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Abstract

We characterize the pairs of weights (i, v) for which the maximal operator

x~R

M;f(x):supR"“”/ IfOIx —R—-5)%ds, —-1<a<0,
R>0 R

is of weak and restricted weak type (p, p) with respect to u(x) dx and v(x) dx. As a consequence we
obtain analogous results for

M.f (x) = sp R~ [ f WIix = yl — R)* dy.
R>0 R<lx—y|<2R

We apply the results to the study of the Cesaro-a convergence of singular integrals.
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1. Introduction

Let M,, be the maximal operator defined at a measurable function f on the real line by

M,f (x) = sup

f WOIx —yl-R)*dy, —1l<a<0.
R>0 Ri+e -/l;<|x—y|<2R

This operator occurs in a natural way when one studies the Cesaro-a convergence of
singular integrals [2]. Alternatively,

M.f (x) =sup|f | * pr(x),

R>0
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where pg(x) = R™'@(R™'x) and ¢(s) = (|s] = 1)*x.2 (Is]). From this point of view,
M, is a particular case of the operator studied in [5]. It follows from [5, Theorem 1]
that M, is of restricted weak type (1/(1 + a), 1/(1 + o)) and that it is not of weak
type (1/(1 +«), 1/(1 4+ a)) with respect to the Lebesgue measure when a < 0 (notice
that M, is equivalent to the Hardy-Littlewood maximal operator).

Weighted inequalities for M, were studied in [2] and [3]. In [3] we obtained
a characterization of weighted inequalities for a single weight. The doubling condition
plays an essential role in the proof of this characterization; it was also the key reason
why we were not able to study the two-weight case in [3].

In this paper we develop a different approach to the study of weighted inequalities
for M, which enables us to obtain a characterization of the two-weighted weak and
restricted weak type inequalities for M,. This new method consists of the study of
one-sided versions of M,

x—R
/ If WI(x —R—y)*dy

-2R
and

M? =
«f ) Sup o

x+2R
| oo -x-rra.
x+R

These operators are of interest because they naturally appear in the investigation of
the Cesaro-a convergence of singular integrals with kernels supported in (0, 00) and
in (—o0, 0).

The paper is organized as follows. In Section 2 we state and prove a characterization
of two-weighted weak and restricted weak type inequalities for M, M} and M,; in
Section 3 we apply these results to the study of the existence of the singular integrals
in the Cesaro-a sense.

Throughout the paper, u, v and w are weights, that is, positive measurable functions,
u(A) denotes the integral [, u(s)ds, p’ denotes the conjugate exponent of p, 1 <
p < 00, and the letter C means a positive constant that may change from one line to
another.

2. Two-weighted inequalities

We start with the results for M (analogous results hold for M}").

THEOREM 2.1. Let u and v be weightson R and let —1 < a < 0. If1 < p < 00,
then the following are equivalent:

(i) M is of weak type (p, p) with respect to u(x) dx and v(x) dx, that is, there
exists C such that u({M;f > A}) < CA™P [ |f |Pv, forall A > Oandall f € L7 (v).
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(ii) (u, v) satisfies Aj that is, there exists C such that for any three numbers
a<b<yg

c 1/p b 1/p’
(/ u(s) ds) (/ v (5)(b — 5)¥ ds) < C(c— a)'™™.
b a

REMARK. Observe that if @ < O and essinf, ¢ v' ™7 (x) > 0 for some inter-
val (a, b) then the two-weighted weak type (p, p) inequality is not possible for
1 < p < 1/(1 + ) since (ii) does not hold in this case. However the operator M is
of restricted weak type (1/(1 + a), 1/(1 + «)) with respect to the Lebesgue measure.
Therefore it is interesting to study the restricted weak type inequalities for pairs of
weights.

THEOREM 2.2. Let u and v be weights on R and let —1 <a < 0. If1 < p < 00,
then the following are equivalent:

(i) M is of restricted weak type (p, p) with respect to u(x) dx and v(x) dx, that
is, there exists C such that u({x : M xg(x) > A}) < CAPv(E) for all A > 0 and all
measurable E C R.

(i) (u, v) satisfies RA] ,, that is, there exists C such that for any three numbers
a < b < cand all measurable E C R

c b 14 b
( / u(s)ds) ( f xg(s)(b—s)“ds) < C(c —a)+or / xe(s)v(s) ds.
b a a

The corresponding results for M,, are obtained immediately from Theorem 2.1 and
Theorem 2.2 and from the analogous ones for M.

