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POLYNOMIAL NEAR-RINGS IN k INDETERMINATES

ENOCH K.S. L E E AND NICO J. GROENEWALD

Polynomial near-rings in fc-commuting indeterminates are our object of study. We
illustrate our work for k = 2, that is, iV[x,?/] as an extension to N[x], while the case
for arbitrarily A; follows easily. Our approach is different from the recursive definition
JV[x][i/]. However, it can be shown that N[x,y] is isomorphic to AT[x][y]. Several
important tools such as the degree, the least degree, et cetera are defined with respect
to N[x,y]. We also clarify some notations involved in defining polynomial neax-rings.

1. INTRODUCTION

Polynomial near-rings in one indeterminate have been denned by Bagley [1, 2] and
further developed by Farag [3, 4, 5] and Lee [6]. In view of its development, it is not
surprising to see that the object of polynomial near-rings shares many technical simi-
larities as well as difficulties with the object of matrix near-rings, since the notion of
polynomial near-rings evolves from that of matrix near-rings developed by Meldrum and
van der Walt [7]. It is well-known that in the ring case, polynomial rings of multiple
commuting indeterminates can be defined recursively from the single indeterminate no-
tion (that is, R[x, y] = R[x][y]). Moreover the matrix rings analog of this result can be
described as the following, namely the nxn matrix ring over the mxm matrix ring over
R is isomorphic to the mn x mn matrix ring over R, that is, Mmn(R) = Mn(Mm(R)).
In 1997, Meyer [8] verifies this counterpart for matrix near-rings. The situation is not
exactly the same for polynomial near-rings however. There are two issues in studying
multiple commuting indeterminates polynomial near-rings. Firstly the meaning of the
object N[x, y] is not clear, at least it is not an immediate consequence from the definition
of polynomial near-rings. Secondly we need to illustrate that this notion is equivalent to
[N[x})[y] and hence {N[y})[x\.

We investigate the meaning of polynomial near-rings of two commuting indeter-
minates and their representations, while the approach to arbitrarily finite number of
commuting indeterminates follows similarly. There are many important tools aiding the
investigation of polynomial near-rings (at least for the case of one commuting indetermi-
nate) as defined in [1, 2] such as- the degree and the least degree of a polynomial, the
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ideal §[z] where S is a sequence of non-decreasing left ideals of N, the ideal /* where /
is an ideal of N, and the symbolically zero polynomials and the associated ideal "sym0".
As a final remark, we explore the extension of these concepts from one indeterminate to
multiple ones and re-define these important tools.

2. PRELIMINARIES

In the following, we use R to denote a generic ring with identity while TV a right
zero-symmetric near-ring with identity. The reader should refer to [9, 10] for more about
near-rings. Let us begin with a polynomial near-ring in one indeterminate over N. Let
K be the set of non-negative integers. We denote NK the direct product of \K\ copies of
the group (N, +). For simplicity, let

M(NK) = {/ : NK -> NK | /(0) = 0}

(since we are considering zero-symmetric near-rings only). Furthermore we let La be a
mapping from NK to NK for any a e N such that La(co, C\,...) = (aco, ac\,...) . We
also let x : NK ->• TV* such that x(c0, Ci, • • •) = (0, CQ, CX, . . . ) , for all (co, c1 ( . . .) 6 NK.
Obviously La and x are in M(NK). Then we can define N[x] to be the subnear-ring
of M(NK) generated by {La}aeN U {x°,xl,...}. Note in [1], N[x] is defined to be the
subnear-ring of

MN(NK) = {/ e M(NK) | fPa = Paf,Va € N}

where pa{co, Ci, • • •) = (coa, c^a,...) for all (CQ, C\, . . .) e A^^. It is not difficult to verify
this definition is in fact equivalent to our simplified version. In other words, the centraliser
condition that fpa = paf is redundant.

Since a near-ring polynomial is defined as a function on A ^ , the extended structure
" becomes quite complicated. Furthermore, it is not immediately clear that
could be identified as (A%])[z], and hence "N[x, y\" (if this even makes sense)

as if in their ring counterpart.

