
Can. J. Math.Vol. 45 (5), 1993 pp. 1094-1103 

OSCILLATION CRITERIA FOR SECOND ORDER 
NONLINEAR DIFFERENTIAL EQUATIONS 

INVOLVING INTEGRAL AVERAGES 

JAMES S. W. WONG 

ABSTRACT. Consider the second order nonlinear differential equation 

y" + a(t)f(y) = 0 

where a{t) G C[0,oo),f(y) G C1 (-00,00),/'(y) > 0 and yf(y) > 0 for y ^ 0. Fur
thermore,/^) also satisfies either a superlinear or a sublinear condition, which covers 
the prototype nonlinear function f(y) = |vP sgny with 7 > 1 and 0 < 7 < 1 known 
as the Emden-Fowler case. The coefficient a(t) is allowed to be negative for arbitrarily 
large values of t. Oscillation criteria involving integral averages of a{t) due to Wintner, 
Hartman, and recently Butler, Erbe and Mingarelli for the linear equation are shown to 
remain valid for the general equation, subject to certain nonlinear conditions on/(y). In 
particular, these results are therefore valid for the Emden-Fowler equation. 

§1. Consider the second order nonlinear differential equation 

(1) y" + a(t)f(y) = 0, fG[0,oo), 

where a(t) G C[0,00) and/(» G C!(—00,00),/'(y) > 0 for all >\ and satisfies yf(y) > 0 
if y 7̂  0. The prototype of equation (1) is the so-called Emden-Fowler equation 

(2) y" + a(t)\y\1sgny = 0, 7 > 0. 

Here we are interested in the oscillation of solutions of ( 1 ) when/(y) satisfies, in addition, 
the following sublinear condition: 

(Fi) 0 < f £- 1° £- < co, for all e > 0, 

which corresponds to the special case/(y) = \yP sgny when 0 < 7 < 1, and also the 
following superlinear condition: 

(F2) 0 < r ^ - , H ^ - < 00, for all e > 0, 

which corresponds to the special case/(x) = |;yp sgn y when 7 > 1. These assumptions 
were introduced systematically in [14]. The coefficient a(t) is allowed to be negative for 
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arbitrarily large values of t. Under these circumstances, in general not every solution to 
the second order nonlinear differential equation (1) is continuable throughout the entire 
half real axis. For this reason, we confine ourselves with those solutions of (1) that exist 
and can be continued on some interval of the form [to, oo) where to > 0 may depend on 
the particular solution. A solution y(t) is said to be oscillatory if it has arbitrarily large 
zeros, i.e. for each t G [to, oo), there exists t\ > t such that y(t\) — 0. Equation (1) is 
called oscillatory if all continuable solutions are oscillatory. We are here concerned with 
sufficient conditions a(t) so that all solutions of (1) are oscillatory. 

In the linear case, i.e. equation (2) when 7 = 1, the most important simple oscillation 
criterion is the well known Fite-Wintner theorem which states that if a(t) satisfies 

(Ao) lim A(T) = lim / a(t) dt = +oo, 
T—^oo T—+CO JO 

then equation (2) is oscillatory when 7 = 1 . Fite [5] assumed in addition that a(t) is non-
negative, whilst Wintner [11] in fact proved a stronger result which required a weaker 
condition on a(t) and involved the integral average of A(t), namely, 

1 T 

(Ai) lim - / A(t)dt = +oo. 
T—^oo T JO 

Clearly, (Ao) implies (Aj). Wintner's result was later improved by Hartman [6] who 
proved that (Ai) can be replaced by two weaker conditions 

1 fT 

(A2) liminf- / A(t) dt > —oo, 
T—>oo T JO 

and that the limit in (Ai) does not exist, i.e. 

