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Abstract 

We characterize the pairs of weights («, v) for which the maximal operator 
/•X-R 

M~f(x) = sup/r1"" / \f(s)\(x-R-s)"ds, -l<a<0, 
R>0 JX-2R 

is of weak and restricted weak type (p, p) with respect to u(x) dx and v(x) dx. As a consequence we 
obtain analogous results for 

MJ (x) = sup J T 1 - f \f(y)\(\x'-y\-R)"dy. 
R>0 JR<\X-y\<2R 

We apply the results to the study of the Cesбro-a convergence of singular integrals. 
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1. Introduction 

Let Ma be the maximal operator defined at a measurable function / on the real line by 

M 0 / ( x ) = s u p - i - [ \f{y)\(\x-y\-R)ady, - l < o r < 0 . 

R>0 « jR<\x-y\<:2R 

This operator occurs in a natural way when one studies the Cesaro-a; convergence of 
singular integrals [2]. Alternatively, 

Maf(x) = sup | / I *cpR(x), 
R>0 
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where <PK(;C) = R~x<p(R~lx) and <p(s) = (\s\ — l)aX(i,2)(M). From this point of view,
Ma is a particular case of the operator studied in [5]. It follows from [5, Theorem 1]
that Ma is of restricted weak type (1/(1 + a), 1/(1 + a)) and that it is not of weak
type (1/(1 + a), 1/(1 + a)) with respect to the Lebesgue measure when a < 0(notice
that MQ is equivalent to the Hardy-Littlewood maximal operator).

Weighted inequalities for Ma were studied in [2] and [3]. In [3] we obtained
a characterization of weighted inequalities for a single weight. The doubling condition
plays an essential role in the proof of this characterization; it was also the key reason
why we were not able to study the two-weight case in [3].

In this paper we develop a different approach to the study of weighted inequalities
for Ma which enables us to obtain a characterization of the two-weighted weak and
restricted weak type inequalities for Ma. This new method consists of the study of
one-sided versions of Ma

M-f (x) = sup - J - [ \f (y)\(x-R- y)a dy
R>0 K Jx-2R

and
j fX+2R

M*f OO = sup — j — / [f (y)\(y — x — R)a dy.
R>0 R +a Jx+R

These operators are of interest because they naturally appear in the investigation of
the Cesaro-a convergence of singular integrals with kernels supported in (0, oo) and
in (-oo,0).

The paper is organized as follows. In Section 2 we state and prove a characterization
of two-weighted weak and restricted weak type inequalities for M~, M+ and Ma; in
Section 3 we apply these results to the study of the existence of the singular integrals
in the Cesaro-a sense.

Throughout the paper, u, v and w are weights, that is, positive measurable functions,
u(A) denotes the integral fA u(s)ds, p' denotes the conjugate exponent of p, 1 <
p < oo, and the letter C means a positive constant that may change from one line to
another.

2. Two-weighted inequalities

We start with the results for M~ (analogous results hold for M+).

THEOREM 2.1. Let u and v be weights on K and let —I < a < 0. If I < p < oo,
then the following are equivalent:

(i) M~ is of weak type (p, p) with respect to u{x) dx and v(x) dx, that is, there
exists C such that u({M~f > A}) < CX"P / \f \pv,for all X > 0 and allf e Lp(v).
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(ii) (u, v) satisfies A~a, that is, there exists C such that for any three numbers

a < b < c,

u(s)ds) (I vl-P'(s)(b-s)ap'ds) <C(c-a)l+a.

REMARK. Observe that if a < 0 and essinfx€(ai) vl~p'(x) > 0 for some inter-
val (a, b) then the two-weighted weak type (p,p) inequality is not possible for
1 < P < 1/(1+ a) since (ii) does not hold in this case. However the operator M~ is
of restricted weak type (1/(1 + a), 1/(1 + a)) with respect to the Lebesgue measure.

| Therefore it is interesting to study the restricted weak type inequalities for pairs of
weights.

THEOREM 2.2. Let u and v be weights on R and let —I < a < 0. If 1 < p < oo,
then the following are equivalent:

(i) M~ is of restricted weak type (p, p) with respect to u(x) dx and v(x)dx, that
is, there exists C such that u({x : M~XE(X) > X}) < Ck~pv{E)for all X > 0 and all
measurable £ c H

(ii) («, v) satisfies RA~ a, that is, there exists C such that for any three numbers
a < b < c and all measurable E C IR

u{s)ds\(j XE(s)(b-s)°ds\ < C(c - a)lx+a)>> j XE(s)v(s)ds.