Notice that (A^x])^] is the subnear-ring of M[(N[x]) ] generated by {£/}/gjv[z]

and { y , 2 / \ - - } . For any (ho,hi,...) 6 (N[x])K, we have

Lf(h0, hu . . . ) = (Jho, fhi,...)., and yl(h0, hu ...) = ( 0 , . . . , 0, h0, hu ...).

i

In the ring case, usually one can identify La 6 A [̂x] a s a £ JV. However one runs into
trouble when discussing (N[a;])[j/]. Similarly, the function x behaves quite differently
under different contexts, namely in N[x] or in (A^z])^]. In order to make our discussion
precisely, we distinguish elements of N, N[x], and (Ar[x])[j/]1 and denote the elements
differently until stated otherwise.

The following table indicates our terminology and should be self-explanatory.
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N

a

N[x]

La

f (for example x)

(N[*])[V)
K(= LLa)

Lf (for example Lx)

F (for example y)

Let us review some basic properties of some near-ring polynomials.

(1) In N[x], La{co,ci,...) = {aco,acu . . . ) , where a € AT and (co,cx , . . . ) G NK.

(2) In N[x], X(CQ, CI, . . . ) = (0, Co, Ci , . . . ) , where a € N and (co, Ci , . . . ) € AT*.

(3) In (N[x])[y], Lf(f0, h, ...) = (ff0, ffu ...), where / 6 N[x] and (/„, flt...)
e (iV[i]) . In particular, we have Ao(/0, / i , . . . ) — {Laf0, -La/i, ...),a £ N

and ^ ( / o , / i , . . . ) = {xfo,xfu.. .).

(4) In {N[x})[y}, y(fQ, flt...) = (O./o./ i . . . . ) , where ( / 0 , / i , . . . ) € (iVtx])*.

It is well-known that 7V[x] = iVfinite[x] where A f̂inite[x] is the subnear-ring generated
by {La}a€Nu{x°, xl,...} of M(A^i t e ) and N^nite is the direct sum of \K\ copies of (N, +),
that is, = {c € A^^ | c has finitely many non-zero entries}. We shall use this equivalence in
our discussion. To further facilitate our discussion, we introduce the following notations.
For convenience, we denote an element of N^ite by an infinite square matrix such as [cy]ij
or just [cij] for c^ € W and i, j € K, where only finitely many c^'s are non-zero. Let

BN = {& : a€N such that ft([cy]) = [acy]}.

Let X = {x1 | i € K} where x : Ng*te -> N£*te such that z([cy]) = [d{j] and di0 = 0,
dn = Cio, di2 — en,... . Similarly let Y — {y1 \ i € K) where y : N^ite —> N£*u such that
y([cij]) = [d{j] and dOj = 0, d\j — %•, d2j = Cij,.... Clearly BN U X UY C M(N^ite).
Now let Nanite[x,y} be a subnear-ring of M{N^ite) generated b y B N u ! u F . It should
be noted that the notion of x and y are symmetric to each other, therefore, the use of
the notation ATfjnjte[x, y] makes sense. Furthermore, denote by £o = (1,0,0, . . . ) 6 A^ite.
Note that the cardinality of K and K2 are of course equal, one can actually use K to
define the object N^tefe, y] instead of K2 with a different set of generating functions
in our quest, yet yielding the same results. However the choice of K2 here makes our
discussion more transparent and more coherent to that of N[x]. The object N[x,y] is
defined similarly by using A^*2 instead of A^2

te.

We remark the following observation about N[x\. Note that A^z] is a (left) A7-
module. A tedious however routine argument shows that N[x] is indeed a left N-

submodule of M(NK) generated by {La}ae/v U {x°,xx,...}. Using this fact, one can
obtain all polynomials by the following construction method. (A more detailed account
on this construction method can be found in [6].) Let C be a subset of N[x] such that

(1) { L o } a 6 J V u { x ° 1 i 1 , . . . } C C ;

(2) af e C if a g N and / g C;
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(3) / + 9 G C if / and g G C.

