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Abstract

In two recent papers, Albrecht and White [‘Counting paths in a grid’, Austral. Math. Soc. Gaz. 35 (2008),
43–48] and Hirschhorn [‘Comment on “Counting paths in a grid”’, Austral. Math. Soc. Gaz. 36 (2009),
50–52] considered the problem of counting the total number Pm,n of certain restricted lattice paths in an
m × n grid of cells, which appeared in the context of counting train paths through a rail network. Here we
give a precise study of the asymptotic behaviour of these numbers for the square grid, extending the results
of Hirschhorn, and furthermore provide an asymptotic equivalent of these numbers for a rectangular grid
with a constant proportion α = m/n between the side lengths.
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1. Introduction

In the recent paper [2], Albrecht and White studied the problem of counting the number
Pm,n of lattice paths in an m × n rectangular grid starting at (1, p) and ending at (m, q),
for some p, q with 1 ≤ p ≤ q ≤ n, where the permissible moves from (i, j) are to
(i, j + 1), (i + 1, j) or (i + 1, j + 1); throughout this paper we thus refer to ‘permissible
lattice paths’. These numbers arise in connection with a scheduling problem for train
paths in a rail network (see [2]), where, as the authors mention, the order of magnitude
of the numbers Pm,n for large values of m and n would be of interest. An example
visualizing all such paths for m = 2 and n = 3 is given in Figure 1.

By solving a bivariate recurrence via generating functions, in [2] an explicit formula
for Pm,n was obtained. Recently, Hirschhorn [6] obtained the following simpler
expression for Pm,n:

Pm,n =
∑
k≥0

2k

(
m − 1

k

)(
n + 1
k + 2

)
. (1.1)
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F 1. A visualization of all 14 permissible lattice paths for a grid of m = 2 rows and n = 3 columns;
thus P2,3 = 14.

Using formula (1.1) and earlier results from [5], Hirschhorn [6] was able to describe
the asymptotic behaviour of Pm,n for the particular case m = n, that is, the diagonal
elements, as follows:

Pm,m ∼
1√

16π
√

2m
(
√

2 + 1)2m+1 for m→∞.

Based on numerical computations, he also made the following conjecture about the
second-order term in the asymptotic expansion of Pm,m:

Pm,m ∼
1√

16π
√

2m
(
√

2 + 1)2m+1 ·

(
1 −

c1

m
+ o(m−1)

)
for m→∞, (1.2)

with a constant c1 ≈ 0.824524.
The aim of this paper is to give a more detailed study of the asymptotic behaviour

of the numbers Pm,n for large values of m and n, as it is of interest here. First, we
demonstrate how to prove the conjecture (1.2) and to identify the constant c1 for the
diagonal elements Pm,m. The method applied would, at least in principle, even allow
us to obtain asymptotic expansions for Pm,m of arbitrary high order; here we restrict
ourselves to stating the first three terms in the asymptotic expansion, but one could
easily go further. Secondly, we provide results for the asymptotic behaviour of Pm,n for
m, n→∞, if m = αn with a positive constant α ∈ R+, which covers the most important
growth range of m and n. One could also obtain refined results and extensions to other
growth ranges of m and n, but we restrict ourselves to this case, since it seems to be of
most interest and we wish to avoid running into further technicalities.

We remark that there are relations to the problem of counting the number rm,m of
ways a king can cross an m × m chessboard from the lower left-hand corner to the
upper right-hand corner by using only moves to a neighbouring square either to the
right or upwards or diagonally upwards to the right, which was studied by Hirschhorn
in [5]. As a consequence of our computations we also obtain a refinement on the
corresponding asymptotic results stated in [5].

Our results are obtained by applying complex analytic techniques, namely the so-
called diagonalization method [4] and the saddle point method (see, for example, [3]),
respectively, and use as a starting point the following explicit formula for the bivariate

https://doi.org/10.1017/S0004972711002759 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002759


448 A. Panholzer and H. Prodinger [3]

generating function P(x, z) :=
∑

m,n≥1 Pm,nxmzn, which was computed in [2, 6]:

P(x, z) =
xz

(1 − z)2(1 − x − z − xz)
. (1.3)

2. Asymptotic results for the diagonal elements

We apply a method introduced by Hautus and Klarner [4] in combination with
singularity analysis of generating functions to obtain precise results concerning the
asymptotic behaviour of the diagonal elements Pm,m, that is, the number of permissible
lattice paths in an m × m square grid, for m→∞.

Let us assume that the bivariate generating function F(x, z) :=
∑

m,n≥0 Fm,nxmzn of
a sequence Fm,n converges for all x and z such that |z| < A and |x| < B, for arbitrary
A, B > 0. Then it has been shown in [4] that, for all complex t with |t| < AB,
the generating function F̂(t) :=

∑
n≥0 Fn,ntn of the diagonal can be computed via the

following contour integral:

F̂(t) =
1

2πi

∫
C

F( t
z , z)

z
dz,

where the contour C is a simple closed positively oriented curve around the origin
staying in the annulus {z ∈ C : |t|/B < |z| < A}.