The corresponding results for Ma are obtained immediately from Theorem 2.1 and
Theorem 2.2 and from the analogous ones for A/+.

Now we shall state the results for Ma which generalize the weak and restricted
weak type inequalities from [3] to the two-weight case.

THEOREM 2.3. Let u and v be weights on K and let — 1 < a < 0. If 1 < p < oo,
then the following are equivalent:

(i) Ma is of weak type (p, p) with respect to u(x) dx and v(x)dx.
(ii) (u, v) satisfies Apa, that is, there exists C such that for any interval I

\ (J )(Ju(s)ds\ (J v^'

where 2/ is the interval with the same center and double length as I and d(s, I) is
the Euclidean distance from s to I.

THEOREM 2.4. Let u and v be weights on R and let —I < a < 0. Ifl<p < oo,
then the following are equivalent:
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(i) Ma is of restricted weak type (p, p) with respect to u(x) dx and v(x) dx.
(ii) (M, V) satisfies RApa, that is, there exists C such that for every interval I and

all measurable E C K

(fu(s)ds](f XE(s)d(s, I)ads) <C|/|(1+a)p / XE(s)v(s)ds.
\Jl / \J2I\I / J2I\I

The proofs of Theorem 2.3 and Theorem 2.4 are omitted since they are immediate
corollaries of the previous results.

In order to prove Theorem 2.1 and Theorem 2.2 we use a noncentred maximal
operator which is pointwise equivalent to M~. In what follows we define this operator
and state the pointwise equivalence.

DEFINITION 2.5. For each x e R, let us consider the family of intervals srfx =
{(a, b) : b < x and b — a > x — b}. We define the noncentred maximal operator N~
associated with M~ as

N;f(x)= sup l f \f(s)\(b-s)ads.
*i (b-a)l+a Ja

PROPOSITION 2.6. Let —1 < a < 0. There exists a constant C depending only on
a such that M~f < N~f < CM~f, for all measurable functions f.

PROOF. The first inequality is obvious. Let (a,b)e^/x,R=x — a and let N be
the natural number such that* - 2~N R < b < x - 2~N~lR. Then

b

]f (s)\(b - s)a ds

i=0
r-fr

P/ / R \ a ( b — s \"
\f{s)\[x T-S] I )

2,
 UK"y 2 I + 1 / \x -(R/2-+ x)-s)

f
I if (s)\(b — s) ds — I + 11.

Jx-R/2"
lx-R/21

Since (a, b) e &/x,

\f (s)\(b - s)a ds<(x- b)l+aM~f (x) <(b- a)x+aM;f (x).
x-2(x-b)

On the other hand, since the function s —> [{b — s)/(x — 2~'~XR — s)]a is decreasing
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< M:f oo £ f (fe -s)a ds - C{b - ay+"Maf (*).

and we are done. •

PROOF OF THEOREM 2.1. By Proposition 2.6, (i) is equivalent to the weighted weak
type (p,p) inequality for A^. Leta < b < candleta < a be such that b — a = c—a.
If we consider the function f (s) = v1-1"' (s)(b-s)a(p'~l)x«,,b)(s)>tnen for all JC e (b, c)

N°f (x) - {b-\y+° t vl~"'{sKb~s)ap'ds = k-

This means that (b, c) C {N~f > k}. Then (ii) follows from (i) (with Â ~) by
a standard argument. •

The implication (ii) implies (i) follows from the following proposition and the fact
that the maximal operator M~g(x) = supA<l (/^ \g\u/ f* u) is of weak type (1, 1)
with respect to the measure u(x) dx.

PROPOSITION 2.7. Let — 1 < a < 0 andp > 1. If(u, v) satisfies A~a, then there
exists C > 0 such that for every measurable function f

PROOF. Let x e K and (a, b) e srfx. First, let us assume that 4 f* u > f* u. Since
the pair (M, V) satisfies A~a, we have

I \f(s)\(b-s)ads<ll \f\'(sMs)dsj I v-P'^isHb-sre'

<c(jX\f\p(s)v(s)ds\ P(jXu(s)ds) '\x-a)

< C[M;(\f\"vu-l)]l/"(x)(b-a)i+a.