The collection, C, of polynomials yielded by the above method is actually N[x]
itself. This simple yet useful observation provides some sort of "standardised" polynomial
representation, although not quite yet a unique representation as for ring polynomials.
We shall use this observation in the sequel.

3. MULTIPLE INDETERMINATES

We want to show (Af[z])[y] and A^nite[x, y] are isomorphic to each other. Define

a mapping <j> : (N[x])[y] -> M(NK2) such that 0(F)([cy]) = [dy] € N"2 where

F 6 (N[x])[y), [cij] G N£ae with d0 = ^ ( f f o ) and ft = ^ ( E , L ^ z ' . ^ L , , , * ' , . . . )

where I € K. Since [cy] G A^[t e , we have ^ , LCilx
l actually a finite sum, hence belongs

to N[x]. Furthermore the sequence \ ^2iLCilx
l \ contains only finitely many non-zero

terms. Therefore <j> is indeed a well-defined mapping from <j>: (N[x])[y] to M(N^n
2
iie).

Before we proceed, let us examine the images of some polynomials under <j>. Suppose

(1) Let F - Xa G (N[x])[y],a G N. By definition, we have:

Si = ^a(j2t
 L«»x'> £ , L ^ ' - • •) = La S , ^i1* =

This implies that ftjfi{eo) — o-<kj- Thus <t>{K)([cij}) = [oci>]-
(2) Let F = Lx. Then we have:

Si = *iLx ( J ^ , L<=o'x'- X ) , ^ H 1 ' ' • • •) = ni(x 5 Z | Lc«':r:''
This implies

(3) Let F = 2/. Thus we have:

Si = «-«

This implies

From these examples, we see at once that <j>{Xa) = Pa, <l>{Lx) = x, <f>(y) = y. In a
moment, we show cf> is a bijective mapping and also it preserves addition and multipli-
cation. As a consequence 4> maps (A^[i])[y] onto N6nite[x,y} C M(N£*te)

 a n d is actually
an isomorphism.

The following technical result is essential to our quest.
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LEMMA 1 . Let (go,9i,---) € {N[x])K and [cy] € N£*te such that there exists
d e Ngnite, for which cfc(d) = (CJ0, c,-i,...) for any i e K. Then for any F e {N[x})[y], we
have

( [ ( j 2 J 2 ) ) ) ^ 3 e K-
PROOF: We use the construction technique remarked at the end of the last section

to prove this lemma. Let F — ym,m € K. We have

c' V L x' \\(e) = l °0 if i < m,
j otherwise.

However •nj(-niy
m(go,gi, • • -))(d) — nj(gi-m{d)) = I This shows the

I Ci-mj otherwise.

claim for F — ym. Now suppose F — Lf,f 6 TV[x], We have

However,

Thus the claim is also true for F = Lf, f € TV[x]. It is quite easy to see that F + G also

satisfies the claim if both F and G € (TV[:r]) [y] satisfy the claim.

It remains to show that if F 6 (TV[x])[y] satisfies the claim and / € TV[x], then L/F

satisfies the claim. In fact, we have

nj(7ri(LfF(g0:gl,...)))(d)=7rj(f(iriF(g0,g1,...)))(d)=iTj(f(h0,hu...)),

where hk — Trk(niF(g0,gi, •. )){d) e TV. However, by the assumption that F satisfies

the claim, we have hk = nk I ^iF\T^l L^x1, J2i LCux
l, • • •) ) (eo)- Therefore this implies

that irjln^LfFigo, gi,.. .)))(d) and TrjfliriF^2iLcoixl^T,iLcux'^--))^o) are equal

to each other. Hence LjF satisfies the claim and the lemma follows. D

We are ready to prove our main result.

THEOREM 2 . (N[x])[y) S TVfinite[x,y] (and hence a (Wflnite[*])flllite[y]).

PROOF: We show the function <j> defined earlier is the desired isomorphism. Firstly,

we show <j> preserves addition and multiplication.

