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Carmichael Numbers with a Square Totient

W. D. Banks

Abstract. Let ¢ denote the Euler function. In this paper, we show that for all large x there are more
than x%-33 Carmichael numbers 7 < x with the property that ¢(n) is a perfect square. We also obtain
similar results for higher powers.

1 Introduction

A longstanding conjecture in prime number theory asserts the existence of infinitely
many primes of the form m? + 1. Although the problem appears to be intractable at
present, there have been a number of partial steps in the direction of this result, for
the most part as a consequence of sieve methods. One knows, thanks to Brun, that
the number of integers 7> + 1 < x that are prime is O(x'/2/ logx). In the opposite
direction, Iwaniec [5] has shown that m? + 1 is the product of at most two primes
infinitely often.

For any prime p we have p = m? + 1 if and only if p(p) = m?, where ¢ is the
Euler function; thus, the m? + 1 conjecture can be reformulated as the assertion that
the set

853) :={n =1 : @(n)isaperfect square}

contains infinitely many prime numbers. Motivated by this observation, the set of
integers with square totients was first studied by Banks, Friedlander, Pomerance, and
Shparlinski [3]; they proved that [$& N [1,x]| > x"7%%* for all sufficiently large
values of x.

We cannot show that the set Sg) contains infinitely many primes, however it is
interesting to ask whether other thin sets of integers enjoy an infinite intersection
with Sg). For example, denoting by P, the set of integers with at most two prime
factors, it may be possible to show using sieve methods that |8£/3) NP = o0, a
natural analogue of Iwaniec’s result. This problem can be restated as follows:

Problem  Prove that there exist infinitely many pairs (p, q) of primes such that
(p —1)(g — 1) is a perfect square.

In this paper, we show that the set Sg) contains infinitely many Carmichael num-

bers. Moreover, the same is true for all of the sets
SE@N) ={n>1: @n) =m" for some integer m} (N=2,3,4,...).

We recall that an integer n > 1 is said to be a Carmichael number if n is composite
and n | (a" — a) for all integers a.
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By the celebrated work of Alford, Granville, and Pomerance [1], it is known that
the set € of Carmichael numbers is infinite. In fact, the authors have shown that the
lower bound ‘ enili, x]‘ > x% holds for all large x with

6'*5(1 1)—0290306 >
12 2\/e)

NN

Using a variant of the Alford-Granville-Pomerance construction, Harman [4] has
recently established the same result with the constant 3 := 0.33; see also the earlier
paper of Baker and Harman [2].

The main result of this paper is the following:

Theorem 1 Forevery fixed C < 1, there is a number x,(C) such that for all x > x,(C)
the inequality

’ {n < x : nis Carmichael and p(n) = m" for some integer m} } > 50

holds for all positive integers N < exp( (loglogx)“).

As in [4], the constant 0.33 appearing in Theorem 1 can be replaced by any num-
ber 3 < 0.3322408.

Let 7(x) be the number of primes p < x and 7(x; d, a) the number of such primes
in the arithmetic progression a modulo d. The following conditional result (com-
pare [1, Theorem 4]) suggests that for every fixed integer N > 2 there are x!'*°()
Carmichael numbers # < x such that ¢(n) is a perfect N-th power:

Theorem 2 Let e > 0, and suppose that there is a number x,(€) such that for all
x = x1(€), the inequality
m(x)

m(xd, 1) > 20

holds for all positive integers d < x'~¢. Then, for every fixed C < 1, there is a number
x2(€, C) such that for all x > x,(e, C) the inequality

’ { n < x : nis Carmichael and p(n) = mt for some integer m} ‘ >x7¥

holds for all positive integers N < exp( (loglogx)©).

Both results above follow immediately from Theorem 3 (see Section 2), whose
proof relies heavily on ideas from [1, 3,4].

Throughout the paper, the letters p and g (with or without subscripts) always
denote prime numbers, and the letters n and m always represent positive integers.
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2 Construction

Fix € > 0, and let E and B be numbers in the open interval (0,1). Let y > 2 be a
parameter, and put

= —_p)! -—ﬁ — 1+
(1) 0:=(1—E)", 0:= 1B’ x:=-exp(y ™).

We shall say that the pair (E, B) is e-good if for all sufficiently large y there exist
integers L and k with the following properties:

(i) L is a squarefree product of primes q from the interval (y?/logy, y’], where
each shifted prime g — 1 is free of prime divisors greater than y;

(i) k< x'"Pandged(k, L) = 1;

(iii) the inequality |P| > xP8~/3 holds, where

P:={p<x:p=dk+1isprimeandd|L}.

We shall say that the pair (E, B) is good if it is e-good for every € > 0.

Theorem 3 Let (E, B) be a good pair, C < 1, and € > 0. Then, there is a number
Xo = Xo(E, B, C, €) such that for all X > X, the inequality

sV nen(l,x]| > x*e

holds for all positive integers N < exp( (loglogx)©).

It follows from [4, Theorem 3] that (0.7039, 0.472) is a good pair. Since
0.7039 x 0.472 = 0.3322408 > 0.33,

Theorem 1 is an immediate consequence of Theorem 3.

