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Abstract

A new basis {irk(z)}t.o for discrete analytic polynomials is presented for which the series
2k-o ak7Tk(z) converges absolutely to a discrete analytic function in the upper right quarter lattice
whenever lim | ak \"

k = 0.

Introduction

Let Z be the group of integers and consider functions

/ : Z X Z ^ C
such that

(1.1) f(x, y) + if(x + 1, y) - / (* + 1, y + 1) - if(x, y + 1) = 0

for every (x, y ) £ Z x Z . Such functions are termed discrete entire. If (1.1)
holds only for (x, y)G G, G CZ x Z, then we say that / is discrete analytic
in G.

Discrete analytic functions were introduced by Ferrand (1944) and the
theory was developed by Duffin (1956) and others.

Duffin (1956) introduced the following basis for discrete analytic polyno-
mials

(z = x + iy), which he called pseudo-powers.
Each pk(z) is a discrete entire function and a polynomial of degree k in

(x, y). Duffin (1956) showed that every discrete analytic polynomial can be ex-
pressed as a linear combination of these pseudo-powers.

Duffin and Peterson (1968) introduced an analogue of the McClaurin
series in terms of these pseudo-powers. However, their analogue has the dis-
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96 Discrete analytic polynomials [2]

advantage that the convergence of So an£
n on C does not ensure the con-

vergence of So anpn(z) on Z x Z. In fact they showed that So anpn(z) con-
verges on the whole lattice Z x Z only if

In Section 2 other "reasonable" bases for discrete analytic polynomials
will be considered. These will be called systems of pseudo-powers, and it will
be shown that the above drawback of Duffin's basis {pn(z)} as regards the con-
vergence of S anpn(z) cannot be removed by using other systems of pseudo-
powers.

On the other hand, we shall construct a system of pseudo-powers
{7rk(z)}o such that So akirk(z) converges absolutely on the quarter lattice Z+ x
Z* = {(x + iy); x and y integers, x g 0, y g 0} whenever So akg

k converges on
the entire plane. (The divergence of So (2"/n!)pn (1,0) shows that this property
is not enjoyed by the Duffin-Peterson series.)

In Section 3 we shall consider the existence and uniqueness of the expan-
sion So ai,77-k(z). The discrete analogue of 'multiplication by z' corresponding
to the above basis will also be dealt with.

In Section 4, we discuss the lattice Zt x ZX where Zt = hZ*, h >0 and
show that if {irk'(z)}o is the corresponding basis then

when h i 0 along a sequence for which z G Zh x Zh, provided So ak^
k is an

entire function of exponential type.
The analogous problem of representing monodiffric functions (that is

functions satisfying

(i - l ) / (x ,y)- i/(x + 1, y) + f(x,y + l) = 0)

by a series of polynomials was considered by Atadzanov (1974).

2. The new basis

DEFINITION. A basis {pn(z)}o for the discrete analytic polynomials is cal-
led a system of pseudo-powers if the following properties are satisfied:

(Al) pn(0) = 0 for every n > 0
(A2) {pn(z)} satisfies the binomial identity

' n
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(A3) p0 = 1 and for n g 0pn(z) = z" + pn-i(x, y) where pn_i is a polyno-
mial of degree S= n — 1.

It is readily checked that Duffin's basis {pn(z)} constitutes a system of
pseudo-ipowers. On the other hand, Duffin's basis fails to satisfy the following:

(*) 2 dnpn(z) converges absolutely for every z E Z x Z
0

if ^ anfj" converges in the whole £-plane.
0

One may ask: Does there exist a system of pseudo-powers satisfying (*)?
That no such system exists follows from the next lemma.

LEMMA 2.1. Let {pk} be any system of pseudo-powers. Then there exists a
point Zo in the half lattice {x + iy, y ^ 0} and a complex number £0 such that

^ ils t0 converge absolutely.

PROOF. Suppose that the statement is false, i.e., there exists a system of
pseudo-powers {pk} such that

converges absolutely for every point in the half lattice and for every complex
number £. Then, for every such z, e(£, z) is an entire function in £ and by (A2)

Z,Pn(z, z2) e(C;z, z2).o n!

Thus e(£; x + iy) = f((Yg(()y where /(£) = e(£; 1), g(O = e(£; i).
Since e (£ ;z ) is discrete analytic in the upper half lattice (1.1) must be

satisfied there:

Thus
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and

Since e(£; z) is entire in f for each fixed z in the half lattice and in par-
ticular for z = 1, - 1, i we see that /(£), l//(f) and (1 + if{O)l{f(O+ ') are
entire. But this implies that /(£) is entire and excludes the values 0 and — /'. By
the "little" Picard theorem [Rudin (1966), p. 324] this is too much to ask from
a non-constant entire function. Evidently /(£) cannot be constant and so we
arrive at a contradiction and the lemma is proved.