Considering the bivariate generating function P(x, z) of the numbers Pm,n as given
in (1.3), one can immediately see that the series certainly converges for all x, z
with |x|, |z| < 1

3 . Thus, for all complex t with |t| < 1
12 , the generating function P̂(t) :=∑

m≥1 Pm,mtm of the diagonal elements can be obtained by the contour integral

P̂(t) =
1

2πi

∫
C

P( t
z , z)

z
dz,

where we can always choose as contour C a positively oriented circle around the origin
with radius 3

10 . Plugging in (1.3), simple manipulations lead to

P̂(t) =
1

2πi

∫
C

P( t
z , z)

z
dz = −

1
2πi

∫
C

t
(1 − z)2(z2 − (1 − t)z + t)

dz. (2.1)

The solutions of the equation z2 − (1 − t)z + t = 0 are given by

z1(t) =
1 − t −

√
1 − 6t + t2

2
and z2(t) =

1 − t +
√

1 − 6t + t2

2
.

Then z1(t)→ 0 and z2(t)→ 1, for t→ 0. Thus, for all t in a complex neighbourhood
of t = 0, we have that in the contour integral (2.1) the only singularity enclosed by
the circle C of radius 3

10 is a simple pole at z = z1(t). Thus we can evaluate the
contour integral (2.1) by an application of the residue theorem and obtain the following
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representation of the generating function P̂(t) of the diagonal elements Pm,m valid
a priori in a complex neighbourhood of t = 0, but which is uniquely given in a much
larger complex domain due to analytic continuation:

P̂(t) = − Res
z=z1(t)

t
(1 − z)2(z − z1(t))(z − z2(t))

= −
t

(1 − z1(t))2(z1(t) − z2(t))

=
4t

(1 + t +
√

1 − 6t + t2)2
√

1 − 6t + t2

=
2t

(1 − t)2 + (1 + t)
√

1 − 6t + t2
·

1
√

1 − 6t + t2

=
1

√
1 − 6t + t2

·
(1 − t)2 − (1 + t)

√
1 − 6t + t2

8t

=
(1 − t)2

8t
√

1 − 6t + t2
−

1 + t
8t

.

As we have remarked earlier, there are relations between the problem considered
and counting the number rm,m of ways a king can cross an m × m chessboard from
one corner of the board to the opposite one, where only the three kinds of ‘forward
moves’ are permissible; we now make this relation precise. It has been stated in
[5, Equation (2)] that the generating function R(t) :=

∑
m≥0 rm+1,m+1tm is given by

R(t) =
1

√
1 − 6t + t2

,

which implies that 8tP̂(t) = (1 − t)2R(t) − (1 + t). Extracting coefficients gives the
relation

Pm,m = 1
8 ∆2rm,m for m ≥ 1, (2.2)

where, as usual, ∆ denotes the forward difference operator, ∆ f (m) := f (m + 1) − f (m),
for an arbitrary function f . This implies also that ∆2rm,m is divisible by 8.

Since it might be of independent interest, we first deduce from R(t) an asymptotic
expansion for the numbers rm+1,m+1 and then use (2.2) to show a corresponding one
for Pm,m. We get 1 − 6t + t2 = (t − ρ)(t − ρ) = (1 − ρt)(1 − ρt), with ρ := 3 + 2

√
2 and

ρ := 3 − 2
√

2. Thus the unique dominant singularity, that is, the singularity of smallest
modulus, of R(t) is at t = ρ. According to singularity analysis (see [3]), the asymptotic
behaviour of the coefficients of

R(t) =
1√

1 − ρt
√

1 − ρt

is determined by the local behaviour of R(t) in a complex neighbourhood of the
dominant singularity t = ρ. Thus we expand R(t) around t = ρ (that is, in terms
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of (1 − ρt)), where we restrict ourselves to determining the first three terms in the
asymptotic expansion. We obtain

R(t) =
ρ√

1 − ρt
√
ρ2 − ρt

=
ρ√

1 − ρt
√
ρ2 − 1 + 1 − ρt

=
ρ√

ρ2 − 1
√

1 − ρt
·

1√
1 +

1−ρt
ρ2−1

=
ρ√

ρ2 − 1
·

1√
1 − ρt

·

(
1 −

1 − ρt
2(ρ2 − 1)

+
3
8

(1 − ρt)2

(ρ2 − 1)2
+ O((1 − ρt)3)

)
=

ρ√
ρ2 − 1

(1 − ρt)−
1
2 −

1
2

ρ

(ρ2 − 1)
3
2

(1 − ρt)
1
2 +

3
8

ρ

(ρ2 − 1)
5
2

(1 − ρt)
3
2

+ O((1 − ρt)
5
2 ).