Similarly, let € and B be the sets considered in [1]. Arguing as in the proof of [1,
Theorem 4.1], it is easy to see that (E, B) is a good pair for any E € &, B € B. The
hypothesis of Theorem 2 implies that 1 — ¢ € B, hence by [1, Theorem 3] we have
1 —¢’ € & wheree’ = ¢/(1 — ¢); therefore, (1 — &’,1 — ¢) is a good pair. Since
(1—-¢")(1—¢)—e =1- 3¢, Theorem 2 follows immediately from Theorem 3.

Proof of Theorem 3 Let y > 2 be a parameter, and define 6, 6, x as in (1). Replacing
¢ by a smaller number if necessary, we can assume that

(2) C(1+46/2) <1+4/4.
If y is large enough, there are integers L and k satisfying (i)—(iii) above. Let
P:={p<x:p=dk+1lisprimeandd|L};

then the inequality
|T| > xEB—e/S
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holds by property (iii).
With L and k fixed, consider the group

SN = (Z/L7)* x (Z/NZ)* x --- x (Z/NZ)",

K copies

where k := w(kL) is the number of distinct prime divisors of kL. Note that, if y is
large enough, we have

k < log(kL) < (1 — B)logx + logL.

Asin [1], for any finite group G we denote by n(G) the length of the longest sequence
of (not necessarily distinct) elements of G such that the product of the elements in
any subsequence is different from the identity. Since the maximal order of an element
of Gy is A(L)N, where ) is the Carmichael function, and |G| = ¢(L)N*, we have
by [1, Theorem 1.2]:

@(L)N*
ANL)N

< )\(L)N(l +1logL + ((1 — B)logx +1logL) logN) .

n(Gy) < )\(L)N(l + log

) < )\(L)N(l +log L + KlOgN)

Taking into account the bounds log L < 2)/‘9 and M\(L) < ¢, which follow from
property (i) if y is sufficiently large (see, for example, the proof of [1, Theorem 4.1]),
and using the fact that logx = y'*? together with the trivial inequality 2log N > 1
for all N > 2, it follows that

n(Gy) < ewleogN(Z +6y7 +(1— B)yH‘S) < P NlogN
if y is large enough. In particular,
(3) N <exp(y'™) = n(Sx) < exp(y*?)
if y is sufficiently large.
Now let Q denote the set of primes g € (y?/log y, y°], and put P’ := P\ Q. Since

19| < y%, we have
|(P/| > xEB—e/Z

for all large y. Consider the multiplicative map 1 from the set of squarefree positive
integers coprime to L into the group Gy, defined by

1/}(71) = (¢0(”)7¢1(”)5 s 71/)h(n)) )
where

v ) n(modlL) if j =0;
viln) = { vy, (p(m) (mod N)  if1<j <
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Here, g1 < --- < g, are the distinct primes dividing kL, and v, is the standard g-adic
valuation for each prime q. It is easy to see that 1) is injective on P’, hence ¥(P’) is a
subset of Gy with cardinality

) |G| =[] > 22,
Now, if R is any subset of P’ with more than one element, and

IT,(R) == [T ¥(p)

PER

is the identity element of Gy, then
ng = [[ p

peER
is a Carmichael number, and p(nx) = m" for some positive integer m.
Indeed, to see that ng is Carmichael we apply:

Korselt’s criterion.  a” = a (mod n) for all integers a if and only if n is
squarefree and p — 1 divides n — 1 for every prime p dividing n.

Since (ng) = I (R) is the identity of Gy, it follows that ng =1 mod L. Asp =1
(mod k) for every prime p dividing ng, and ged(k, L) = 1, we further have ng = 1
(mod kL). Thus, p — 1 | kL | ng — 1 for every prime p dividing nx, and therefore
ng is a Carmichael number by Korselt’s criterion.

To see that p(nx) = m" for some positive integer m, we observe that the only
primes which can divide ¢(ng) are those primes q, ..., q, that divide kL. Since
¥(nzx) is the identity of Gy, we have v, (¢p(nz)) =0 (mod N) for 1 < j < k, and
the result follows.

Now let t := exp(y”‘s/z). By [1, Proposition 1.2], the number of subsets R C P’
with |R| < t, and such that II,,(R) is the identity of Gy, is at least

|T/|>/( |fP/|> 1PN W s e Boe/oy L1=n(S0) |~ 1)
<LtJ n(Sn)) = ( m) [P > () 1)~

where we have used (4) for the second inequality. Using (3), we see that the last
number exceeds x'F5=9) if N < exp(y'*/*) and y is sufficiently large. For any such
R we have ng < x'; therefore, setting X := x’ we see that there are more than X£5=¢
Carmichael numbers n < X with ¢(n) = m" provided that N < exp(y'*9/*). Since
X = exp(y"* exp(y'*9/?)), we have by our assumption (2):

ClogloglogX =C(1+d/2+0(1))logy < (1+d/4)logy

if y is large enough, and thus

exp((loglog X)¢) < exp(y' /4.

Since y can be determined uniquely from X, this completes the proof. ]
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