Assume now that 4 / ^ u < f* u. Let {JC,} be the increasing sequence in [a, x] defined
byxo = a and f*u = f*'+[ u = j f* u. Let Af be such thatx^ < b < xN+l (observe
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that N > 2). Then we have

f +> II \f(s)\(b-s)ads = Y, f +> \f (s)\(b - sf ds + I \f (s)\(b - s)a ds

= i + n .

By the A~a condition and the fact that f* u < 4 / * u, we have

a b \1/p / fb l/P'

\f \p (s)v(s) ds 1 I v-pl/p(s)(b-s)ap' ds
n-i / \Jxn~i

On the other hand, since the function s —> [(b — s)/(xi+i — s)]a is decreasing in the
interval (*,•, x,+ ]) , 0 < i < N — 2, v/e obtain

i/p / CXM
 \ 1 / P

(

\f (s)\(b - s)a ds < ( •-) / \f (s)\(xI+i - s)a ds
\Xi+1 -XiJ Jx.

/ h — x \a / fXl+l

Z[x.+i_'x.) [J \f\p(sMs)

( b — x \a (r*1*' \i/p (fXi+2 \

x + i _ ' x ) [J \f\"(sMs)ds) \^J u(s)dsj
- Xiy(xi+2 - Xl) Jxi u(s) ds I

f '+\b-s)ads.

Now, summing up in /, we get

I< C[M-{\f\"vu'x)]ilp{x) f \b-s)ads < C[M;(\f\pvu-1)]l"'(x)(b-ay+a.
Ja

Finally, putting together the estimates of I and II, we are done. •

PROOF OF THEOREM 2.2. The proof is similar to that of Theorem 2.1. We give just
a sketch. First, (ii) follows from (i) on applying the standard argument to X£n(a,t)- The
converse follows from the fact that (ii) implies N~XE(X) < C[M~(XEV u~x)]l/p{x),
for some constant C independent of the measurable subset E. To prove the above
inequality, letx e K, (a, b) e &/x and assume first that 4 / ^ u > f* u. Since (u, v)
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satisfies RA a we obtain

b \ X/P / t-x \ -i/P

- s)ads < C(x - a)l+a (j XE(S)V(S) ds) (j u(s) ds

<C(b-ay
+a(j XE(s)v(s)ds\

\ llp / rx \ ~x/p

u

<C(b-a)l+a[M;(XEvu-1)]l/"(x).

If 4 f* u < f* u, we proceed as in the proof of Proposition 2.7. •

3. Singular integrals in the Cesaro sense

Let K be a Calderon-Zygmund kernel on R, that is, a function K e L\X{W, \ {0})
such that

(1) \K(x)\<C\x\-l,\x\>0,
(2) \K(x -y)- K(x)\ < C|y||jc|-2, if |x| > 2\y\ > 0,
(3) | ft<M<N K(x) dx | < C for all e and all N with 0 < e < N.

If the limit lim^o* f(<, ,<1 K(y) dy exists, then the principal-value singular integral

= lim [
f - 0 + J\x-y\>f

Tf{x)= lim / K{x-y)f(y)dy

exists for/ e Lp(wdx) with w in the Muckenhoupt class Ap (see for instance [4]).
When the kernel K has support in (0, oo) (or in (—oo, 0)), then, as proved in [1],
the same result holds for a wider class of weights, more precisely for weights in the
Sawyer class A~ = A~o ([7]).

Recently, in [2], we studied the existence in the Cesaro-a sense of the singular
integral associated with K for — 1 < a < 0, that is, the existence of the limit

l im Tt.af (x) = l i m / / (y)K(x -y)(l- —^- ) d y ,

in the setting of weighted Lp-spaces. The aim in this section is to obtain sharper
results on singular integrals in the Cesaro-a sense for kernels with support in (0, oo)
(or in (—oo, 0)). We shall show, using the results of Section 2, that, for these kernels,
the results in [2] are true for a wider class of weights.

