
1
The Fundamentals of

Hydrodynamics

Everything flows and nothing abides; everything gives way and nothing

stays fixed.

Heraclitus (c. 535–c. 475 BCE)

1.1 Definition of a fluid

The physics of hydrodynamics (HD), namely conservation of mass, conservation

of energy, and Newton’s second law, are all concepts familiar to first-year

undergraduate students, though the mathematics to solve the relevant equations is

not. Consider an ensemble of particles within some volume V , and let these particles

interact with each other via elastic collisions. We can let V remain fixed (in which

case we allow the particles to collide elastically with the walls of the container too),

or we can let V increase or decrease as the particles move apart or come together;

it does not matter. If the mass, total energy, and momentum of the ensemble of

particles are M , ET, and �S respectively, then we have:

dM

dt
= 0, conservation of mass; (1.1)

dET

dt
=
∑

Papp, conservation of total energy; (1.2)

d�S

dt
=
∑

�Fext, Newton’s second law. (1.3)

Here,
∑Papp is the rate at which work is done (power) by all forces applied to

the ensemble of particles, and
∑

�Fext are all forces external to and acting on the

ensemble of particles. Note that the applied forces – normally just collisions from

neighbouring ensembles of particles – are typically a subset of the external forces,

which include collisions from neighbouring particles plus forces arising from gravity,

magnetism, radiation, etc. This is because in addition to the thermal and kinetic en-

ergies, the total energy, ET, includes gravitational, magnetic, radiative, and possibly

other energies as well.

It is how we model the collisional forces from neighbouring ensembles of parti-

cles that defines both what constitutes a fluid and how Eq. (1.1)–(1.3) are further

developed. Consider a small cube with volume ΔV = (Δl)3 as shown in Fig. 1.1a.
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8 The Fundamentals of Hydrodynamics

Figure 1.1. a) A single particle bounces elastically from the walls of a cube of
edge length, Δl, imparting impulses Jx, Jy , etc. b) An x–y cut through the cube
in panel a showing one particle whose motion is entirely in the x-direction.

Let the walls of the cube be perfectly reflecting and let there be just one particle

inside the cube moving at some speed v in an arbitrary direction.

When the particle collides with the wall, both the particle and cube suffer a

change in momentum in a direction normal to the surface of the cube. Moments

later, the particle collides with a different wall, and the particle and cube suffer

changes in momentum in a direction normal to that wall. A change in momentum

is an impulse, J , which when multiplied by the time over which the collision occurs,

Δt, constitutes the average force. Thus formally, the “pressure”, p, the collision

exerts on the wall of the box is this average force divided by the area of the wall:

p ∼ JΔt

(Δl)2
.

In this scenario, the “pressure” is highly variable in time, and by no means could

the “pressure” be construed as isotropic. At a given time, the “pressure” one wall

feels will have nothing to do with the “pressures” felt by the other walls.

However, by arbitrarily increasing the number of particles, N , inside our small

volume, ΔV , the number of collisions with a given wall, n, occurring in a time Δt

will be the same at each wall to within some arbitrarily small variance, Δn. Put

another way, averaged over Δt, particle collisions exert the same “pressure” on each

wall to within a variance made as small as we please by making N as large as we

please. Thus, we have rendered the particle “pressure” inside the cube isotropic

because each wall now feels the same force.

There is a contrived exception to this picture. If all the particles were to be

placed initially on the mid-plane of the cube and all were launched with the same

speed towards one wall of the cube, then it is only with this and the opposite wall

that particles would ever collide, and they would do so in a highly ordered, periodic

fashion. The remaining four walls would, in principle, never feel any collisions, and

thus the “pressure” in the cube would not be isotropic even with N chosen arbitrar-

ily large. Such a well-ordered and well-directed ensemble of particles is said to be

streaming and, as N is made larger, it becomes increasingly difficult in practice to

maintain streaming motion. Small perturbations will eventually cause one particle

to collide with another which in turn collide with others, and the ensuing chain
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9 A quick review of kinetic theory

reaction quickly reduces the streaming motion to chaos. Isotropic “pressure” (the

same “pressure” measured on each of the six walls) is once again the result.

We can now state the key criterion for an ensemble of particles to be treated as

a fluid. If there is a sufficient number of particles inside our box (volume element) of

dimension Δl so that the motion of particles within the volume element can always

be considered isotropic, then the effect of the collisions of particles against the walls

of the volume element (which may be rigid walls, or “soft” walls of neighbouring

ensembles of particles) is to exert an isotropic “pressure” against all walls. Since

isotropy is maintained by particle–particle collisions within the volume element, we

may “mathematise” this criterion as,

δl � Δl < L, (1.4)

where δl is the mean free path (collision length) of the particles, Δl is the length

of one side of our cubic volume element containing an arbitrarily large number of

particles, and L is the smallest length scale of interest in our physical problem. If

Ineq. (1.4) holds, we say the ensemble of particles behaves as a fluid or a continuum.

This assumption is an important one; it allows us to treat the applied forces resulting

from collisions – which otherwise could be extremely difficult to deal with – in a

very simple way, namely as an isotropic “pressure”.

