Carmichael Numbers with a Square Totient

W. D. Banks

Abstract. Let φ denote the Euler function. In this paper, we show that for all large x there are more than $x^{0.33}$ Carmichael numbers $n \leqslant x$ with the property that $\varphi(n)$ is a perfect square. We also obtain similar results for higher powers.

1 Introduction

A longstanding conjecture in prime number theory asserts the existence of infinitely many primes of the form $m^2 + 1$. Although the problem appears to be intractable at present, there have been a number of partial steps in the direction of this result, for the most part as a consequence of sieve methods. One knows, thanks to Brun, that the number of integers $m^2 + 1 \le x$ that are prime is $O(x^{1/2}/\log x)$. In the opposite direction, Iwaniec [5] has shown that $m^2 + 1$ is the product of at most two primes infinitely often.

For any prime p we have $p = m^2 + 1$ if and only if $\varphi(p) = m^2$, where φ is the Euler function; thus, the $m^2 + 1$ conjecture can be reformulated as the assertion that the set

$$\mathcal{S}_{\varphi}^{(2)} := \{ n \geqslant 1 : \varphi(n) \text{ is a perfect square} \}$$

contains infinitely many prime numbers. Motivated by this observation, the set of integers with square totients was first studied by Banks, Friedlander, Pomerance, and Shparlinski [3]; they proved that $\left| \mathcal{S}_{\varphi}^{(2)} \cap [1,x] \right| \geqslant x^{0.7038}$ for all sufficiently large values of x.

We cannot show that the set $\mathbb{S}_{\varphi}^{(2)}$ contains infinitely many primes, however it is interesting to ask whether other thin sets of integers enjoy an infinite intersection with $\mathbb{S}_{\varphi}^{(2)}$. For example, denoting by \mathcal{P}_2 the set of integers with at most two prime factors, it may be possible to show using sieve methods that $|\mathbb{S}_{\varphi}^{(2)} \cap \mathcal{P}_2| = \infty$, a natural analogue of Iwaniec's result. This problem can be restated as follows:

Problem Prove that there exist infinitely many pairs (p,q) of primes such that (p-1)(q-1) is a perfect square.

In this paper, we show that the set $\mathbb{S}_{\varphi}^{(2)}$ contains infinitely many Carmichael numbers. Moreover, the same is true for all of the sets

$$S_{\varphi}^{(N)} := \{ n \geqslant 1 : \varphi(n) = m^N \text{ for some integer } m \} \qquad (N = 2, 3, 4, \ldots).$$

We recall that an integer $n \ge 1$ is said to be a *Carmichael number* if n is composite and $n \mid (a^n - a)$ for all integers a.

Received by the editors July 24, 2006; revised October 20, 2006. AMS subject classification: Primary: 11N25; secondary: 11A25. © Canadian Mathematical Society 2009.

W. D. Banks

By the celebrated work of Alford, Granville, and Pomerance [1], it is known that the set \mathcal{C} of Carmichael numbers is infinite. In fact, the authors have shown that the lower bound $|\mathcal{C} \cap [1,x]| \geqslant x^{\beta}$ holds for all large x with

$$\beta := \frac{5}{12} \left(1 - \frac{1}{2\sqrt{e}} \right) = 0.290306 \dots > \frac{2}{7}.$$

Using a variant of the Alford–Granville–Pomerance construction, Harman [4] has recently established the same result with the constant $\beta := 0.33$; see also the earlier paper of Baker and Harman [2].

The main result of this paper is the following:

Theorem 1 For every fixed C < 1, there is a number $x_0(C)$ such that for all $x \ge x_0(C)$ the inequality

$$\Big| \Big\{ n \leqslant x : n \text{ is Carmichael and } \varphi(n) = m^N \text{ for some integer } m \Big\} \Big| \geqslant x^{0.33}$$

holds for all positive integers $N \leq \exp((\log \log x)^C)$.

As in [4], the constant 0.33 appearing in Theorem 1 can be replaced by any number $\beta < 0.3322408$.