I fT I fT 
(A3) l im in f - / A(t)dt < lim sup - / A(t)dt. 

r-+oo T Jo j ^ ^ T Jo 
Recently in connection with the study of oscillation theory for linear systems, Butler, 
Erbe and Mingarelli [3] discovered another new oscillation criterion for the linear equa
tion, namely, condtion (A2) together with the following 

1 fT j 

(A4) lim sup - / A (t) dt = +00, 
r—oo T Jo 

are sufficient for oscillation of the linear equation. Note that condition (A4) is implied by 
a weaker form of (Ai) upon application of Schwarz's inequality to 

1 fT 
(A5) lim sup— / A(t)dt =+00. 

T-^OO T Jo 

Hence the result of Butler, Erbe and Mingarelli also extends the Wintner's condition (Ai ). 
In the sixties, efforts have been made to show that oscillation criteria for the linear 

equation remain valid for the Emden-Fowler equation (2) and under appropriate assump
tions on f{y) for the more general equation ( 1 ). The first result is due to Waltman [ 12] who 
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proved that the Fite-Wintner condition ( A0) is sufficient for oscillation of (2) when 7 > 1. 
This result was extended to the more general equation (1) by Bhatia [1] and Wong [13]. 
The extension of Wintner's condition (Ai) involving integral averages to the nonlinear 
differential equation (2) remained elusive until Butler's classical work [2] in which he 
proved that Hartman's theorem remains valid for equation (2), 7 > 1. Furthermore, in 
the sublinear case either condition (A3) or (A5) alone is sufficient for oscillation. For the 
more general equation, Butler [2] requires rather restrictive conditions on the nonlinear 
function some of which are difficult to verify except in the Emden-Fowler case (see also 
[8], [9] and [10]). Recently, we showed [19] that the Butler-Erbe-Mingarelli criterion 
remained valid for sublinear equation (2), i.e. for 0 < 7 < 1. The superlinear case, 
however, remains open. 

For the more general sublinear equation (1) subject to (F2), we have modified in [18] 
a condition first introduced by Coles [4] to prove extensions of Belohorec's oscillation 
theorem. Denote F(y) = Jo 77̂  • We require that 

(F3) /'O0FO0 > - > 0, for all y. 
c 

Similarly, we introduce the corresponding superlinear condition 

(F4) f'(y)G(y)>d>\, for all y, 

where G(y) = J™ 4yy It is natural to ask whether oscillation criteria for the Emden-
Fowler equation (2) can be extended to the more general equation (1) subject to condi
tions (F3) or (F4) on the nonlinear function/(y). The purpose of this paper is to show 
that both Hartman and Butler-Erbe-Mingarelli oscillation criteria remain valid for the 
more general equation (1). In particular, we prove that Butler-Erbe-Mingarelli theorem 
remains valid for equation (2) in the superlinear case. Our main results are 

THEOREM 1. Letfiy) satisfy (F\ ) and (FT,). Then conditions (A2) and (A3) imply that 
equation (1) is oscillatory. 

THEOREM 2. Letfiy) satisfy (F\ ) and (F$). Then conditions (A 2) and (A4) imply that 
equation (1) is oscillatory. 

THEOREM 3. Letfiy) satisfy (F2) and (F4). Then conditions (A2) and (A3) imply that 
equation (I) is oscillatory. 

THEOREM 4. Letfiy) satisfy (F2) and (F4). Then conditions (A2) and (A4) imply that 
equation (I) is oscillatory. 

COROLLARY 1. Letfiy) satisfy (F\) and (F3). Then conditions (A2) and (A5) imply 
that equation (1) is oscillatory. 

COROLLARY 2. Letfiy) satisfy (F2) and (F4). Then conditions (A2) and (A5) imply 
that equation (1) is oscillatory. 
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COROLLARY 3 ([19]). Conditions (Ai) and (A4) are sufficient for oscillation of (2) 

in the sublinear case, i.e. 0 < 7 < 1. 

COROLLARY 4. Conditions (A2) and (A4) are sufficient for oscillation of (2) in the 

superlinear case, i.e. 7 > 1. 