We saw that there is no system of pseudo-powers satisfying (*). The next
theorem will demonstrate a system of pseudo-powers satisfying the following
weaker property.

(A4) So anpn(z) converges absolutely for every

SO, y SO} if 2
0

converges in the whole £-plane.
The divergence of S(2"/n!)pn(l) shows that Duffin's basis does not

satisfy (A4).

THEOREM 2.2. The sequence of functions

/i 1\ ,—. tv , i \ " fr/-i i ;\y,^/(' + i) ;i*fYi ;\ , ,-£/o+i)_j_ i'lv

\L.Y) 77fc \X, y) — Jyk H V ^ " ' " ' / ^ — 'J l\^ — ' / ^ 'J

k = 0 , 1 , 2 , •••

constitutes a system of pseudo-powers satisfying (A4).

PROOF. The discrete analyticity of irk(x,y) is readily checked. (Al) is
trivial, while (A2) follows from Leibnitz' formula. Also, by a straightforward
computation

i

Since TTO(X, y) = 1 it follows by induction that each irk(x, y) is a polynomial of
degree k and that (A3) holds. Since Duffin (1956) showed that the dimension
of the space of discrete analytic polynomials of degree S k is k + 1, it follows
that {TTr}o is a basis for the discrete analytic polynomials of degree § k and
consequently that {nk}o is a basis for the discrete analytic polynomials. Thus
{7rt} is a system of pseudo-powers.
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Now, let us note that for a fixed z = x + iy £ Z* x Z*

e{£;x + iy)= 2 77k (x, y ) £ = [(1 + i)een">- i]'[(l - , ) e w + i ) + i]>.
o

Since x and y are non-negative integers, the right hand side is an entire
function of exponential type and the Taylor coefficients being irk (x,y)/k ! you
have (Boas (1954), p. 11) that there exist constants C and T (depending on
(x, y)) such that

Thus So dkTTk(x, y) converges absolutely whenever lim | ak \
ilk = 0, since

IT) dkTk does. This holds for every (x, y) G Z + x Z+ and it follows that {irk} is
a system of pseudo-powers satisfying (A4).

By Theorem (2.2) it follows that whenever So ak^
k is an entire function,

i.e., whenever lim | ak \
vk = 0, then S,T akirk (z) converges to a discrete analytic

function in Z* x Z* (substitute in (1.1) and rearrange terms, using the fact
that each nk(z) is discrete analytic).

Let si be the algebra of entire functions and let <3) be the set of discrete
analytic functions on Z + x Z~. Define a mapping

by

Let ^ C S b e the range of T. & can be made into an algebra by requiring
T to be a homomorphism:

) ) ( 2 bkrrk{z)) = 2 ( 2 akbn-

Thus in our class &, multiplication is defined for every pair /, g G &. This
is an improvement on the multiplication in the Duffin-Peterson class,

= {2 anPn(z); iir^(|a

which is only defined on a subset of f w x 3FDP. In particular e x p / is well de-
fined in our class:

exp(2 akTTk(z)) = r ( exp (2 ak
\ 0 I \ \ 0
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3. Existence and uniqueness of Taylor expansion

Formula (2.2) motivates the following analogue for the contiguous "mul-
tiplication by z"

(3.1) gf(x,y) = j^{(x - y)f(x, y)+ixf(x - 1, y)+iyf(x,y- 1)}.

It is readily checked that if/ is discrete analytic, then so is gf and, by (2.2)

gTTk = 7rk + 1 ge(€ ; x + iy) = — e(t;; x + iy).

Let us restrict attention to 3), the class of discrete analytic functions on Z* x
Z\ It was shown in Zeilberger (to appear) that each / G S is uniquely deter-
mined by the pair of formal power series (<f>f, <//,) where

<h(X) = i /(*,0)x; *,(Y) = 2 /(0,y)Y\

and we write / = (<f>f, tl>f).
Since gf(x,0) = 1 /(I + i){xf(x,0) + ixf(x - 1,0)}

2 gf(x,0)X' ~ j
*-0 I T ' «-0

Similarly

Y d

So the operation of g in terms of formal power series is

(X)], Y^p [(/Y - 1)^ (Y)]

Thus gf = 0 iff

C

(The constants agree since <̂ >/(0) = /(0,0) = iA/(0).) So, unfortunately, g has a
non-trivial kernel.