Now we shall state the results for M, which generalize the weak and restricted
weak type inequalities from {3] to the two-weight case.

THEOREM 2.3. Let u and v be weightson Rand let —1 <a < 0. If1 < p < 00,
then the following are equivalent:

(i) M, is of weak type (p, p) with respect to u(x) dx and v(x) dx.
(i) (u, v) satisfies A, o, that is, there exists C such that for any interval |

1/p 1/p’'
( / u(s)ds) ( / v P (s)d(s, I)“”'ds) < C{ M,
1 2I\I

where 21 is the interval with the same center and double length as I and d(s, I) is
the Euclidean distance from s to 1.

THEOREM 2.4. Let u and v be weights on R and let —1 < ¢ < 0. If1 < p < 00,
then the following are equivalent:
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(1) M, is of restricted weak type (p, p) with respect to u(x) dx and v(x) dx.
(ii) (u, v) satisfies RA, o, that is, there exists C such that for every interval I and
all measurable E C R

14
( / u(s)ds) ( / Xe()d(s, 1)“ds) < Cj1|r f Xe(s)v(s) ds.
1 2I\I 2I\I

The proofs of Theorem 2.3 and Theorem 2.4 are omitted since they are immediate
corollaries of the previous results.

In order to prove Theorem 2.1 and Theorem 2.2 we use a noncentred maximal
operator which is pointwise equivalent to M. In what follows we define this operator
and state the pointwise equivalence.

DEFINITION 2.5. For each x € R, let us consider the family of intervals &/, =
{(a,b) : b <x and b-—a > x — b}. We define the noncentred maximal operator N
associated with M as

1 b
NF@)= sup / If )I(b— 5)* ds.

(@.byeat, (b — a)l*®

PROPOSITION 2.6. Let —1 < a < 0. There exists a constant C depending only on
asuchthat M f < N f < CM_f, for all measurable functions f .

PROOF. The first inequality is obvious. Let (a,b) € &, R =x —a and let N be
the natural number such thatx — 2R < b < x —27¥-'R. Then

b
f lf (DI —5)*ds

N-1 x—R/2iH R a b—s a
= ;/—R/Z‘ If (s)] (x o s) (x R/ = s) ds

b
+/ If )b —s5)*ds =1+1I.

—R/2N

Since (a, b) € o,

b
< / f )b — )% ds < (x — b)) Mf (x) < (b — a)**M_f (x).

—2(x—b)

On the other hand, since the function s — [(b — s)/(x — 27'"'R — 5)]* is decreasing
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on(x —27'R,x —27""'R),0<i <N —1,

- R\\* R
I< (b—(x——[)) ‘—,—) M, f(x)
(; 2 2 +1
N-1 x—=R/2i+!
<SM;fx)) f (b—s)"ds < C(b— a)"** M f (x),
— /.,

—R/2f

and we are done. O

PROOF OF THEOREM 2.1. By Proposition 2.6, (i) is equivalent to the weighted weak
type (p, p) inequality for N, . Leta < b < candleta < abesuchthatb—a = c—a.
If we consider the function f (s) = v'7'(s)(b—5)*®" "V x(a.6)(5), then forall x € (b, ¢)

- 1 b I’ '
Naf(X)Zm/av P ()b —s5)® ds = A.
This means that (b, c) C {N_f > A}. Then (ii) follows from (i) (with N_) by
a standard argument. O

The implication (ii) implies (i) follows from the following proposition and the fact
that the maximal operator M g(x) = sup,, ([, lglu/ [ u) is of weak type (1, 1)
with respect to the measure u(x) dx.

PROPOSITION 2.7. Let —1 < @ < Oand p > 1. If (u, v) satisfies A;'a, then there
exists C > 0 such that for every measurable function f

N f < CIM;(If Pouh]"P,

PROOF. Letx € R and (a, b) € . First, let us assume that 4 f u > [ u. Since
the pair (u, v) satisfies A~ _, we have

.’

b b i/p b 1/p’
/ If ()b —s)*ds < (/ If 1P (s)v(s) ds) (/ VPP (s)(b — 5)* ds)
’ y x 1/p ’ x -1/p
<C (f lf 1P (s)v(s) ds) (/ u(s) ds) (x —a)'*
a b

< CIMZ(If Pou )17 () (b — a)'*.