§2. In this section, we shall deal with equation ( 1 ) in the sublinear case, i.e. when the 

nonlinear function f(y) satisfies (Fj) and (F3). We shall prove by contradiction. Suppose 

that equation (1) has nonoscillatory solution y(t) which can, in view of (Fj) and sign 

condition yfiy) > 0 when y ^ 0, be assumed to be positive for t > to, where to may 

depend on the solution y(t). Define z(t) — F(y(t)). We deduce from (1) that z(t) satisfies 

the second order nonlinear differential equation 

(3) z" + a(t)+f'(y)zf2 =0. 

Since f(y) > 0, we note that the integral of f (y(f)\zh (f) over [to,00) exists, finite or 

infinite. First we consider the case when J^f'(y)z' = Ko < 00. We shall show that in 

this case y(t) satisfies the following asymptotic behavior 

r z{t) v F(y{t)) n 
(4) lim — = hm — = 0. 

Using the Schwarz Inequality, we estimate F(y(t)) as follows: 

where t\ > to. Since f(y)z' G L1 [to, 00), for each e > 0, we can choose t\ sufficiently 

large so that 

(6) / 
Jt, 

^ff(y)/ds<£ 

f(y)2 ~ ^ 4 ' 

Using (F3) and (6) in (5) above, we find 

(7) F(y(t)) < F(y(tl )) + ^ ( j f F(y(sj) ds) *. 

Suppose that F(y(t)) G Ll(t\, 00)', then F(y(t)) is bounded by (7) hence (4) is satisfied. 

Otherwise, we can choose ti > t\ so that F(y(t\ )) < ^ (j^ F(y) ds)2 for t > t2 which 

together with (7) yields 

(8) F(y(t))<^(^F(y(s))dsj 

Upon integrating (8), we have for t > ti 

(9) (jf F(y) ds) ' - (£2 F(y) ds)1 <^(t- tz) <~t. 
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Once again we can choose t^ > t2 so that J/2 F(y) ds < ^ft2 for all t > r3. This together 
with (8) and (9) prove that z(t) — F(;y(0) < cet. Since e > 0 is arbitrary, this proves (4). 

We are now ready to complete the proof in c a s e / ' ^ z ' E Ll [to, oo). Integrating (3) 
from to to r, one obtains 

(10) A(t) = zf(t0)+A(to) - zf(t) - fff(y)z\ 

from which it follows 

(11) A2(0 < 3{cg + z'2(r)+ ( / V W / ) 2 ) , 

where Q = zf(to) + A(f0), or simply 

(12) A2(t)<3(C2 + K2+z'2(t)). 

Next we estimate integral of z! as follows 

1 / V < I Max — L - fTf>(y)/ 

< ^ Max F(y(t)) 
T t0<t<T V ' 

By (4), we can choose u > to such that \z(t)\ <t,t>t4', hence 

(14) Max F(y(t)) < Max z(t) + T <K\+T. 
k<t<T v y ?o<K?4 

Combining (13) and (14) in (12), we have 

(15) | f A\s)ds < 3(C2
0 + K2

0) + ̂ (Kx +7), 

where K\ = Max?0<r<f4 z(t). Letting T tend to infinity in (15) we obtained the desired 
contradiction to (A4) proving Theorem 2 in the case. Next, we return to (10) and take 
integral average as follows 

^ / > ) ^ = C 0 ( l - | ) - l ( Z ( 7 ) - * o ) ) 
(16) t T T 

-\j jfiyV. 
T JtQ JtQ 

Since f'(y)z'~ G L1 [to, oo), we let T tend to infinity in (16) and find on account of (4) 

lim - f A(s)ds = lim - f A(s)ds = C0 - #0, 
a desired contradiction to (A3), proving Theorem 1 in this case. 

We now return to the case when f'(y)z! fi Lx[to, 00). Here the integral average of 
Jj0f

f(y)zf also diverges. It therefore follows (16) and z{t) > 0 that lim^oo j j j A(s) ds = 
—00, which is incompatible with (A2). This proves both Theorems 1 and 2 in case 
fiy)/ £L][t0,00). 