It is quite obvious that it is true for the "addition" case, that is, <j>(F + G) = <p{F)

+ <t>(G). We proceed to verify the "multiplication" case. Suppose <j>(FG)(\cij\) = [dy].
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By definition, we have

cuJ, ••)) (eo)

= TTjfcFigo, gi,. . .))(eo), where s* = T T A G ^ I ^ C O ^ ' . E ; ^C , ,* ' , • • • )•

If 9k(£o) = (bko, 6*i, • • •)• t n e n by t n e previous lemma we have

Therefore 0(FG) = ^(F)([%]). However 0(G)([cy]) = fatf<(£<>)] = ft,-]. Hence
4>(FG) = <i>{F)<j>{G).

From the remark that precedes the previous lemma and the fact that <j> preserves
addition and multiplication, we see that the mapping <j> from (N[a;])[y] to N[x,y] is an
onto homomorphism. Hence it remains to show <f> is injective. However to show it is
injective, one just has to notice the following equivalence (in sequence) by applying the
previous lemma:

(1) tf(F) = 0.

(2) ^ - ( ^ ( E , L^X1, E I Leux»,.. .))(£<,) = 0,V [ckk] e TV^and i,j e K.

(3) irj(iriF(g0,g1,.. .))(d) = 0, V (go,gu . . . ) 6 (N[x])K and d £ iV^.

(4) F = 0.

As a consequence, $ is an isomorphism. D

As seen so far, we have shown that (iV[x]) [y] = Nanite[x, y). Therefore we can identify
x and y with x and y, respectively. Hence we can use the notation A f̂injte[a;, y] without
creating any confusion. Moreover it can be shown that we can drop the subscript "finite".
We begin our verification by introducing the following useful notation and result.

Suppose [dj] and [dy] € iV^2. For any pair m,n € K, we define a relation on NK*

such that [cij]~(m,n)[dy] if and only if Cy = dij, V0 ^ i < m, 0 ^ j ' ^ n. Note that this is
an obvious extension to ~ n introduced in [1, 2] for N[x).

Furthermore, we write nhk[cij] = chk where Chk is the (h, A;)-entry of [ctj]. Then a
routine computation shows the following.

LEMMA 3 . Suppose F e N\x,y}. If [cii]~(m,fl)[*,-], then F([cy])~(m,n)F([«ii>]).

THEOREM 4 . N[x, y] is isomorphic to Nanite[x, y].

PROOF: Define a mapping rp : N[x, y] -> A^finite[a;, y] such that ip{F) — the restriction
of F on iVgJritg. Clearly the mapping xp is well-defined. Furthermore, by definition, ip

preserves addition and multiplication. It remains to show the mapping is one-to-one and
onto.
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Suppose ij>(F) = 0. We have F([cy]) = 0 for any [dj] € iVfi^te. We want to show
F = 0. Assume F([cy]) ^ 0 for some [dj] G NK*. There exist m,n € K such that
ftmnF([dj]) ^ 0. Let us define [dy] such that

j dj if 0 ^ i ^ m and 0 ^ j ' ^ n,
17 1 0 otherwise.

In fact [dtj] € N$£te and [cjj]~(m,B)[dij]. Hence we have i r ([ci j])~( r a , n )F([d i j ]) . But
F([dtj}) = il>(F)([dij]) = 0 by assumption. Thus 0 = 7rmflF([dy]) = ir™,f([c«]) ^ 0, a
contradiction. In other words, ip is injective. Finally observe that ij> maps /3O, x, and y of
Af[x,2/] onto p a , x, and y of Nftnite[x,y] naturally. Since rp is a homomorphism, we have
ip a surjective mapping, hence an isomorphism. D

Hereby we shall not distinguish N[x, y] from Nsidte[x,y]- As a final remark in this
section, we note that N[x, y) can be viewed as an iV-submodule of M(NK2) generated by

4. R E M A R K S ON D E G R E E , LEAST DEGREE, E T C E T E R A

In the previous section, we define the object N[x, y] and identify it with
There are many basic tools to facilitate the investigation of polynomial near-rings such as
the degree, the least degree, the symbolically zero ideal "sym0", /*, et cetera. Since the
notion of N[x, y] does not come from a straightforward iterative definition of (^V[ar])[y],
it does not allow us to import the various important tools simply from one indeterminate
to multiple indeterminates without careful examinations. In this section, we explore the
equivalent concepts of some important tools. It is beneficial to "re-define" some of the
important tools for the record. However most of the verifications can be obtained by
appropriated modifications of the original ones.