Clearly, gf(O) = 0 for every function / discrete analytic in Z+ x Z+. Let
g 6 9 , g(0) = 0 then / £ 9) given by
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1 + / 

1 + iX 

1 + i 

1 - iY 

l x 

V y C 

so lves gf = g. 

W e h a v e t h u s o b t a i n e d 

T H E O R E M 3 . 1 . The operator 

has range {f&3>; / ( 0 , 0 ) = 0} and kernel {C/<>} where f„ & 2> is given by 
1 

1 + iX' <A/„ = 
1 

1 - iY' 

Le t us c o n s i d e r t h e c lass C2 d e f i n e d a t t h e e n d of S e c t i o n 2. It is n o t 

yet k n o w n w h e t h e r t h e inc lus ion & C 3) is p r o p e r o r n o t ; i .e . , w h e t h e r e v e r y 

d i s c r e t e a n a l y t i c func t ion o n Z + x Z ~ p o s s e s s e s a d i s c r e t e T a y l o r e x p a n s i o n 

(3.3) 

T h e o r e m (3.1) i m p l i e s t h a t e v e n if s u c h a r e p r e s e n t a t i o n ex i s t s it n e e d n o t 

b e u n i q u e . H o w e v e r if a t t e n t i o n is r e s t r i c t e d t o t h e c lass 

9 , = {i>k 77k(z); ihr l( /c! |a t | )" k <»j 

t h e n t h e r e p r e s e n t a t i o n (3.3) is u n i q u e , as fo l lows f r o m t h e f o l l o w i n g 

T H E O R E M 3.2. IfI.o aknk(z)='o inZ* x Z* and\im(k\\ak |)'"<» then 

ak = 0 / o r euery /c. 

P R O O F . By def in i t ion (2 .1) 

[(l + Q e " " * " - ¿ N ( 1 - i ) e i l ' 
7 r k (A:, y ) = — f 

w h e r e V is a n y c o n t o u r s u r r o u n d i n g 0 . S o , 

/ 0 0 = S « " ^ * ( ^ y ) 
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for any contour F for which

is defined. fB(O is the Borel transform of

and /B(£) converges for | £ | g type /e (see Boas (1954), p. 73). Thus

and for some constant M

| S CM'

and <£/(') = So/(A:, 0)f* converges in the disc \t\< 1/Af. We have then

/ •
2ni)r l - [ ( l + i > w + < ) - i ] f

The right hand side defines an analytic function in any region in the /-plane
for which the denominator of the integrand does not vanish in a neighbor-
hood of F in the £-plane. In particular, this includes a neighborhood of the
point i in the f-plane. Thus for any discrete analytic function of class ^e

whose radius of convergence is in general smaller than 1, can be analytically
continued through the boundary of the circle of convergence to a neighbor-
hood of t = i.

Now So at7Jt(z) = 0 implies a0 = 0 and

= 0.

Let gi(z) = 1.7 aknk-i(z). Then g, e &. and hence </>gl(0 can be analytically
continued to a neighborhood of t = i. But $g, =0 implies, by Theorem 3.1,
that <pgI(t) = C/(l + Jr) for some constant C. This forces C = 0 for, otherwise
<£gl would have a pole at t - i. Thus,

= 0 and = 0.
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Continuing inductively we get that ak = 0 for every k and the theorem is
proved.

4. Limiting behavior as h [ 0

Let h > 0 . For the lattice of mesh size h

Zh*Zh= {(hm, hn); m,n£Z}

discrete analyticity is defined by

(4.1) F(x, y) + iF(x + h, y)-F{x + h, y + h)- iF(x, y + h) = 0.

The above discussion carries over to discrete analytic functions for such
lattices (all it amounts to is a change of scale). Now we have the basis

(4.2) Tr"k(x,y) = j^W+ ,V«1 +"- «•]"*[(! - Oe-wt+i]"

And for discrete analytic functions on the lattice Zh x Zh the exponential
function is

k=n k !

Now as h i 0

[(1 + i)e<hl(l+i)- i]"h^>ec [(1 - i)c"f*/<1+i)+ /^'""-^e'4.

So eh(x, y)—» e{(*+iy) and consequently

77^(2)-^ zk as H O .

Suppose | an | = C£X/n! for some constants C and ^0, by dominated con-
vergence

as h I 0. We obtained

LEMMA 4.1. J/Iim(|ak |fc!)"k<oo then fh(z)^> fc(z) = So akz
k along a

sequence h 1 0 for which z £ Z£ x ZJ.
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