Since (A5) implies (A4) so Corollary 1 follows from Theorem 2. When f(y) — 
{yl1 sgny then (F3) is satisfied with c = - ^ > 0, thus Corollary 3 follows from Theo
rem 2. 
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§3. We now return to the proofs of Theorems 3 and 4 for equation (1) in the super-
linear case. Define w(t) — G(;K0) and use (1) to obtain 

(17) W' = a{t)+f(yW\ t>t0, 

which is similar to (3) in the sublinear case. Once again we consider the two cases when 
ff(y)w'2 € Ll[to, oo) and f'(y)w'2 $ Ll [t0, oo). In the first instance, the proof follows 
much the same as given in the previous section. Here f'(y)w' G l) [to, oo) implies that 
w(t) — o(t) as t —> oo as in (4). Repeating the proof from (5) to (15), we obtain a 
contradiction to (A4) proving Theorem 4. On the other hand, we conclude similarly from 
(16) that lim^oo j J0

r A exists as a finite limit which contradicts (A3), proving Theorem 3 
when f'(y)w'2 G Ll[to,oo). 

The more difficult case for the superlinear equation is when f'(y)z' fi Ll [to, 00). Here 
we adopt a simplified version of Butler's proof given in our earlier paper [17]. By (F4) 
with d > 1, we can choose /x, fi\ such that 0 < [i < /ij < 1 and fid > 1. Now, we claim 

(18) l imsupU f f / 'OOv/ - w(t)\ > 0. limsupl/xi f [ f'(y)w'2 -w(t)\ 

Denote the double integral in (18) by 0(0, hence O'(0 = S!0f(yW2 —• 00 as t —> 00 
monotonically and O"(0 = f'iyW > 0. Suppose that (18) does not hold; then there 
exists t\ > to such that 

(19) 0 (0 < — vKO, t>tx. 
Mi 

Using (19), we can estimate as follows 

(20) N w N 
o"(0 «*'(0 . VfWWit) 

^ ^^-T VÏÏ1 <3>(0 ~ V^W 
y ( 0 
w(0 > VMl^ 

Since O(j0) = 0, so there exists h > to such that Ofe) = 1. Let F = max(fi,/2), then 
O(F) > 1. Now integrate (20) from F to t and apply Schwarz's Inequality to the left hand 
side of (20) to obtain 

n n u * ' « , * ( 0 \ i . r—„ w(r) 
(21) l l o W ° g * ® ) ^V^log—. 
The right hand side of (20) can be estimated from below by (19) as follows: 

V/xicflog-— > V M l o g — T = -
w(r) w(r) 

( 2 2 ) = v^{log*{/) + log m - log w©} 

>t /^{log*(0-log*(r)} 
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where y,\ > n and / sufficiently large, say t>tj>t. Combining (21) and (22), we find 

l0ëW)-lidl0ëWy 
whence 

(23) d>'(0<î> (̂0 > | J | > 0. 

Since [id > 1, a quadrature of (23) gives the desired contradiction, so (18) must hold. 
Thus there exists a sequence {tk} tending to infinity as k —-> oo such that 

(24) l im{ M l Ofe)-vvfe)}>0. 

Integrating (17) once, we find 

W{t) = ^ o ) + A(0-A(r0) + ff'(y)w'\ 
J to 

which can be further integrated from ro to tk and yields 

(25) w(tk) = w(t0) + #ofe - fo) + T A W ds + °(f*)-

A) 

where BQ = w'(^o) — ̂ (*o)- Dividing (25) by tk and regrouping give 

(26) u-^tk)+Mtù) = ^ + «o( i - ?) 4 r A-

We note from (24) that for sufficiently large k, [i\<3>(tk) > w(tk). Substituting this into 
(26), we have 

(27) £(-*&) + ,*,*&)) > ^ +fi»(l - *) + - TA. 
* tk ^ tkJ tk J t0 

Let & tend to infinity in (27) above, and note that [i\ < 1, we find 

1 rtk 
lim — / A(s)ds = —oo, 

/c—>oo tv J to 

which contradicts (A2). This completes the proof for both Theorem 3 and Theorem 4 in 
the case when/'ijOw'- ^ L1 [fa, 00). 