1.2 A quick review of kinetic theory

To now, I have been enclosing the word pressure in quotation marks. This is be-

cause I haven’t yet made the logical connection between particle collisions (and

more specifically, the momentum transferred by particle collisions) and what we

commonly think of as pressure, such as the barometric pressure of the air. So, be-

fore we examine how Eq. (1.1)–(1.3) become the equations of hydrodynamics (HD)

under the assumption that the ensemble of particles behaves as a fluid (when Ineq.

1.4 is valid), let us review how the “pressure” and the “temperature” of a fluid re-

late to properties of the ensemble of particles. These ideas form the basis of kinetic

theory, often exposed to students for the first time in a first-year physics course.1

Consider a cube whose edges of length Δl are aligned with the x-, y-, and z-axes

of a Cartesian coordinate system, as depicted in Fig. 1.1. Returning to our example

in the previous section, suppose a single point particle of mass m moves inside the

cube with velocity vx x̂ and collides with the wall whose normal is +x̂. If collisions

are all elastic, then the particle reflects from the wall with a velocity −vx x̂ and

thus suffers a change in momentum of ΔSx = −2mvx. Conservation of momentum

then demands that an impulse of +2mvx be imparted against the wall. At a time

Δt = 2Δl/vx later, the same particle again collides with the wall, imparting another

impulse of +2mvx against it. Thus, the rate at which momentum is delivered to the

1For example, Halliday, Resnick, & Walker (2003).
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10 The Fundamentals of Hydrodynamics

wall by a single particle is given by,

ΔSx

Δt
=

2mvx
2Δl/vx

=
mv2x
Δl

= 〈F 〉,

where 〈F 〉 is the average force felt by the wall. Thus, the average pressure exerted

by this one particle, defined as force per unit area, is given by,

〈p〉 =
〈F 〉
(Δl)2

=
mv2x
V

,

where V = (Δl)3 is the volume of the cube. For N particles, we simply add over all

particles:

p ≡
N∑

i=1

〈pi〉 =

N∑

i=1

mv2x,i
V

=
m

V

N∑

i=1

v2x,i =
mN
V

〈v2x〉, (1.5)

where each point particle is assumed to have the same mass, m, and where 〈v2x〉 =∑
v2x,i/N is the arithmetic mean of the squares of the particle velocities.

For any given particle, v2 = v2x + v2y + v2z and, for large N , one would expect

〈v2x〉 = 〈v2y〉 = 〈v2z〉 since one Cartesian direction shouldn’t be favoured over another.

Thus,
〈v2〉 = 〈v2x〉+ 〈v2y〉+ 〈v2z〉 = 3〈v2x〉, (1.6)

and Eq. (1.5) becomes,

p =
Nmv2rms

3V
, (1.7)

where,
vrms ≡

√
〈v2〉,

is the root-mean-square (rms) speed of the particles in the volume V . Comparing

Eq. (1.7) with the ideal gas law :

p =
NkBT

V
, (1.8)

(where kB = 1.3807× 10−23 JK−1 is the Boltzmann constant) yields:

T =
mv2rms

3kB
⇒ 3

2
kBT =

1

2
mv2rms = 〈K〉, (1.9)

where 〈K〉 is the average kinetic energy per point particle. Thus, while the pressure,

p, is a measure of the rate at which momentum is transferred from the particles of

the fluid (gas) to, for example, the diaphragm of the measuring device (barometer),

the temperature (or more precisely 3kBT/2) is a measure of the average kinetic

energy of the particles.

The randomly directed kinetic energy of a system of N particles is called its

internal energy, E, and, for the point particles under discussion, is given by,

E = N〈K〉 =
3

2
NkBT.

The factor 3/2 is significant and warrants comment. A point particle, as may

be found exclusively in a monatomic gas, has three degrees of freedom of mo-

tion, namely translation in each of the three Cartesian directions (Fig. 1.2, left).
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11 A quick review of kinetic theory

Figure 1.2. A point particle (left) has three degrees of freedom for movement,
while a “dumb-bell” (right) has five.

From Eq. (1.6), we have 〈v2i 〉 = 〈v2〉/3 for i = x, y, z, and thus to each (transla-

tional) degree of freedom we can associate an internal energy Ei = N kBT/2, where

E = Ex + Ey + Ez = 3Ei.

Now, a diatomic molecule (essentially two point masses connected by a massless

rod) has the same three translational degrees of freedom as a monatomic particle

plus two rotational degrees of freedom, namely rotation about each of the two

principle axes orthogonal to its own axis (the x-axis in Fig. 1.2, right), for a total

of five degrees of freedom.2 Note that spinning about the x-axis itself does not

constitute a degree of freedom as the moment of inertia about this axis is essentially

zero. Because of the principle of equipartition,3 each degree of freedom stores the

same amount of kinetic energy, and the internal energy of a diatomic gas must be,

E =
5

2
NkBT.

Thus, in general, we write,

E =
1

γ − 1
NkBT, (1.10)

where γ = 5/3 for a monatomic gas, γ = 7/5 for a diatomic gas, and 4/3 ≤ γ < 7/5

for molecules more complex than diatomic.4 One can show that γ = CP /CV , the

ratio of specific heats of the gas, and that for an adiabatic gas (where heat is neither

lost nor gained from the system), p ∝ ργ , where ρ is the mass density of the gas.