(1) Least Degree: Let / € N[x,y]. We denote the least degree of / by

min Ih + k \ ^ / ( [ c ^ ] ) # 0 for some [%,] € NK*\.

A routine computation shows this notion is consistent with the one defined for 7V[x] by

Bagley [1]. In fact the least degree of g € N[x] and that of the natural correspondence

in iV[x, y] are equal as expected.

(2) S[x,y]: An important type of structure for polynomial near-rings is

S[x,y) - { / € N[x,y) \ V[cy] € NK',nhkf([cihj}) € Shk, V/i,fc e

where S = {S*, | i, j € K) is a collection of left ideals of N with Sy C S^k whenever

i ^ h and j ^ k. It follows that S[x,y] is indeed an ideal of N[x,y].

Of particular interest is Sn = {5j ; \ Sy = 0 if i + j < n and Sy = TV other-

wise } for n ^ 0. Clearly we have S0[x, y) = N[x,y). Furthermore §n[x,y] = /„ where
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/ „ = { / € N[x,y] | least degree of / ^ n}. In fact, if / G /„, we have ^ ( / [ c y ] ) = 0 if
h + k < n, and then / G Sn[x, j/]. That is /„ C S^x, y\- Hence /„ = Sn[i, y] follows from
the definition.

(3) sym0: The symbolically zero polynomials and the associated ideal "sym0" are
important and useful tools. The ideal sym0 can be defined as follows.

Let W = {xlyi | 0 ^ i, j}. For simplicity, we can write W = {wi | 0 ^ /} where
wi — x'yj and I = ([i + j)(i + j — l))/2 + j . From basic number theory, we know I

and the pair (i,j) are in a one-to-one correspondence. Let P(n) denote the set of all
permutations of {0, . . . , n}. We can now define sym0 as the ideal of N[x, y) generated by
the set

{a(bowo + bxwi H h bnwn) - aba{n)W^n) a^(o)Wff(O) | V0

< n, V a e P(n) and a, 6; € N}.

As an immediate consequence we have:

THEOREM 5 . Suppose f G N[X, y}. There exist f0, fi, • • • , /„ G N for some n^

such that f = fowo + fiWi + • • • + fnwn (mod sym0).

(4) The ideal I': Let / be an ideal of N. Then

N[x,y] | W l M G I,Vh,k and V[cy]}

is an ideal of N[x, y). We have N[x, y]/I* = (N/I)[x, y). If V(N) denotes the distributor
ideal of N, then it can be easily proved that T>(N[x, y]) - (V(N))'.

(5) Degree : The last concept we explore is the notion of the degree of a polynomial.
First of all, for c — [cij] G N^iite, we let \c\ - max{i + j | Cij ̂  0}. The degree of

/ G N[x, y] is defined as the maxj | /(c)| - \c\ c G A ^ t e \. Following the convention,
the degree of / = 0 is negative infinity. One can check that this notion is well-defined,
namely each 0 ^ / G N[x, y] has a degree < oo. Furthermore it is not difficult to show
that the degree of a non-zero polynomial is non-negative, that is, for some c we have
|/(c) | > \c\ if / 7̂  0. Assume for purpose of contradiction that |/(c)| < |c|,Vc. Therefore
for all n ^ 0 if \c\ = n, we have iThkf(c) = 0 for h + k = n. In other words, we have that
if d G ./V^2 and h + k = n ^ 0 there is a c G A^'te with 3 ~(/,,*) c with \c\ = n. Since
f(d) ~(/i,k) /(c), we have 0 = nhkf(d) = ^ / ( c ) whenever h + k = n. Note this is true
for all n ^ 0 and d, hence / = 0 a contradiction to our assumption.
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