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1. Introduction. If E is a Hausdorft barrelled space, which does not already have its
finest locally convex topology, then the continuous dual E' may be enlarged within the
algebraic dual E*. Robertson and Yeomans [10] have recently investigated whether E can
retain the barrelled property under such enlargements. Whereas finite-dimensional en-
largements of the dual preserve barrelledness, they have shown that this is not always so
for countable-dimensional enlargements E'+ M. In fact, if E contains an infinite-
dimensional bounded set, there always exists a countable-dimensional M for which the
Mackey topology 7(E, E'+ M) is not barrelled [10, Theorem 2].

Here, in Theorem 1 we give a construction which shows that for a large class of
barrelled spaces E, there exists a countable-dimensional M with E'N-M ={0}, for which
7(E, E'+ M) does remain barrelled. Combining this with Theorem 2 of [10], we then see
that if E contains a sufficiently large bounded set, there exist two countable-dimensional
subspaces M;, M, of E* such that E'N M, ={0}= E'N M, and 7(E, E'+ M,) is barrelled,
while 7(E, E'+ M,) is not. Our Theorem 1 applies in several important special cases, for
example Fréchet spaces, barrelled normed spaces and spaces of continuous functions.

The method of construction of M imposes a condition on the bounded sets of E'+ M,
namely that for each such set there is a finite-dimensional enlargement of E’ which
contains it. In the last section we show this condition is necessary whenever r(E, E'+ M)
is barrelled, and therefore fundamental to any approach to finding such an M.

Generally we adopt the topological vector space notation of [9]. We use K to denote
the scalars R or C, and ¢ for the cardinality of the continuum. The term countable is
reserved for the infinite case only.

We are grateful to Dr. W. J. Robertson for suggesting this problem to us and for her
constant encouragement.

2. Existence and construction of M.

THeoreM 1. Let E be a Hausdorff barrelled space with a bounded subset which spans a
subspace of dimension = c. Then there is a countable-dimensional subspace M of E* such
that E N M ={0} and 7(E, E'+ M) is barrelled.

Proof. 1t is clear from the hypothesis that E contains a bounded, absolutely convex
subset A which spans a subspace G of dimension c. The gauge of A then defines on G a
norm topology 7(G, G').

Since G and K" both have dimension c, there is an algebraic isomorphism ¢: G — K=,
with injective transpose ¢ :K™ — G*. In F=t'(K™), only finite-dimensional sets are
bounded. For if (x!) is a linearly independent sequence in F, then (¢ '(x)) is a linearly
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independent sequence in K™ and hence cannot be o(K®™, K¥)-bounded. But for any
k€K™, Jxe G such that t(x) =k, and

(k, 71 ) = (t(x), £ G =(x, x1)  (reN).

Consequently (x!) cannot be o(G*, G)-bounded.

Now, let B be the closed unit ball of G'. Then FNB is o(G*, G)-bounded, hence
finite-dimensional, so FN G’ is also finite-dimensional. If N is an algebraic supplement of
FN G’ in F, then G'NIN={0} and dim N=X,.

Let H be any algebraic supplement of G in E, and extend each element of N to E by
giving it the value 0 on H. If M is the set of all these extensions, M is a countable
dimensional subspace of E*, and since the norm topology of G is finer than the induced
topology, we also have E'N M = {0}.

Let X be any o(E'+ M, E)-bounded set and let Y be the set of restrictions to G of
elements of X. Then Y is contained in G'+ N and Y is o(G'+ N, G)-bounded. Let p and
q be the natural projections of G'+ N onto G’ and N respectively. For each y' € Y, define

z'={“P(Y')”_1Y’, if pOl=1,
y’, otherwise,

and let Z be the set of all these z'. Then Z is o(G'+ N, G)-bounded and p(Z) is
o(G’, G)-bounded. Consequently q(Z) must be a ¢(G'+ N, G)-bounded subset of N and
hence finite-dimensional. Since q(Z) and q(Y) span the same subspace of N, we also have
that q(Y) is finite-dimensional. From the construction of M out of N it is then clear that
the natural projection of X into M is finite-dimensional. Thus there is a finite-dimensional
subspace M, of M such that X< E'+ M.

Since T(E, E'+ M,) is barrelled [10, Theorem 1], X is 7(E, E'+ M,)-equicontinuous. It
is therefore 7(E, E'+ M)-equicontinuous, and so E is barrelled for 7(E, E'+ M).

Remark. In the proof of Theorem 1, barrelledness is not used in the actual construc-
tion, so that we may extract the following result which is perhaps of interest in its own
right.

TueoreM la. Let E be a Hausdorff locally convex space with a bounded subset which
spans a subspace of dimension =c. Then there is a countable-dimensional subspace M of
E* such that ENM={0} and for each o(E'+ M, E)-bounded set B there is a finite-
dimensional subspace N of M such that B< E'+ N.

We now proceed to identify a number of special cases to which Theorem 1 applies.

CoroLLARY 1. The conclusion of Theorem 1 holds if E is a Hausdorff barrelled space
with a fundamental sequence of bounded sets, and of dimension = ¢. In particular E may be
a barrelled normed space of dimension =c.

Proof. Suppose that the Hausdorff locally convex space E has a fundamental sequ-
ence of bounded sets (B,). Irrespective of the continuum hypothesis, a countable union of
sets of cardinality < ¢ also has cardinality <c (e.g. apply Konig’s Theorem [§, Ch. 2, 6.7]).
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Thus if E has dimension =c, at least one of the B, must span a subspace of dimension
=c

A normed space of course has a fundamental sequence of bounded neighbourhoods,
but note also that Theorem 1 applies directly.

CoroLLARY 2. The conclusion of Theorem 1 holds if E is a barrelled metrisable space
with dimension > c.