Dividing Eq. (1.10) by the volume of the sample and using Eq. (1.8) gives an

expression for the internal energy density, e:

e =
E

V
=

1

γ − 1

NkBT

V
=

p

γ − 1
.

Thus, an alternate form of the ideal gas law, and the form most frequently used in

2In principle, there are also two vibrational degrees of freedom which, at “ordinary tempera-
tures”, statistical mechanics tells us are insignificant.

3Left to their own devices, systems will distribute the available energy equally among all
possible ways energy can be stored. Thus, for a large number of diatomic molecules randomly
colliding with each other and the walls of their container, one would not expect m〈v2x〉 to differ

significantly from m〈v2y〉 or m〈v2z 〉 any more than it should differ from Iy〈ω2
y〉 or Iz〈ω2

z 〉, where Iy
and Iz are the moments of inertia about the y- and z-axes respectively.

4Polyatomic molecules are significantly more complex than diatomic molecules, and the full
power of statistical mechanics along with a tensor treatment of its moment of inertia are required
to explain the value of γ for any individual molecule.
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12 The Fundamentals of Hydrodynamics

hydrodynamics, is,
p = (γ − 1) e, (1.11)

which states that the rate at which momentum is transferred via collisions is pro-

portional to the average kinetic energy density (i.e., per unit volume) of the random

particle motion.

Possibly the second most frequently used form of the ideal gas law in hydrody-

namics is,

p =
ρkBT

m
, (1.12)

which follows directly from Eq. (1.8) noting that ρ = Nm/V . Finally, from Eq.

(1.9) [and replacing the ‘3’ with 2/(γ − 1)], we find:

vrms =

√
2kBT

(γ − 1)m
=

√
2p

(γ − 1) ρ
. (1.13)

Thus, the rms speed goes as the square root of the temperature. We shall encounter

another characteristic speed of the gas proportional to the square root of the temper-

ature in 2.1.1, namely the sound speed, cs. Indeed, cs and vrms arise from essentially

the same physics, as will be explained when the sound speed is properly introduced.

1.3 The equations of ideal hydrodynamics

In hydrodynamics, the adjective ideal means that internal dissipative forces such as

viscosity are ignored. A fluid without (with) viscosity is said to be inviscid (viscid).

In this chapter, our discussion is exclusively restricted to inviscid flow. Viscid flow

is more the realm of terrestrial HD (though there are important applications for

astrophysical fluids as well), and is covered in some depth in Chap. 8.

We begin our discussion by defining the adjectives extensive and intensive.

Variables such as mass, volume, and energy which are proportional to the amount

of substance being measured are extensive quantities, while mass density (often

just referred to as density), energy density, and temperature are independent of the

amount of substance being studied and are examples of intensive quantities.

To give a precise relationship between extensive and intensive quantities, con-

sider a small sample of substance with volume ΔV . For every extensive quantity,

Q(V, t), of that sample, we can define a corresponding intensive quantity, q(�r, t),

such that,

q(�r, t) = lim
ΔV →0

ΔQ(V, t)

ΔV
=

∂Q(V, t)

∂V
. (1.14)

This is a microscopic description of the system; q may well change from point to

point. A macroscopic description of the system can be obtained by integrating Eq.

(1.14) over a finite volume, V , to recover Q:

Q(V, t) =

∫

V

q(�r, t) dV. (1.15)
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13 The equations of ideal hydrodynamics

Note that Eq. (1.15) requires that q be an integrable function of the coordinates over

the volume V , and thus q can be discontinuous and have poles of order less than

unity. On the other hand, Eq. (1.14) requires that Q be a differentiable function

of V , and thus it must be both continuous and free from any poles of any order.

Evidently, differentiability is a more restrictive requirement than integrability, and

this observation will have important consequences as we develop the theory further.

We’re now ready to introduce and prove a theorem that provides a particularly

simple way to derive the equations of hydrodynamics from the conservation laws of

Eq. (1.1)–(1.3).

Theorem 1.1. Theorem of hydrodynamics.5 If the time dependence of an extensive

quantity, Q, is given by:
dQ

dt
= Σ, (1.16)

where Σ represents the possibly time-dependent “source terms” (reasons for Q not

being “conserved”), then the evolution equation for the corresponding intensive

quantity, q(�r, t), is given by,
∂q

∂t
+∇ · (q�v) = σ, (1.17)

where �v = d�r/dt, Q =
∫
V q dV , Σ =

∫
V σdV , and where the product q�v must be a

differentiable function of the coordinates.

Proof :

dQ

dt
= Σ ⇒ d

dt

∫

V

q dV =

∫

V

σdV,

where, in general, the volume element V = V (t) also varies in time. Thus, using the

standard definition of the derivative,

d

dt

∫

V (t)

q dV = lim
Δt→0

1

Δt

[∫

V (t+Δt)

q(�r, t+Δt)dV −
∫

V (t)

q(�r, t)dV

]

= lim
Δt→0

1

Δt

[∫

V (t+Δt)−V (t)

q(�r, t+Δt)dV

+

∫

V (t)

q(�r, t+Δt)dV −
∫

V (t)

q(�r, t)dV

]

= lim
Δt→0

1

Δt

∫

ΔV

q(�r, t+Δt)dV

+ lim
Δt→0

1

Δt

∫

V (t)

[
q(�r, t+Δt)− q(�r, t)

