® maps A" into A/™.
Let py: A/ At — A,7™ A, 7™+ denote the homomor phism derived from (vi);
then:

(vil) p, is bijective if n #= e/ (p — 1),

(viii) If n = ¢/ (p — 1), then we have the exact sequence

0 — Hy(g, Sclp]) = A /A PE 4,50 /4,794 5,1p] — 0.

Proof. (i) is well-known, and (ii) follows immediately from Theorem 2.
To prove (iii) and (v), note that 4;*/A4;*! = (A"/Ax"t1),, by Theorem 3.
If » =0, then Ax"/Ax™ =2 Sx by Theorem 1, and since (Sz), = Sz, (iii)
follows. If # = 1, then Ax"/ A =~ x(K,) by Theorem 1. Also, (x(K,)), =
x(K?) = x(ky). Thus (v) follows. (vi) is immediate from Theorem 1 together
with the surjectivity of the homomorphism Ag” — 4,;*. (vii) follows from
Theorem 1 together with the isomorphism A;*/A4;* = (Ag"/Ag™),. To
prove (viii), consider the exact sequence of Theorem 1 (vi). Applying
homology and Theorem 3, this yields the exact sequence

— Hi(g, A’®/Ax"®%) — Hi(g, Sk[p]) = Ai"/ A
— AJ® /4, 70+ 5 S [p] — 0.
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Since Ax’™/A "™+ =~ x(K,), the group H;(g, Ax’™/Ag/™+1) = 0. This
yields (viii).

THEOREM 5. Suppose that Hi(g, Sx[p]) = 0, or that p = 0. Then properties
(1)—(viii) of Theorem 4 completely characterize Ay as a topological filtered group.
(That is, if A DA D A' D A2 D ... is another topological filtered group
satisfying (i)—(viil), then A s topologically and filter-isomorphic to Ay.)

Proof. If p = 0, then 4, = Az X A® = Az X Sz, and our proof is complete.
If p # 0, then let I denote the set of integers 7 satisfying 0 < 7 < ep/(p — 1),
(p, 1) = 1. Choose topological generators &;, 7 € J for x(k) so that x(k) =
I1,.; (x;) (direct product). Thus J is the dimension of % as a vector space
over Z/pZ. If ¢ € I, we have A,'/A,"! = x(k); thus there is a continuous
homomorphism 8;: 4;* — x (k). Choose a continuous function ¢;: x (k) — A4,*
such that Bi0; = 1 (see [5, p. 166]), and define x;; = ¢;(%;) for all j € J.
Let X = {x;:d € 1,7 € J}. (If Si[p] # 1, lets = ep/(p — 1); we enlarge X
to include an additional element x; € 4;* such that the image of x; under the
canonical mapping A;* — Sy[p] generates Si[p].) The set X converges to
zero as in [5, p. 198]. The surjectivity properties of the mappings p, assures
us that X generates A;! topologically. Further, the injectivity of the p,
(since H,(g, Sk[p]) = 0), assures us that X is a set of free generators for 4;!.
Thus A, = Il,cx (x) (direct product), where (x) = Z, denotes the closed
subgroup of 4;! generated by x.

Define X” = {x,”"?”: 4 € I, j € J}, where n(¢) is the minimal integer such
that n < f* (). (If Sy[p] # 1, we adjoin to X” the element x "™, where 7 (s)
is the minimal integer such that # < f*(s).) One sees immediately that
Ayt = Il,ex" (y) (direct product). These remarks show that the filter
At D A2 D ... is completely characterized by properties (v)—(viii) of
Theorem 4.

On the other hand, since 4;! is a pro-p-group whereas A4;%/A4;! is prime to
p, we see that the sequence

0_)Ak1 —>Ak0——>Ak0/Ak1 _‘)O
splits. Taking this together with property (ii), we see that A, = 4,/4,° X
A4 X Ayt =2 Ar X Sg X Al This completes the proof.

5. Applications to finite abelian extensions.

THEOREM 6. Let L|k be any finite abelian extension, and let G denote the
Galots group Gri. Then the filter of ramification subgroups

GG 2GI2G*D...2G" =1

has the following properties:
(1) There is a continuous homomorphism ¢: Az — G such that the derived
homomorphism @: Az — G/G° is surjective;
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(if) G*/G* 1s cyclic; the number m = (G°:G') being such that k contains a
primitive mth root of unity;
(i) If p = 0, then G! = 1.
If p # 0, and if n = 1, then
(iv) G*/G™t! is an elementary p-group whose rank is not greater than the
dimension of the vector space k over Z/pZ;
(v) (G")? € G'™.
Let p,: G*/G"1 — GI™ /GI™+1 denote the homomor phism derived from (v). Then
(vi) P, is surjective if n #= e/ (p — 1);
(vii) If n = e/ (p — 1), then the cokernel of p, is isomorphic to a subgroup
of Silp].

Proof. The natural restriction homomorphism A; — G carries 4;" onto G*
for all # = 0. Thus Theorem 6 follows immediately from Theorem 4.

THEOREM 7. Suppose that either Hy(g, Sk[p]) = 0 or p = 0 and that
GDOG' 2G'2G*D...26G"=0

s any finite abelian filtered group which satisfies conditions (i)—(vii) of Theorem 6.
Then there exists a finite abelian extension L|k and an isomorphism v: Gpix — G
such that v(Gp)*) = G® for all n = 0.