Proof. Let (U,) be a base of neighbourhoods of the origin in E. Let A be the set of
sequences of positive numbers and for each A=(A,)eA let BA)= ﬂ A U,. Now the

B(A) (\e A) form a fundamental family of bounded sets in E and |{B()\) LGA}I =c¢. Thus
if each B(M\) spans a subspace of dimension < ¢ we have dim E = c.c = ¢. Consequently
INe A such that B(A) spans a subspace of E with dimension =c.

ReMARK. Suppose we assume the continuum hypothesis. Then in Corollary 1 we can
replace the condition dim E = ¢ by dim E infinite, provided we exclude from the first part
the spaces which are countable direct sums of copies of K. These are the only countable-
dimensional Hausdorff barrelled spaces [1, p3, Exercise 4]. They are non-metrisable but
they do have fundamental sequences of bounded sets. However they already have their
finest locally convex topology.

Furthermore, the only case of infinite-dimensional metrisable barrelled spaces not
covered by Theorem 1 or Corollary 2 would be that in which the space has dimension c,
while its bounded sets span at most countable-dimensional subspaces. We have not been
able to resolve this case. However we note that such a space would be an inductive limit
of countable-dimensional normed spaces [9, p. 82], which as above are never barrelied.
Consequently it is tempting to conjecture that this case does not occur.

In the remaining applications of Theorem 1, suitable completeness conditions remove
this type of problem.

CoroLLarY 3. The conclusion of Theorem 1 holds when E is any Hausdorff barrelled
space in which there is a sequentially complete infinite-dimensional absolutely convex
bounded set. In particular E may be any infinite-dimensional Fréchet space.

Proof. Let B be a sequentially complete, infinite-dimensional absolutely convex
bounded subset of a Hausdorff locally convex space. The span of B is an infinite-
dimensional Banach space with the gauge of B as norm [2, Proposition III. 1.9], and so
has dimension = ¢ [7, Theorem I-1].

If (x, ) is any sequence in a metrisable locally convex space, then we can choose A, >0
(neN) such that A,x, — 0 as n— . If the space is infinite-dimensional we may choose
the (x,) to be linearly independent, and if it is complete the closed, absolutely convex hull
of {A,x, :n eN} will then satisfy the requirements of the first part.

CoROLLARY 4. Let X be an infinite Hausdorff completely regular topological space and
let C(X) be the space of real-valued continuous functions on X with the topology of compact
convergence. If C(X) is barrelled, the conclusion of Theorem 1 holds for E = C(X).
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Proof. The space F of bounded real-valued continuous functions on X is an infinite-
dimensional Banach space under the topology of uniform convergence on X and so has
dimension = c. The closed unit ball of F is also a bounded subset of C(X).

Remark. Nachbin and Shirota have characterized those spaces C(X) which are
barrelled {8, Theorem 1; 11, Theorem 1].

CoroLLary 5. If E is a Hausdorff ultrabornological space (i.e. inductive limit of
Banach spaces) and if E does not have its finest locally convex topology, the conclusion of
Theorem 1 holds for E.

Proof. Let E be a Hausdorff ultrabornological space, and let & be the collection of
all absolutely convex bounded subsets A of E such that E,, the linear span of A, is a
Banach space with the gauge of A as norm. Then E is the inductive limit of the spaces E,
(A € &) under the natural embeddings [6, p. 148]. This inductive limit topology is the
finest locally convex topology on E if and only if each E, is finite-dimensional. Thus, if E
does not have its finest locally convex topology, some E, has dimension =c.

3. Bounded sets in E'+ M. The key to the success of the construction used in the
proof of Theorem 1 is the fact that each o(E'+ M, E)-bounded set is actually contained in
a corresponding finite-dimensional enlargement of E'. We now show that this is necessar-
ily the case, whenever we have a countable-dimensional enlargement which preserves
barrelledness.

LemMmA. Let E be a Hausdorff barrelled space and let (f,) be a sequence in E*. For
each neN denote by M,, the linear span of {f,f»,...f.} and put M= G M, If Xisa
(non-empty) absolutely convex o(E'+ M, E)-compact set, 3n €N such tﬁ;tl X< E'+M,.

Proof. Let H be the linear span of X. Then H is a Banach space under the gauge of
X as norm. For each neN, put X, =XN(E'+M,). Clearly X= CJ] X, and X, c

X,+1 (neN). We know from [10] that +(E, E'+M,) is barrelled so that E'+M, is
o(E'+ M, E)-quasicomplete. Consequently X, is o(E'+M,, E)-compact, and therefore
o(E'+ M, E)-closed. Since the norm topology on H is finer than the restriction of
o(E'+M, E) to H, each X, is also closed in the Banach space H. It follows from Theorem
1 of [3] that AneN and A >0 such that X< AX,. Thus X< E'+ M,.

THEOREM 2. If E is barrelled, and E'+ M a countable-dimensional enlargement of the
dual, then v(E, E'+ M) is barrelled if and only if each o(E'+ M, E)-bounded set is
contained in some finite-dimensional enlargement of E'.

Proof. If v(E, E'+ M) is barrelled, the o(E'+ M, E)-closed, absolutely convex hull of
each o(E'+ M, E)-bounded set is o(E'+ M, E)-compact. The necessity of the condition
now follows from the Lemma.

The proof of the sufficiency of the condition is the same as the last part of the proof
of Theorem 1.
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Remark. From the proof of Théoréme 3 of [4] it follows that if in Theorem 2, the
topology 7(E, E'+ M) is barrelled, then for each o(E’'+ M, E)-bounded set X there is a
o(E’, E)-bounded set X; and a finite-dimensional bounded subset X, of M such that
XX, +X,.
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