]
dV,

5This theorem is a variant of Reynolds’ transport theorem, a volume-integral application of the
Leibniz formula for the derivative of an integral.
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14 The Fundamentals of Hydrodynamics

where, as shown in the inset, performing the volume

integral over the difference in volumes, ΔV = V (t+

Δt)−V (t), is the same as integrating over the closed

surface, ∂V , using a volume differential given by

dV = (�vΔt) · (n̂dA). Thus,
d

dt

∫

V (t)

q dV = lim
Δt→0

1

��Δt

∮

∂V

q(�r, t+Δt)(�v��Δt) · (n̂dA)

+

∫

V (t)

lim
Δt→0

q(�r, t+Δt)− q(�r, t)

Δt
dV

=

∮

∂V

q(�r, t)�v · n̂dA+

∫

V (t)

∂q(�r, t)

∂t
dV

=

∫

V (t)

∇ · (q(�r, t)�v)dV +

∫

V (t)

∂q(�r, t)

∂t
dV (Gauss; Eq. A.30)

=

∫

V (t)

(
∂q(�r, t)

∂t
+∇ · (q(�r, t)�v)

)
dV =

∫

V (t)

σ(�r, t)dV

⇒
∫

V

(
∂q

∂t
+∇ · (q�v)− σ

)
dV = 0.

As this is true for any V , the integrand must be zero, proving the theorem.

Note that q is not the conserved quantity, Q is (at least to within a known source

term, Σ). However, since Q is the volume-integral of q, we’ll refer to q as a volume-

conserved quantity.

The quantity q�v ≡ �fQ is the advective flux density of Q whose units are those

of Q times m−2 s−1; this will require a little unpacking. The flux,6 FQ, of a vector

field, �fQ, is a measure of how much �fQ “passes through” a given surface area with

arbitrary normal, n̂. Mathematically,

FQ =

∮

S

�fQ · n̂ dA or FQ =

∫

Σ

�fQ · n̂ dA, (1.18)

depending on whether the surface is closed (S) or open (Σ) respectively. Thus, the

units of �fQ are those of FQ per unit area, and �fQ can also be interpreted as a flux

density of FQ. And so, FQ is the flux of �fQ while �fQ is the flux density of FQ.

An advective flux density is more specific to fluid dynamics and refers to some

quantity, Q, being advected (i.e., transported) by the flow across a surface at a

certain rate. Thus, while �fQ is the flux density of FQ with units of FQ per unit

area, �fQ = q�v is also the advective flux density of Q – the volume integral of q –

with units of Q per unit area per unit time. It is the “per unit time” part that

triggers the adjective advective.

Evidently, we have four different types of “fluxes” to keep straight (flux, flux

6From the Latin fluxus or “flow”, this term was introduced to physics by Sir Isaac Newton.
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15 The equations of ideal hydrodynamics

density, advective flux, advective flux density) and the literature seems to blur all

four; often you’ll find any or all of these terms used interchangeably. In this text,

while I maintain the distinction between flux and flux density, I’ve chosen to drop

the adjective advective to simplify the language a bit, relying instead on context. If

a particular flux/flux density has a “per unit time” aspect to it, it is an advective

flux/flux density; otherwise just flux/flux density.

Last point before getting to the equations of HD: Eq. (1.16) is an integral

equation (Q and Σ both being volume integrals of intensive quantities, q and σ),

and thus represents a global statement (valid over a finite sample of the fluid) on

the conservation of the extensive quantity, Q. On the other hand, Eq. (1.17) is a

differential equation (often referred to as the differential form of Eq. 1.16) and thus

represents a local statement (valid at a point) on the conservation ofQ, involving the

corresponding intensive quantity, q. Global and local forms of an equation are not

identical. Because differential equations require the functions to be differentiable,

solutions of the differential form of the equations can be more restrictive than those

of the integral form where functions need only be integrable. More on this in 1.5.

Example 1.1. Let Q = M , the mass of the sample of fluid. Find the evolution

equation for the corresponding intensive quantity, q = ρ (mass density).

Solution: From Eq. (1.1), Σ = 0 ⇒ σ = 0, and Theorem 1.1 requires that:

∂ρ

∂t
+∇ · (ρ�v) = 0. (1.19)

This is the continuity equation; the first equation of HD.

Example 1.2. Let Q = ET, the total energy of the fluid sample7 of mass M :

ET = E +
1

2
Mv2 +Mφ,

where E is the internal (thermal) energy and φ is the gravitational potential. Find

the evolution equation for the corresponding intensive quantity, the total energy

density, namely,

eT = e+
1

2
ρv2 + ρφ, (1.20)

where once again, e is the internal energy density, whose units Jm−3 = Nm−2 are

the same as those for pressure, as expected from Eq. (1.11).

Solution: From Eq. (1.2), Σ = Papp ⇒ σ = papp, the applied power density inter-

preted as the rate at which work is done on a unit volume of the fluid sample by

all applied forces. Thus, Theorem 1.1 implies:

∂eT
∂t

+∇ · (eT�v) = papp. (1.21)

7When we introduce magnetism in Chap. 4, we’ll add a magnetic term to ET.
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16 The Fundamentals of Hydrodynamics

Figure 1.3. a) A cube of edge length Δx with external pressure forces acting
on the x-faces indicated. b) An x–y cut through the cube in panel (a) showing
both the pressure forces on and motion of the x-faces.