Let $\pi(x)$ be the number of primes $p \le x$ and $\pi(x; d, a)$ the number of such primes in the arithmetic progression a modulo d. The following conditional result (compare [1, Theorem 4]) suggests that for every fixed integer $N \ge 2$ there are $x^{1+o(1)}$ Carmichael numbers $n \le x$ such that $\varphi(n)$ is a perfect N-th power:

Theorem 2 Let $\varepsilon > 0$, and suppose that there is a number $x_1(\varepsilon)$ such that for all $x \ge x_1(\varepsilon)$, the inequality

$$\pi(x; d, 1) \geqslant \frac{\pi(x)}{2\varphi(d)}$$

holds for all positive integers $d \le x^{1-\varepsilon}$. Then, for every fixed C < 1, there is a number $x_2(\varepsilon, C)$ such that for all $x \ge x_2(\varepsilon, C)$ the inequality

$$\Big|\Big\{n\leqslant x\ :\ n\ \text{is Carmichael and}\ \varphi(n)=m^N\ \text{for some integer}\ m\Big\}\,\Big|\geqslant x^{1-3arepsilon}$$

holds for all positive integers $N \leq \exp((\log \log x)^C)$.

Both results above follow immediately from Theorem 3 (see Section 2), whose proof relies heavily on ideas from [1, 3, 4].

Throughout the paper, the letters p and q (with or without subscripts) always denote prime numbers, and the letters n and m always represent positive integers.

2 Construction

Fix $\varepsilon > 0$, and let E and B be numbers in the open interval (0, 1). Let $y \ge 2$ be a parameter, and put

(1)
$$\theta := (1 - E)^{-1}, \qquad \delta := \frac{\varepsilon \theta}{4B}, \qquad x := \exp(y^{1+\delta}).$$

We shall say that the pair (E, B) is ε -good if for all sufficiently large y there exist integers L and k with the following properties:

- (i) *L* is a squarefree product of primes *q* from the interval $(y^{\theta}/\log y, y^{\theta}]$, where each shifted prime q-1 is free of prime divisors greater than y;
- (ii) $k \leqslant x^{1-B}$ and gcd(k, L) = 1;
- (iii) the inequality $|\mathcal{P}| \ge x^{EB-\varepsilon/3}$ holds, where

$$\mathcal{P} := \{ p \leqslant x : p = dk + 1 \text{ is prime and } d \mid L \}.$$

We shall say that the pair (E, B) is *good* if it is ε -good for every $\varepsilon > 0$.

Theorem 3 Let (E,B) be a good pair, C<1, and $\varepsilon>0$. Then, there is a number $X_0=X_0(E,B,C,\varepsilon)$ such that for all $X\geqslant X_0$ the inequality

$$\left| \mathcal{S}_{\varphi}^{(N)} \cap \mathcal{C} \cap [1, X] \right| \geqslant X^{EB-\varepsilon}$$

holds for all positive integers $N \leq \exp((\log \log x)^C)$.

It follows from [4, Theorem 3] that (0.7039, 0.472) is a good pair. Since

$$0.7039 \times 0.472 = 0.3322408 > 0.33$$

Theorem 1 is an immediate consequence of Theorem 3.

Similarly, let \mathcal{E} and \mathcal{B} be the sets considered in [1]. Arguing as in the proof of [1, Theorem 4.1], it is easy to see that (E,B) is a good pair for any $E \in \mathcal{E}$, $B \in \mathcal{B}$. The hypothesis of Theorem 2 implies that $1 - \varepsilon \in \mathcal{B}$, hence by [1, Theorem 3] we have $1 - \varepsilon' \in \mathcal{E}$, where $\varepsilon' = \varepsilon/(1 - \varepsilon)$; therefore, $(1 - \varepsilon', 1 - \varepsilon)$ is a good pair. Since $(1 - \varepsilon')(1 - \varepsilon) - \varepsilon = 1 - 3\varepsilon$, Theorem 2 follows immediately from Theorem 3.

Proof of Theorem 3 Let $y \ge 2$ be a parameter, and define θ , δ , x as in (1). Replacing ε by a smaller number if necessary, we can assume that

(2)
$$C(1+\delta/2) < 1+\delta/4$$
.

If y is large enough, there are integers L and k satisfying (i)–(iii) above. Let

$$\mathfrak{P} := \{ p \leqslant x : p = dk + 1 \text{ is prime and } d \mid L \};$$

then the inequality

$$|\mathcal{P}| \geqslant x^{EB-\varepsilon/3}$$

6 W. D. Banks

holds by property (iii).