Assume now that 4 f : u< f: u. Let {x;} be the increasing sequence in [a, x] defined
by xo = a and f;‘_+l u= f:"“ u= %fxx u. Let N be such that xy < b < xy,; (observe
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that N > 2). Then we have

N-2 ax,
/b FOIe-srds =Y [ o16-srds+ /h I 916 — 5)* ds
a, i=0 YXi XN_1
=1+1I.
By the A;_a condition and the fact that fx xN_l u <4 f : u, we have
b 1/p b 1/p’
I < ( A If P (s)v(s) ds) ( / ) lv""/”(s)(b— s)“ﬂ'ds)

< CIM (If Pou=)1P () (b — a)'*".

On the other hand, since the function s — [(b — 5)/(x;,; — 5)]* is decreasing in the
interval (x;, x;41),0 <i < N — 2, we obtain

Xit1 b — ; o Xi+1
f If ()I(b — 5)*ds < (—") f (8] Gxigr — 8)° ds

Xiyl — X

b—x; \"( [ Up s pxini RN
= (—‘) (/ lf 1P (S)v(S)dS) (/ VPP () (X141 — 5)* ds)
Xipy — X x; x;
b —x. o X+l I/p Xis2 —-1/p
=C (—‘) (/ If P (s)v(s) ds) (/ u(s) ds) (Xig2 — x)'*®
Kitl = Xi Xi Xit]

SAF Py ds\”
[iu(s)ds

< CIM-(If Pou)1"7 (x) f " b= s ds.

S CM —x)"(xXig2 — x1) (

Now, summing up in i, we get
I< CIM,(If Pou' ]””(x)/ (b—s5)*ds < CIM; (If Pvu=")]"P (x)(b — a)'*.
Finally, putting together the estimates of I and II, we are done. d
PROOF OF THEOREM 2.2. The proof is similar to that of Theorem 2.1. We give just
a sketch. First, (ii) follows from (i) on applying the standard argument to xgn 4. The
converse follows from the fact that (ii) implies N xg(x) < C[M (xgv u™")]"7(x),

for some constant C independent of the measurable subset E. To prove the above
inequality, let x € R, (a, b) € & and assume first that 4 [ u > [7 u. Since (u, v)
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satisfies RA; , we obtain

b b /p x -1/p
/ xe(s)(b— 5)*ds < C(x — a)'™ (/ XE(S)U(S)dS) (/ u(s) ds)
a a b
x 1/p x =1/p
< C(b-a)* (/ Xe($)v(s) dS> (/ u)

< C(b - a)"™[M, (xevu™)]"" (x).

If4 [7u < [ u, we proceed as in the proof of Proposition 2.7. O

3. Singular integrals in the Cesaro sense

Let K be a Calder6n-Zygmund kernel on R, that is, a function K € L] _(R\ {0})
such that
(1) K@) < Clx|™, |x] >0,
() |K(x—y)— Kx)| < Clylix|™ if |x| > 2ly| > 0,
() | Jicpion K&x)dx| < Cforalle andall N with0 < ¢ < N.

If the limit lime_,0+ f

e<|y|<l

K (y) dy exists, then the principal-value singular integral

Tf (x) = lim K& —y)f () dy

+
€0 fx—yl>e

exists for f € L?(wdx) with w in the Muckenhoupt class A, (see for instance [4]).
When the kernel K has support in (0, 0o) (or in (—00, 0)), then, as proved in [1],
the same result holds for a wider class of weights, more precisely for weights in the
Sawyer class A=A, a7D).

Recently, in [2], we studied the existence in the Cesaro-« sense of the singular
integral associated with K for —1 < « < 0, that is, the existence of the limit

f(y)K(x—y)(l- < )dy,
Jx — vl

lim Tof () = lim e
in the setting of weighted L?-spaces. The aim in this section is to obtain sharper
results on singular integrals in the Cesaro-a sense for kernels with support in (0, 00)
(or in (—00, 0)). We shall show, using the results of Section 2, that, for these kernels,
the results in [2] are true for a wider class of weights.

One of the key steps in [2] is the pointwise estimate from above of the maximal
operator T)f = sup,.o | T.of | by C(M,f + T f ). If the support of X is contained in
(0, o), then we can improve this estimate by replacing M, with a smaller operator M.
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PROPOSITION 3.1. Let —1 < a < 0 and let K be a Calderon-Zygmund kernel with
support contained in (0,00). If f is a measurable function such that T ,f (x) is
defined for every € > O, then there exists C > 0 independent of f such that

T)f (x) < C[M; f (x) + Ty f (0)].