Proof. It is enough to construct a continuous homomorphism ¢: 4; —» G
(onto) such that ¢(4;") = G" for all » = 0. (For if such ¢ is given, we can
choose L to be the fixed field of the kernel of y.) By Theorem 4 (ii),
Apy = A" X Az. Thus it is enough to construct y¢,: A — G° such that
Yo(4;") = G" for all » = 0. For if such ¢, is given, then combining with ¢
given by (i), we can define y: 4; — G by y¥(a, 8) = Yo(@)¢(8). Similar con-
siderations show that we can reduce the problem another stage: It is enough
to construct a continuous homomorphism ¢1: A;! — G!such that ¢;(4,*) = G*
for all » = 1.

If p =0, then 4! = G! = 1, and our proof is complete. Otherwise, we
define a subset ¥ C G analogous to the X defined in the proof of Theorem 5.
We define Y to consist of the elements y;;, 2 € I, j € J, where y;; € G* for
all j € J, and such that the cosets ¥,; € G?/G™1, j € J, generate G*/G**!.
(If Sx[p] # 1, we include an additional element y, such that y, € G* and ¥,
generates G/®—D/(G¢@®-D)?) The surjectivity properties of the mappings
Pu: G"/GM — GT™ /GTM+T ggsures us that V generates G; and if V" is defined
analogously to X", we see that ¥” generates G". The natural mapping X — ¥V
yields a continuous homomorphism y;: A;! — G! (since 4;! is a free abelian
pro-p-group on X ). Since X maps onto ", we see that ¢1(4;") = G", n = 1.
Thus, the proof is complete.

Remark 3. Theorem 7 holds even if H;(g, Sk[p]) # 0, provided we deal
only with groups G satisfying G#/#-D = 1,
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Remark 4. In applying Theorem 7 or Remark 3, condition (i) of Theorem 6
is certainly the least pleasing since, among all the conditions, it is non-
arithmetic. A rather drastic cure would be to restrict our attention to totally
ramified extensions: then condition (i) becomes vacuous (this is certainly
permissible when £ is algebraically closed). In a similar vein, if we restrict
our attention to p-extensions, then (by additive Kummer Theory), con-
dition (i) may be replaced by:

(1)’ The rank of the p-group G/G° is not greater than the dimension of

kE/P (k) over Z/pZ.

An important special case is when k£ is quasi-finite [13]. In this case,
g = inv lim, Z/nZ, and condition (i) may be replaced by the simple condition:

1) G/G" is cyclic.

Example. Let L|k be a cyclic extension, and let 7, < 7, < ... < 7, be the
set of (upper) jumps of L|k which are larger than zero. Define I as before,
namely, I consists of all positive integers less than ep/(p — 1) which are not
divisible by p (f Si[p] £ 1, then we enlarge I to include ep/(p — 1)). Then
by straightforward computation we see that: Conditions (v), (vi), and (vii)
of Theorem 6 (or 7) are equivalent to

(v) 71 € I, and

(vi)" if » = 1, then either 2,41 € I and 2,01 > f(4,), or 2,01 = f(i,).

In particular, if 4, = ¢/(p — 1), then 4,41 = 4, + e. Thus the ramification
eventually “stabilizes’ if ¢ < 00, and it may even stabilize immediately as in
the case e = 1.

6. The condition Hi(g, Sk[p]) = 0. Let G; = Gy, i, where k; denotes the
maximal separable extension of k. In view of [7], we can now prove the
following interesting result.

THEOREM 8. Suppose that p # 0. Then the following statements are equivalent:
(1) Ax(p) s a free abelian pro-p-group;

(i1) Ayt 2s a free abelian pro-p-group;

(iv) G (p) is a free pro-p-group.

Proof. Taking p-factors of Theorem 4 (ii), we obtain

(8) 0 — A,' — Ax(p) — Az(p) — 0.

Since Az(p) is a free abelian pro-p-group, (8) splits, and we obtain
Ay (p) = A X Az(p). Thus the torsion part of A;(p) is the same as that of
Al. Hence, the equivalence of (i) and (ii).

To prove the equivalence of (ii) and (iii), we note that, if H(g, Sx[p]) = 0,
then (ii) follows from the proof of Theorem 5. Conversely, if H;(g, Sx[p]) # O,
then by Theorem 4 (viii), there exists ¢ € 4;4®-D — 4,¢@-D+1 gych that
o? € A ®/@=D+1 But since p,: A"/ At — A8/ 4;2Het! is surjective for all
n > e/(p — 1), we deduce that 4,%/®—D+1 = (4,¢@-D+1)? Thus there is an
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element 7 € 4,4®-D+1 guch that 72 = ¢?. Thus or~! is a non-trivial torsion
element of A;!, and so 4! is not a free abelian pro-p-group.

Fiﬁally, we note that the equivalence of (iii) and (iv) is a direct consequence
of the results in [7].

Remark 5. A concrete interpretation of the group H,(g, Sk[#]) is given in
[7] and in [6, p. 101]. Specifically, we have
(i) If ¢/(p — 1) is not an integer (i.e. ¢/(p — 1) is rational or ), then

Hi(g, Sk[p]) = 0;
(i1) If ¢/(p — 1) is an integer, then H;(g, Sk[p]) corresponds to a certain

class & of extension fields of degree p over &, and H,(g, Sx[p]) = 0 if
and only if € = 0. If Si[p] # 1, then ¥ is precisely the class of cyclic
extensions of degree p over k. If Si[p] = 1, then & consists of certain
non-Galois extensions. An important corollary is: If k is quasi-finite
and if Sy[p] = 1, then H(g, Sk[p]) = 0.
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