Corollary 2 follows from Theorem 4 in the same manner as in Section 2. For equa
tion (2) with 7 > 1, condition (F4) becomes 

ff(y)G(y)>l(l-\y{ =d>\, 

and hence Corollary 4 follows. 
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§4. We conclude in this section with several remarks indicating the usefulness of 
these extensions and the boundary of known results. 

REMARK 1. Both Corollary 2 and Corollary 4 imply Butler's theorem [2] that the 
Wintner's oscillation condition (Ai ) remains valid for the Emden-Fowler equation (2) in 
the superlinear case, i.e. 7 > 1. 

REMARK 2. To illustrate the usefulness of condition (Aj ) involving integral aver
ages, one need only to consider a(t) = 1 + sint + tcost. Here A(t) = t + tsint which 
clearly fails (Ao) but satisfies (A\). 

REMARK 3. On the other hand, let a(t) = tcost so A(t) = tûn t + cos t. Here A(t) 
fails to satisfy (Ai ), but satisfies conditions (A2) and (A3) so that equation (1) subject to 
(F2) and (F4) is oscillatory. 

REMARK 4. Let 0 < a < 1. Define a(t) = ta cos t + af*~l sin t so A(t) = ta sin t. 
Again A(t) fails condition (Ai). Although A(t) satisfies (A2), it fails (A3). Nonetheless, 
condition (A4) is satisfied so we have again oscillation in the superlinear case. 

REMARK 5. We now consider the sublinear function/(y) = |_y|A sgn y+y, 0 < À < 1, 
(see also [10]). Clearly/(y) satisfies (Fi). Furthermore, f'(y) = X\y\x~l + 1 > 1 > 0 for 
all y. Note that for |y\ < 1 we have 

dv 1 r\y\ dv \y\ 

and for \y\ > 1, 

Hence, for \y\ < 1 

^' k vx + v ~ 2 Jo vA 1 - A ' 

F(y) = /W dv_ > ri _dv_ > 1 
^' Jo vx + v -Jo vx+v " 2(1 - A ) 

| V | 1 - A 

f'(y)F(y) > ^Y3Â) ( A | y | A _ 1 + l) 

1 :(A + b | ' - A )> A 

and for \y\ > 1 

2 (1 -A) v l"r| 7 - 2 ( l - A ) ' 

f'(y)p(y) > ^ - ^ ( A b l A _ 1 + !) > 1 
2(1 - A)v ]J] 2 (1-A) 

In any case, we hawcff(y)F(y) > 2(1
A_A) > 0; hence condition (F3) is applicable. 

REMARK 6. The sublinear condition (Fi) does not have any requirement about the 
behaviour of f(y) at infinity. Likewise, the sublinear condition (F2) does not impose in-
tegrability of f(y) near y = 0. However, should l i m ^ ^ F(y) or lim|y|_^0 G(y) exist as 
finite numbers then condition (F3) or condition (F4) imply that/;(v) > k > 0 is bounded 
below uniformly for all y. In this case the oscillation of equation (1) reduces to that of 
the linear equation, see [14] and also [8, Theorem A]. As a typical example, we consider 
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f(y) — yQy]1 + \y\ ~~) which satisfies both (Fi) and (F2); hence it is both superlinear and 
sublinear. On the other hand,/7(y) = ||_y| 2 + ^\y\~ï is positive for all y and indeed have 
its minimum value y/3 at \y\ — | . In this case, both (F3) and (F4) are therefore satisfied. 

We refer the reader to [20], [21] for some other oscillation results for equation (1 ) by 
successful application of these nonlinearity conditions. 