One of the key steps in [2] is the pointwise estimate from above of the maximal
operator T*f = sup€>0 | T(af | by C(Maf + T£f). If the support of K is contained in
(0, oo), then we can improve this estimate by replacing Ma with a smaller operator M~.
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PROPOSITION 3.1. Let -I < a < 0 and let K be a Calderon-Zygmund kernel with
support contained in (0, oo). If f is a measurable function such that Teaf(x) is
defined for every e > 0, then there exists C > 0 independent off such that

T;f (x) < C[M~f (x) + T*f (x)].

The proof is similar to that of [2, Proposition 2.5], and is therefore omitted. This
proposition together with Theorem 2.1 in this paper and [1, Theorem 2.1] enables us
to prove the following result.

THEOREM 3.2. Let —1 < a < 0 and let K be a Calderon-Zygmund kernel with
support contained in (0, oo) such that the limit

lim f K{y) (l - t) dy

exists. Then the singular integral exists a.e. in the Cesaro-a sense iff € Lp(wdx)
with p(l + a) > 1 and w e A~a (the pair (w, w) satisfies A~a).

To prove the theorem we have to show first that the truncations Tf „/ are well
defined for / e Lp(wdx), w e A~a, p(\ + a) > 1. This can be proved as in
[2, Theorem 2.7]. The rest of the proof is a consequence of the following facts:
(i) the existence of the limit lim^o* T(af for / in a dense class and (ii) the weak
type (p, p) boundedness with respect to w(x) dx of the maximal operator T*. The
former is clear since Lp(wdx) n Lp(dx) is dense in Lp (wdx) and the convergence
holds fo r / € Lp(wdx) D Lp(dx) by [2, Theorem 2.7]. The latter immediately
follows from Proposition 3.1, Theorem 2.1, [1, Theorem 2.1] and the easy implication
w e A~a =>we A;o = A;.

REMARK. In particular, the result holds if w belongs to the Sawyer's class [7] A~(1+o)

since A~(1+a) c A~a. This inclusion follows from A~ C A~a, 1 < r < p(l +a),
which is true by Holder's inequality and the implication w e A~(1+a) =>• w 6 A~ for
some r < p(\ + a) (see [7] or [6]).

We do not know whether A~(1+a) is equal to A~a for a < 0 and p > 1/(1 + a)
but in the endpoint p = 1/(1 + a) it is possible to see that /?Af/(1+a)iO equals the
Sawyer's class A j~. The proof of this fact is similar to the proof of [3, Proposition 6.5].
Then, following the steps in the proof of [2, Theorem 2.7] and using the corresponding
results in this paper and in [1] we have our next result.

THEOREM 3.3. Let a and K be as in Theorem 3.2. Iff belongs to the Lorentz space
Lm+aU(codx) = [f : f™[co({x : \f (x)\ > t})]1+a dt < oo} and co e A~x, then the
singular integral exists a.e. in the Cesaro-a sense.
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EXAMPLE. Observe that the Calderon-Zygmund kernel

1 sin(log*)
x log*

given in [1] satisfies the condition in Theorem 3.2, that is,

exists. In fact, for any 0 < e < 1/2, if Sl(x) — sinx/x, then

= f • d y + [ ••• dy = 1 + 1 1 .

Applying the Holder inequality to / with p > 1/(1+a) and changing variables we
obtain

•*(fK)>:
0/>

logt

and therefore lim(_>o
+1 = 0. On the other hand,

2* y

Clearly, by changing the variables, we see that lime_>0+ IV exists. In order to estimate
HI, we apply the mean value theorem to get

Changing variables again, we obtain

• 1/2

Finally, lin\_,.o+ HI = 0, applying the dominated convergence theorem and the facts
that Q is bounded and lim€_>0+ £2(log(e/0) = 0.

https://doi.org/10.1017/S1446788700003165 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003165


120 A. L. Bernardis and F. J. Martin-Reyes [10]

REMARK. If we do not assume anything about the support of K, then Theorem 3.2
is valid for weights w in Apa. The proof is similar to the proof of [2, Theorem 2.7]
but using Theorem 2.3 instead of [2, Theorem 2.6].

An analogous comment can be written about Theorem 3.3, that is, Theorem 3.3 is
valid for Calderon-Zygmund kernels and weights w in the Muckenhoupt Class A i (in
fact, notice that this result is contained in [2, Theorem 2.7]).
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