As discussed in 1.1, applied forces are collisions of external particles with the fluid

sample. Thus, the applied power is the rate at which work is done on the fluid

sample by the external fluid as the former expands or contracts within the latter.

To find an expression for the applied power, Papp, consider a small cube of fluid

with dimension Δx in the x-direction and cross-sectional area ΔA = ΔV/Δx (Fig.

1.3). The pressure force exerted on the left face of the cube is F (x) = +p(x)ΔA

and, in time Δt, the left face is displaced by vx(x)Δt. Thus, the work done on the

left face by the external fluid is ΔWL = +p(x)vx(x)ΔtΔA. Similarly, the work

done on the right face is ΔWR = −p(x + Δx)vx(x + Δx)ΔtΔA [since p(x + Δx)

and v(x + Δx) are oppositely directed; Fig. 1.3b], and the net work done on the

fluid cube is:

ΔW = ΔWL +ΔWR = p(x)vx(x)ΔtΔA − p(x+Δx)vx(x +Δx)ΔtΔA

= p(x) δV (x)− p(x+Δx) δV (x+Δx),

where δV (x) [δV (x+Δx)] is the small volume change on the left [right] face of the

cubic sample of volume ΔV by virtue of the motion of the left [right] face. Because

of its form, this work is frequently referred to as the “pdV term”.

Dividing ΔW by Δt gives us the applied power,

Papp =
ΔW

Δt
= −ΔAΔx

p(x+Δx)vx(x+Δx)− p(x)vx(x)

Δx
= −ΔV

Δ(pvx)

Δx
,

and thus the applied power density is given by:

papp =
Papp

ΔV
= −Δ(pvx)

Δx
.

Taking into account similar terms in the y- and z-directions, and letting Δ → ∂, we

have:
papp = −∇ · (p�v). (1.22)

Substituting Eq. (1.22) into Eq. (1.21) yields:

∂eT
∂t

+∇ · (eT�v) = −∇ · (p�v),
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17 The equations of ideal hydrodynamics

⇒ ∂eT
∂t

+∇ · ((eT + p)�v
)
= 0, (1.23)

the total energy equation and the second equation of ideal HD.

Example 1.3. Let Q = �S, the total momentum of the fluid sample. Find the evolu-

tion equation for the corresponding intensive quantity, q = �s = ρ�v (the momentum

density).

Solution: From Eq. (1.3), Σ =
∑

�Fext ⇒ σ =
∑ �fext, the external force densities.

Thus, Theorem 1.1 requires that:

∂�s

∂t
+∇ · (�s�v) =

∑
�fext, (1.24)

where the Cartesian representation of the divergence term is:

∇ · (�s�v) =
(
∇ · (sx�v),∇ · (sy�v),∇ · (sz�v)

)
.

(See A.4 for other orthogonal coordinate systems.)

For now, we will limit the external force densities to terms arising from pressure

gradients and gravity. In Chap. 4, we’ll add the Lorentz force, in Chap. 8 viscous

stress, and in Chap. 10, drag forces exerted between ions and neutral particles.

Starting with the pressure gradient, consider once again the small cube of fluid

with edge length Δx and face area ΔA in Fig. 1.3a. If the pressure at the left and

right sides of the cube are respectively p(x) and p(x + Δx), then the net pressure

force acting on the cube in the x-direction is given by:

F (x+Δx) + F (x) = −p(x+Δx)ΔA + p(x)ΔA = −Δp

Δx
ΔAΔx = −Δp

Δx
ΔV.

Thus, the pressure force density in the x-direction is:

fx =
ΔFx

ΔV
= −Δp

Δx
→ − ∂p

∂x
as Δx→ 0.

Accounting for all three components,

�fp = −∇p. (1.25)

The gravitational force density, �fφ, is even simpler to derive. If the fluid sample

has mass ΔM , then the gravitational force on ΔM is −ΔM∇φ, where φ is the local

gravitational potential arising from all external masses, including other regions of

fluid and distant or embedded point masses (e.g., stars). Thus, �fφ is given by:

�fφ = −ΔM∇φ
ΔV

→ − ρ∇φ as ΔV → 0. (1.26)

Substituting both Eq. (1.25) and (1.26) into Eq. (1.24) yields the momentum

equation, the third and final equation of ideal HD:

∂�s

∂t
+∇ · (�s�v) = −∇p− ρ∇φ. (1.27)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009381468.003
Downloaded from https://www.cambridge.org/core. IP address: 13.201.136.108, on 21 Aug 2025 at 07:59:22, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009381468.003
https://www.cambridge.org/core


18 The Fundamentals of Hydrodynamics

Summary of 1.3: Equations (1.19), (1.23), and (1.27) constitute two scalar equa-

tions and one vector equation which, when combined with Eq. (1.11), (1.20), and

�s = ρ�v (the constitutive equations), provide a closed system of equations for the fluid

flow variables, namely the volume-conserved quantities ρ, �s, and eT. This suite of

equations comprises our first set of equations of ideal hydrodynamics:

Equation Set 1 :