With *L* and *k* fixed, consider the group

$$\mathfrak{G}_N := (\mathbb{Z}/L\mathbb{Z})^* \times \underbrace{(\mathbb{Z}/N\mathbb{Z})^+ \times \cdots \times (\mathbb{Z}/N\mathbb{Z})^+}_{\kappa \text{ copies}},$$

where $\kappa := \omega(kL)$ is the number of distinct prime divisors of kL. Note that, if y is large enough, we have

$$\kappa \leq \log(kL) \leq (1 - B)\log x + \log L.$$

As in [1], for any finite group G we denote by n(G) the length of the longest sequence of (not necessarily distinct) elements of G such that the product of the elements in any subsequence is different from the identity. Since the maximal order of an element of \mathcal{G}_N is $\lambda(L)N$, where λ is the Carmichael function, and $|\mathcal{G}_N| = \varphi(L)N^\kappa$, we have by [1, Theorem 1.2]:

$$n(\mathcal{G}_N) \leqslant \lambda(L)N\left(1 + \log\frac{\varphi(L)N^{\kappa}}{\lambda(L)N}\right) \leqslant \lambda(L)N\left(1 + \log L + \kappa \log N\right)$$

$$\leqslant \lambda(L)N\left(1 + \log L + ((1 - B)\log x + \log L)\log N\right).$$

Taking into account the bounds $\log L \leq 2y^{\theta}$ and $\lambda(L) \leq e^{2\theta y}$, which follow from property (i) if y is sufficiently large (see, for example, the proof of [1, Theorem 4.1]), and using the fact that $\log x = y^{1+\delta}$ together with the trivial inequality $2 \log N \geqslant 1$ for all $N \geqslant 2$, it follows that

$$n(\mathcal{G}_N) \leqslant e^{2\theta y} N \log N \left(2 + 6y^{\theta} + (1 - B)y^{1+\delta}\right) \leqslant e^{3\theta y} N \log N$$

if y is large enough. In particular,

(3)
$$N \leqslant \exp(y^{1+\delta/4}) \implies n(\mathcal{G}_N) \leqslant \exp(y^{1+\delta/3})$$

if γ is sufficiently large.

Now let Ω denote the set of primes $q \in (y^{\theta}/\log y, y^{\theta}]$, and put $\mathcal{P}' := \mathcal{P} \setminus \Omega$. Since $|\Omega| \leq y^{\theta}$, we have

$$|\mathcal{P}'| \geqslant x^{EB-\varepsilon/2}$$

for all large y. Consider the multiplicative map ψ from the set of squarefree positive integers coprime to L into the group \mathcal{G}_N , defined by

$$\psi(n) := (\psi_0(n), \psi_1(n), \dots, \psi_{\kappa}(n)),$$

where

$$\psi_j(n) := \left\{ \begin{array}{ll} n \pmod L & \text{if } j = 0; \\ v_{q_j}(\varphi(n)) \pmod N & \text{if } 1 \leqslant j \leqslant \kappa. \end{array} \right.$$

Here, $q_1 < \cdots < q_\kappa$ are the distinct primes dividing kL, and ν_q is the standard q-adic valuation for each prime q. It is easy to see that ψ is injective on \mathfrak{P}' , hence $\psi(\mathfrak{P}')$ is a subset of \mathcal{G}_N with cardinality

$$|\psi(\mathfrak{P}')| = |\mathfrak{P}'| \geqslant x^{EB - \varepsilon/2}.$$

Now, if \mathcal{R} is any subset of \mathcal{P}' with more than one element, and

$$\Pi_{\psi}(\mathcal{R}) := \prod_{p \in \mathcal{R}} \psi(p)$$

is the identity element of \mathcal{G}_N , then

$$n_{\mathcal{R}} := \prod_{p \in \mathcal{R}} p$$

is a Carmichael number, and $\varphi(n_{\mathcal{R}}) = m^N$ for some positive integer m. Indeed, to see that $n_{\mathcal{R}}$ is Carmichael we apply:

Korselt's criterion. $a^n \equiv a \pmod{n}$ for all integers a if and only if n is squarefree and p-1 divides n-1 for every prime p dividing n.