The proof is similar to that of [2, Proposition 2.5], and is therefore omitted. This
proposition together with Theorem 2.1 in this paper and [1, Theorem 2.1] enables us
to prove the following result.

THEOREM 3.2. Let —1 < a < 0 and let K be a Calderon-Zygmund kernel with
support contained in (0, 00) such that the limit

1 a
lim/ K®) (1—5) dy
e=0* J, y

exists. Then the singular integral exists a.e. in the Cesaro-o sense if f € L?(wdx)
withp(l+a) > landw € A, (the pair (w, w) satisfies A;'a).

To prove the theorem we have to show first that the truncations 7T, ,f are well
defined for f € L¥(wdx), w € A, . p(1 +a) > 1. This can be proved as in
[2, Theorem 2.7]. The rest of the proof is a consequence of the following facts:
(1) the existence of the limit lim._, ¢+ T of for f in a dense class and (ii) the weak
type (p, p) boundedness with respect to w(x) dx of the maximal operator 7). The
former is clear since L? (wdx) N L?(dx) is dense in L? (wdx) and the convergence
holds for f € L?(wdx) N L?(dx) by [2, Theorem 2.7]. The latter immediately
follows from Proposition 3.1, Theorem 2.1, [1, Theorem 2.1] and the easy implication
weA, SWEA =A,.

p(l+a)
l<r<p(l+a),

= w € A for

REMARK. In particular, the result holds if w belongs to the Sawyer’s class [7] A
since A4 C A, ,. This inclusion follows from A7 C A/,
which is true by Holder’s inequality and the implication w € A
some r < p(1 + «a) (see [7] or [6)).

p(l+a)

We do not know whether A, is equal to A7 fora < Oandp > 1/(1 + a)
but in the endpoint p = 1/(1 + @) it is possible to see that RA7,,,, , €quals the
Sawyer’s class A| . The proof of this fact is similar to the proof of [3, Proposition 6.5].
Then, following the steps in the proof of [2, Theorem 2.7} and using the corresponding

results in this paper and in [1] we have our next resuit.

THEOREM 3.3. Let« and K be as in Theorem 3.2. If f belongs to the Lorentz space
Lijgray1(@dx) = {f : f0°°[a)({x S If ®)] > )]t dr < oo} and w € A7, then the
singular integral exists a.e. in the Cesaro-a sense.
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EXAMPLE. Observe that the Calderén-Zygmund kernel
1 sin(logx)
K (o) = =220y oo (x)
x logx

given in [1] satisfies the condition in Theorem 3.2, that is,

1 a
im / K(y) (1 - 5) dy
€—~0* J y
exists. In fact, forany 0 < € < 1/2, if Q(x) = sinx/x, then
1 Q l o
(log y) (1 _5) dy

1 € o
[ro(-5) o]
€ y € y y

2 1
=/ ---dy+[---dy=I+II.
€ b3

Applying the Holder inequality to / with p > 1/(1 + «) and changing variables we

2 P Up [ p2e ap’ e
1)< (/ 192 (log y)| dy) (/ (1_5) 1dy)
; y c y) v

log 2¢ 1

log 2¢ 1/p 1/p
< C(/ |Q(t)|”dt) < C(f —dt)
I log e Itlp

og €

obtain

and therefore lim,_ ¢+ I = 0. On the other hand,

haa * 'ad
11=f M[(1—5> —1] dy+/ $dogy) 4 v,

2 y y 2€ y

Clearly, by changing the variables, we see that lim,_ ¢+ IV exists. In order to estimate

II1, we apply the mean value theorem to get
1 a~1
€ €
|III|S|01|/ |Q(10gy)|<1—..) — dy.
2e y y

Changing variables again, we obtain
1/2
| < faf f Q(log(e/ )] (1 — *~" d.

Finally, lim,_, ¢+ II = O, applying the dominated convergence theorem and the facts

that Q is bounded and lim,_,o+ 2(log(e/1)) = 0.
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REMARK. If we do not assume anything about the support of K, then Theorem 3.2
is valid for weights w in A, 4. The proof is similar to the proof of [2, Theorem 2.7]
but using Theorem 2.3 instead of [2, Theorem 2.6].

An analogous comment can be written about Theorem 3.3, that is, Theorem 3.3 is
valid for Calderén-Zygmund kernels and weights w in the Muckenhoupt Class A, (in
fact, notice that this result is contained in [2, Theorem 2.7]).
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