∂ρ

∂t
+∇ · (ρ�v) = 0; continuity

∂eT
∂t

+∇ · ((eT + p)�v
)
= 0; total energy equation

∂�s

∂t
+∇ · (�s�v) = −∇p− ρ∇φ; momentum equation

eT = e+
1

2
ρv2 + ρφ; constitutive equation 1

p = (γ − 1)e; constitutive equation 2

�s = ρ�v. constitutive equation 3

The gravitational potential, φ, is computed by adding up all the potentials of the

contributing point masses, and/or by computing the self-gravitational potential of

the gas from the density distribution from Poisson’s equation:

∇2φ = 4πGρ. (1.28)

As a PDE, Poisson’s equation is qualitatively different from the equations of hy-

drodynamics. It has no time derivative, spatial derivatives are second order, and

Poisson’s equation is an example of an elliptical PDE rather than the hyperbolic

PDEs of HD (App. C). Analytical methods for solving Poisson’s equation can be

found in any intermediate or advanced text on electrodynamics (e.g., Paris & Hurd,

1969; Lorrain & Corson, 1970; Jackson, 1975 to suggest a few), while numerical

treatments can be found in widely available resources such as Numerical Recipes

(Press et al., 1992). We shall not address such methods in this text.

1.4 The internal energy density

Equation (1.23) governs the evolution of the total energy density, eT. We can elimi-

nate the need for the first constitutive equation by finding an evolution equation for

the internal energy density, e, alone, and our approach shall be via thermodynamics.

The combined first and second law of thermodynamics is:

TdS = dE + pdV, (1.29)

where the only new variable being introduced is S, the total entropy of the fluid
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19 The internal energy density

sample.8 If the mass of the sample, M = ρV , is fixed, then:

dV = −M
ρ2
dρ,

and Eq. (1.29) becomes:

TdS = dE − Mp

ρ2
dρ. (1.30)

Define s ≡ S/M and ε ≡ E/M to be the specific entropy and specific internal

energy respectively. As the term density is used to connote per unit volume, so the

term specific is used to connote per unit mass. Note, for example, that the specific

internal energy and internal energy density are related by e = ρε, and while e ∝ p,

the pressure (Eq. 1.11), ε ∝ T , the temperature.

With these definitions, Eq. (1.30) becomes,

dε

dt
− p

ρ2
dρ

dt
= T

ds

dt
, (1.31)

where I’ve divided through by the differential dt to obtain an expression relating

time derivatives.

Now, because ε = e/ρ, we have:

dε

dt
=

1

ρ

de

dt
− e

ρ2
dρ

dt
.

Further, from continuity (Eq. 1.19) and use of the chain rule for partial derivatives,

we have:

∂ρ

∂t
+ �v · ∇ρ+ ρ∇ · �v =

dρ

dt
+ ρ∇ · �v = 0 ⇒ dρ

dt
= −ρ∇ · �v.

Substituting these into Eq. (1.31) yields:

1

ρ

de

dt
+
p+ e

ρ
∇ · �v = T

ds

dt
. (1.32)

Another invocation of the chain rule gives us:

de

dt
=

∂e

∂t
+ �v · ∇e,

and thus, upon multiplying through by ρ, Eq. (1.32) becomes:

∂e

∂t
+ �v · ∇e + e∇ · �v = −p∇ · �v + ρT

ds

dt

⇒ ∂e

∂t
+∇ · (e�v) = −p∇ · �v + p

m

kB

ds

dt
,

where the ideal gas law (1.12) has been used to replace ρT with pm/kB. Finally, by

defining the unitless entropy per particle, S ≡ ms/kB, we obtain:

∂e

∂t
+∇ · (e�v) = −p

(
∇ · �v − dS

dt

)
. (1.33)

8Unavoidably, S is an over-used symbol. It has already been defined and indeed is used through-
out the text as the closed surface of integration. Here, it is being used to represent the total entropy
of the fluid (an extensive quantity), while the vector �S represents the total momentum.
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20 The Fundamentals of Hydrodynamics

For an adiabatic process, the entropy per particle remains constant, and we arrive

at our final form for the evolution equation for internal energy density:

∂e

∂t
+∇ · (e�v) = −p∇ · �v. (1.34)

Note that Eq. (1.34) can replace Eq. (1.20) and (1.23), thus giving rise to a somewhat

simpler set of hydrodynamical equations:

Equation Set 2 :

∂ρ

∂t
+∇ · (ρ�v) = 0; continuity

∂e

∂t
+∇ · (e�v) = −p∇ · �v; internal energy equation

∂�s

∂t
+∇ · (�s�v) = −∇p− ρ∇φ; momentum equation

p = (γ − 1)e; constitutive equation 2

�s = ρ�v. constitutive equation 3

1.5 Primitive, integral, and conservative form

For a so-called barotropic gas (where p is a function of ρ only; both adiabatic and

isothermal gases are examples of barotropes), it is left to Problem 1.5 to derive the

so-called pressure equation:

∂p

∂t
+ �v · ∇p = −ρ dp

dρ
∇ · �v. (1.35)

It is further left to Problem 1.2 to show that the continuity equation, (Eq. 1.19),

and the momentum equation, (Eq. 1.27), combine to yield an evolution equation

for the velocity:
∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p−∇φ, (1.36)

where, in Cartesian coordinates, we have:

(�v · ∇)�v = (�v · ∇vx, �v · ∇vy , �v · ∇vz).
(See A.4 for other orthogonal coordinate systems.) Equation (1.36) is known as