Since $\psi(n_{\mathcal{R}}) = \Pi_{\psi}(\mathcal{R})$ is the identity of \mathcal{G}_N , it follows that $n_{\mathcal{R}} \equiv 1 \mod L$. As $p \equiv 1 \pmod k$ for every prime p dividing $n_{\mathcal{R}}$, and $\gcd(k, L) = 1$, we further have $n_{\mathcal{R}} \equiv 1 \pmod kL$. Thus, $p-1 \mid kL \mid n_{\mathcal{R}}-1$ for every prime p dividing $n_{\mathcal{R}}$, and therefore $n_{\mathcal{R}}$ is a Carmichael number by Korselt's criterion.

To see that $\varphi(n_{\mathcal{R}}) = m^N$ for some positive integer m, we observe that the only primes which can divide $\varphi(n_{\mathcal{R}})$ are those primes q_1, \ldots, q_{κ} that divide kL. Since $\psi(n_{\mathcal{R}})$ is the identity of \mathfrak{G}_N , we have $v_{q_j}(\varphi(n_{\mathcal{R}})) \equiv 0 \pmod{N}$ for $1 \leqslant j \leqslant \kappa$, and the result follows.

Now let $t := \exp(y^{1+\delta/2})$. By [1, Proposition 1.2], the number of subsets $\mathcal{R} \subset \mathcal{P}'$ with $|\mathcal{R}| \leq t$, and such that $\Pi_{\psi}(\mathcal{R})$ is the identity of \mathcal{G}_N , is at least

$$\binom{|\mathcal{P}'|}{|t|} \bigg/ \binom{|\mathcal{P}'|}{n(\mathcal{G}_N)} \geqslant \left(\frac{|\mathcal{P}'|}{|t|}\right)^{\lfloor t \rfloor} |\mathcal{P}'|^{-n(\mathcal{G}_N)} \geqslant \left(x^{EB-\varepsilon/2}\right)^{\lfloor t \rfloor - n(\mathcal{G}_N)} \lfloor t \rfloor^{-\lfloor t \rfloor},$$

where we have used (4) for the second inequality. Using (3), we see that the last number exceeds $x^{t(EB-\varepsilon)}$ if $N \leqslant \exp(y^{1+\delta/4})$ and y is sufficiently large. For any such \mathbb{R} we have $n_{\mathbb{R}} \leqslant x^t$; therefore, setting $X := x^t$ we see that there are more than $X^{EB-\varepsilon}$ Carmichael numbers $n \leqslant X$ with $\varphi(n) = m^N$ provided that $N \leqslant \exp(y^{1+\delta/4})$. Since $X = \exp(y^{1+\delta} \exp(y^{1+\delta/2}))$, we have by our assumption (2):

$$C \log \log \log X = C(1 + \delta/2 + o(1)) \log y \leq (1 + \delta/4) \log y$$

if y is large enough, and thus

$$\exp((\log \log X)^C) \le \exp(y^{1+\delta/4}).$$

Since *y* can be determined uniquely from *X*, this completes the proof.

Acknowledgments The author would like to thank Igor Shparlinski for useful conversations and for pointing out the relevance of [4] to the present work, and the anonymous referee for the suggestion of Theorem 2. This paper was written during a visit by the author to Macquarie University; the hospitality and support of this institution are gratefully acknowledged.

W. D. Banks

References

[1] W. R. Alford, A. Granville, and C. Pomerance, *There are infinitely many Carmichael numbers*. Ann. of Math. (2) **139**(1994), no. 3, 703–722.

- [2] R. Baker and G. Harman, *Shifted primes without large prime factors*. Acta Arith. **83**(1998), no. 4, 331–361.
- [3] W. Banks, J. B. Friedlander, C. Pomerance and I. E. Shparlinski, *Multiplicative structure of values of the Euler function*. In: High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun. 41, American Mathematical Society, Providence, RI, 2004, pp. 29–47.
- [4] G. Harman, On the number of Carmichael numbers up to x. Bull. London Math. Soc. 37(2005), no. 5, 641–650.
- [5] H. Iwaniec, Almost-primes represented by quadratic polynomials. Invent. Math. 47(1978), no. 2, 171–188.

Department of Mathematics, University of Missouri, Columbia, MO 65211 USA e-mail: bbanks@math.missouri.edu