REMARK 7. Condition (A5) was known to be sufficient for oscillation in the sub-
linear case; see [14] and [18]. On the other hand, Kamenev [7] showed that the iterated 
condition of (A5), namely 

(A6) lim sup — i(T- t)aa(t) dt = +00, 

for some a > 1 alone is sufficient for oscillation of the linear equation, (whilst (A5) is 
not). It was also extended to equation (2) in the sublinear case; see [16]. However, it is 
not known whether (A^) plus the following compatible condition 

1 T 

(A7) lim inf —J(T- tfa(t) dt > -oo, 
7-^oo 1 • JO 

for some (5 > 1 is sufficient for oscillation of equation (2) in the superlinear case. The 
special case when (3 = 0 in (A7) has been answered in the affirmative in an earlier 
paper [15]. (see also [8]). 

ADDED IN PROOF. A partial answer to the question given in Remark 7 was given in 
a recent paper of the author, Differential and Integral Equations, 6(1993), 83-91. 

REFERENCES 

1. N. P. Bhatia, Some oscillation theorems for second order differential equations, J. Math. Anal. Appl. 
15(1966), 442-446. 

2. G. J. Butler, Integral averages and the oscillation of second order ordinary differential equation, SIAM 
J. Math. Anal. 11(1980), 190-200. 

3. G. J. Butler, L. H. Erbe and A. B. Mingarelli, Riccati techniques and variational principles in oscillation 
theory for linear systems, Trans. Amer. Math. Soc. 303(1987), 263-282. 

4. W. J. Coles, A nonlinear oscillation theorem, International Conference on Differential Equations, (ed. 
H. A. Antosiewicz), Academic Press, New York, 1975, 193-202. 

5. W. B. Fite, Concerning the zeros of the solutions of certain differential equations, Trans. Amer. Math. Soc. 
19(1918), 341-352. 

6. P. Hartman, On nonoscillatory linear differential equations of second order, Amer. J. Math. 74(1952), 
389-400. 

7. I. V. Kamenev, Integral criterion for oscillations of linear differential equations of second order, Math. 
Zametki 23(1978), 249-251. 

8. M. K. Kwong and J. S. W. Wong, Linearization of second order nonlinear oscillation theorems, Trans. 
Amer. Math. Soc. 279(1983), 705-722. 

9. Ch. G. Philos, Oscillation criteria for second order superlinear differential equations, Canad. J. Math. 
41(1989), 321-340. 

10. , Integral averages and oscillation of second order sublinear differential equations, Diff. and Inte
gral Equations 4(1991 ), 205-213. 

11. A. Wintner, A criterion of oscillatory stability, Quarterly J. Appl. Math. 7(1949), 114-117. 
12. P. Waltman, An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Appl. 10(1965), 

439-441. 

https://doi.org/10.4153/CJM-1993-060-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-060-3


OSCILLATION CRITERIA NON-LINEAR DIFFERENTIALS 1103 

13. J. S. W. Wong, On two theorems ofWaltman, SIAM J. Appl. Math. 14(1966), 724-728. 

14. , Oscillation theorems for second order nonlinear differential equations, Bull. Inst. Math. Acad. 

Sinica 3(1975), 283-309. 

15. , An oscillation criterion for second order nonlinear differential equations, Proc. Amer. Math. Soc. 

98(1986), 109-112. 

16. , An oscillation criterion for second order sublinear differential equations, Conference Proceedings, 

Canad. Math. Soc. 8(1987), 299-302. 

17 , Oscillation theorems for second order nonlinear ordinary differential equations, Proc. Amer. Math. 
Soc. 106(1989), 1069-1077. 

18 , A sublinear oscillation theorem, J. Math. Anal. Appl. 139(1989), 408-412. 

19. , An oscillation theorem for second order sublinear differential equations, Proc. Amer. Math. Soc. 

110(1990),633-637. 

20. , Oscillation of sublinear second order differential equations with integral coefficients, J. Math. 

Anal. Appl. 162(1991), 476-481 . 

2 1 . , Oscillation criteria for second order nonlinear differential equations with integrable coefficients, 

Proc. Amer. Math. Soc. 115(1992), 389-395. 

Chinney Investments Limited 

1218 Swire House 

Hong Kong 

Department of Mathematics 

University of Science and Technology 

Hong Kong 

https://doi.org/10.4153/CJM-1993-060-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-060-3