Euler’s equation named for Leonhard Euler (1707–1783), the Swiss mathematician

and physicist often described as the most prolific mathematician of all time.9

9www.wikipedia.org/wiki/Leonhard Euler
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21 Primitive, integral, and conservative form

Collecting Eq. (1.35) and (1.36) with the continuity equation, (Eq. 1.19), gives

us our third set of HD equations:

Equation Set 3 :

∂ρ

∂t
+∇ · (ρ�v) = 0; continuity

∂p

∂t
+ �v · ∇p = −ρ dp

dρ
∇ · �v; pressure equation

∂�v

∂t
+ (�v · ∇)�v = −1

ρ
∇p−∇φ. Euler’s equation

These three equations form a closed set; no constitutive equations are necessary.

Equation Set 3 is said to be in primitive form because it governs the time evolution

of the three so-called primitive variables ρ, p, and �v.

Finally, one can write down the equations of ideal HD in integral form by

performing volume integrals on each term of Eq. Set 1, this time setting φ = 0.

This yields a set of integro-differential equations highly reminiscent of the funda-

mental conservation laws (Eq. 1.1–1.3) upon which our current discussion is based.

Accordingly, I have designated these as Equation Set 0 :

Equation Set 0: Integral Equations of Ideal HD

∂M

∂t
+

∮

S

ρ�v · n̂ dσ = 0; (1.37)

∂ET

∂t
+

∮

S

(eT + p)�v · n̂ dσ = 0; (1.38)

∂�s

∂t
+

∮

S

ρ(�v�v) · n̂ dσ = −
∮

S

pn̂dσ, (1.39)

with constitutive equations:

M =

∫

V

ρdV ; ET =

∫

V

eT dV ; eT =
p

γ − 1
+
ρv2

2
; and �s =

∫

V

ρ�v dV,

and where S is the surface (not entropy!) enclosing the volume element V . Because

all spatial derivatives in Eq. Set 1 are either perfect divergences or perfect gradients,

their volume integrals can be replaced with surface integrals by the use of Gauss’

theorem (Eq. A.30 and A.31). Note that the same cannot be done with the internal

energy equation in Eq. Set 2 and the pressure and Euler’s equations in Eq. Set 3

because of the imperfect divergences and gradients in these equations.

The integral form in Eq. Set 0 completely exposes the three conservation laws

upon which fluid dynamics is based. For each equation, the time rate of change of

the extensive quantity within a given volume element, V , however large or small is

determined completely by the (advective) flux density of that quantity (integrand
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22 The Fundamentals of Hydrodynamics

of the surface integral) passing through the closed surface, S.10 Since Eq. Set 0

follows so directly from Eq. Set 1, Eq. Set 1 is said to be in conservative form.

The distinction between conservative and primitive forms is more than seman-

tic. To be valid, the primitive equations require that the primitive variables p, �v,

and thus ρ be individually differentiable – and therefore continuous – everywhere.

This necessarily precludes discontinuities in ρ, p, and �v and thus the primitive equa-

tions are valid only for smooth flow. On the other hand, the conservative equations

only require that the functions (flux densities) ρ�v, �v(eT + p), and ρ�v�v + p I11 be

continuous,12 and not necessarily the primitive variables individually. Thus, the

conservative equations in terms of the conservative variables (ρ, eT, �s) can, in prin-

ciple, admit solutions with discontinuities in ρ, p, and �v (i.e., discontinuous flow)

so long as these discontinuities combine to yield continuous flux densities. We shall

exploit this observation when we write down the Rankine–Hugoniot jump conditions

in 2.2.3, and then again for MHD in 5.3.

Of course, in addition to discontinuous solutions, the conservative equations

also admit all smooth solutions admitted by the primitive equations, and thus the

conservative set of equations is the more general of the two. Still, there are times

when use of the primitive equations is far more convenient, as we shall see when we

discuss the all-important Riemann problem in Chap. 3 and 6.

Problem Set 1

1.1 On a cold winter afternoon, you enter your winter cabin (which has not been

heated for weeks) freezing cold. You light a roaring fire in the hearth and after an

hour, the cabin is warm enough to take off your winter clothing.

a) Does the air in your cabin contain more, less, or the same total internal energy,

E, now that it is warm than when it was cold? Explain.

b) If you conclude that the air contains less or the same internal energy after

being heated as before, where does all the energy from the fire go?

1.2 Derive Euler’s equation (Eq. 1.36 in the text) from the continuity and momen-

tum equations (Eq. 1.19 and 1.27). Your proof should be valid for all coordinate

systems, not just Cartesian.

Hint: Vector identity (A.21) from App. A should be particularly helpful.

10Note that in this picture, the pressure p contributes to the flux densities of both �S and ET.
11�v�v is the dyadic product of �v with itself creating a rank 2 tensor (matrix; see Eq. A.16), while

I is the “identity tensor”, which you can think of as the identity matrix.
12To see how one arrives at the conclusion that the momentum equation, (1.27), only requires

that ρ�v�v + p I be continuous, it is instructive to note that formally, ∇p = ∇ · (p I). Try it!
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23 Problem Set 1

1.3 Derive the internal energy equation for an adiabatic gas (Eq. 1.34 in the text)

from the hydrodynamical equations alone by substituting the definition for eT (Eq.

1.20) into the total energy equation (Eq. 1.23) and then by using the continuity

equation (Eq. 1.19) and Euler’s equation (Eq. 1.36) to simplify.

Hint: The gravitational potential, φ, solves Poisson’s equation (Eq. 1.28) and, as

such, has no explicit time dependence. Thus, you can set ∂φ/∂t = 0.

1.4∗

a) Equation (1.34) in the text is the evolution equation for the internal energy

of an adiabatic gas. Show that the analogous equation for an isothermal gas

is:
∂e

∂t
+∇ · (e�v) = 0. (1.40)

Physically, what do you suppose is happening in an isothermal gas to maintain

its isothermality?

b) For an adiabatic gas, we argued that the unitless entropy per particle, S,
remains constant in time. Find dS/dt for an isothermal gas.

c) We can model a real gas by an equation of state of the form p = κρn where, in

principle, both κ and the power-law index n could vary from point to point.

For an adiabatic gas, n = γ, while for an isothermal gas, n = 1 (why?). Argue

that for a real gas, 1 < n < γ and thus the isothermal and adiabatic conditions

represent limits in between which a given real gas should be found.

1.5∗ A barotropic equation of state is one where the pressure depends only on the

density, that is p = p(ρ).

a) Starting with the internal energy density equation for an adiabatic gas, Eq.

(1.34) in the text, show that:

∂p

∂t
+ �v · ∇p = −γp∇ · �v. (1.41)

b) Starting with the continuity equation and assuming a barotropic equation of

state, derive the “pressure equation”, Eq. (1.35).

c) Show that for an adiabatic gas where p ∝ ργ , Eq. (1.35) reduces to Eq. (1.41).

1.6 The vorticity is defined as �ω = ∇× �v, and is a measure of fluid circulation.

a) Starting from either Eq. (1.27) or (1.36) in the text and assuming the fluid to

be barotropic (as defined in Problem 1.5), show that the evolution equation

for the vorticity is given by:
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24 The Fundamentals of Hydrodynamics

∂�ω

∂t
= ∇× (�v × �ω). (1.42)

Hint : Vector identity (A.15) in App. A might be of help.

b) If the fluid is not barotropic [e.g., p = p(ρ, e)], show that Eq. (1.42) is still

valid if the fluid is incompressible, that is where the density may be taken as

constant in both space and time and thus the continuity equation (Eq. 1.19)

reduces to ∇ · �v = 0.

1.7 Define the circulation, Γ, of a fluid about a closed loop, C, to be:

Γ =

∮

C

�v · d�l.

By inspection, Γ is non-zero only if there is net circulation about the loop, whence

its name.

a) Show that:

Γ =

∫

Σ

�ω · d�σ, (1.43)

where Σ is the open surface enclosed by the closed loop, C, and �ω = ∇ × �v

is the vorticity defined in Problem 1.6. This should be a one-liner. Thus, the

circulation, Γ, can also be interpreted as the “vorticity flux” passing through

a closed loop.

b) Prove that for a barotropic (Problem 1.5) or incompressible (ρ = constant)

fluid,
dΓ

dt
= 0.

This is Kelvin’s circulation theorem, and asserts that vorticity flux is a con-

served quantity for inviscid barotropic flow.

Hint: Start with Eq. (1.43) and examine dΓ/dt, noting that the surface over

which the integral is performed, Σ, is also time-dependent; this must somehow

be taken into account in taking the time derivative. If this doesn’t seem like a

familiar problem, review the proof of the theorem of hydrodynamics (Theorem

1.1 in the text). Finally, you should come to a point where Eq. (1.42) from

Problem 1.6 would be useful; feel free to use it!

Discussion: As we shall see in Chap. 4, lines of magnetic induction and vortex lines

share many properties since both �ω and �B are solenoidal (∇ · �ω = ∇ · �B = 0),

and both are governed by an “induction equation” (cf. Eq. 1.42 and 4.4). Given

that magnetic flux is a conserved quantity, it should then come as no surprise that

vorticity flux is also conserved.

An immediate consequence of Kelvin’s circulation theorem is that if a barotropic

or incompressible fluid starts off with zero vorticity (and thus zero circulation ev-

erywhere), it must develop in a such way to maintain zero vorticity. If it didn’t, then
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25 Problem Set 1

one could find a patch of area through which Γ �= 0, violating Kelvin’s theorem.

Note that dissipative encounters with walls or introduction of viscosity (numeri-

cal or physical) into the fluid, which are not present in Euler’s equation used to

prove Kelvin’s theorem, could cause an initially irrotational fluid to develop vortic-

ity. Otherwise, Kelvin’s theorem essentially states that for an inviscid fluid, “once

irrotational, always irrotational”.

If one can establish that �ω = ∇ × �v = 0 for all time, then the velocity field

can be expressed as the gradient of a scalar; �v = ∇ψ. Such a velocity potential can

be useful, particularly for incompressible fluids where ∇ · �v = 0 since this means

the velocity potential will satisfy Laplace’s equation, ∇2ψ = 0. In this case, all

the mathematics used in problems in electrostatics and, in particular, in potential

theory can be brought to bear on solving Laplace’s equation instead of the much

more difficult Euler’s equation.
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