(2.3)

By extracting coefficients from the binomial series and applying singularity
analysis, respectively, we immediately obtain from (2.3) that

rm+1,m+1 = [tm]R(t) = ρm+1
( (

m− 1
2

m

)
√
ρ2 − 1

−

(
m− 3

2
m

)
2(ρ2 − 1)

3
2

+
3
(

m− 5
2

m

)
8(ρ2 − 1)

5
2

+ O(m−
7
2 )
)
, (2.4)

with

ρ = 3 + 2
√

2 and
(
α

m

)
:=

α · (α − 1) · (α − 2) · · · (α − m + 1)
m!

the common definition of the binomial coefficient for α real and m a nonnegative
integer.

To get a final result we require an asymptotic expansion of binomial expressions(
m+s

m

)
, with s ∈ R fixed, for m→∞, which can be obtained easily by using Stirling’s

formula for the factorials (see, for example, [1] and note that modern computer algebra
systems ‘know’ these expansions); one gets(

m + s
m

)
=

ms

Γ(s + 1)
·

(
1 +

s(s + 1)
2m

+
s(s + 1)(s − 1)(3s + 2)

24m2
+ O(m−3)

)
. (2.5)

The following theorem easily follows from (2.4) and (2.5) and evaluations of the Γ-
function.

T 2.1. The number rm+1,m+1 of ways a king can cross an (m + 1) × (m + 1)
chessboard from one corner of the board to the opposite one, where only the three
kinds of ‘forward moves’ are permissible, admits, for m→∞, the following asymptotic
expansion:

rm+1,m+1 =
(
√

2 + 1)2m+1

2 · 2
1
4
√
π
√

m
·

(
1 +

3
√

2 − 8
32m

+
113 − 72

√
2

1024m2
+ O(m−3)

)
.
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Finally, using (2.2), Theorem 2.1 also leads, after easy computations, to an
asymptotic result concerning the numbers Pm,m.

C 2.2. The number Pm,m of permissible lattice paths in an m × m square grid
admits, for m→∞, the following asymptotic expansion:

Pm,m =
(
√

2 + 1)2m+1

4 · 2
1
4
√
π
√

m
·

(
1 −

c1

m
+

c2

m2
+ O(m−3)

)
,

with

c1 =
8 + 13

√
2

32
≈ 0.824524 and c2 =

401 + 312
√

2
1024

≈ 0.822494.

3. Asymptotic results for rectangular grids with a constant proportion between
the side lengths

We determine the asymptotic behaviour of the number of permissible paths Pm,n

in an m × n rectangular grid with a constant proportion α = m/n > 0 between the side
lengths m and n, for n→∞, via the saddle point method. From the bivariate generating
function P(x, z) as given in (1.3) we first obtain:

Pm,n = [xmzn]P(x, z) = [xm−1zn−1]
1

(1 − z)2(1 − z − x(1 + z))

= [xm−1zn−1]
1

(1 − z)3(1 − x 1+z
1−z )

= [zn−1]
(1 + z)m−1

(1 − z)m+2
.

Due to Cauchy’s integral formula, we can write this expression as a contour integral:

Pm,n =
1

2πi

∫
C

(1 + z)m−1

zn(1 − z)m+2
dz =: I,

where C is a positively oriented simple curve around the origin within a suitable
complex domain, for example, within the punctured unit disc {z ∈ C : 0 < |z| < 1}. To
evaluate the integral expression I asymptotically, we choose the contour C in such a
way that it passes through the saddle point z = r′ located on the positive real axis. If
we denote the integrand of the contour integral by

g(z) :=
(1 + z)m−1

zn(1 − z)m+2
,

then the saddle point satisfies g′(r′) = 0. The resulting equation

g′(z) = −
n(1 + z)m−1

zn+1(1 − z)m+2
+

(m − 1)(1 + z)m−2

zn(1 − z)m+2
+

(m + 2)(1 + z)m−1

zn(1 − z)m+3
= 0
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has the solutions

z1,2 =
−(2m + 1) ±

√
(2m + 1)2 + 4n(n + 3)
2(n + 3)

.

Thus the saddle point of interest is given by

r′ =
−(2m + 1) +

√
(2m + 1)2 + 4n(n + 3)
2(n + 3)

. (3.1)

Since we have assumed that m = αn, with a constant α > 0, we can plug this into (3.1).
After some easy computations, one gets that r′ has the following asymptotic behaviour,
for n→∞:

r′ =
√

1 + α2 − α + O(n−1).

In the present problem it suffices that the contour C does not really pass through the
saddle point r′, but just passes close by. Since it simplifies the computations, we
thus choose as our contour C a positively oriented circle around the origin with radius
r :=
√

1 + α2 − α, that is,

C = {z ∈ C : z = reiϕ, 0 ≤ ϕ ≤ 2π} with r =
√

1 + α2 − α.

The idea of the saddle point method is that the main contribution of the contour
integral comes from the curve in a small neighbourhood of the saddle point. Therefore
we write the integral expression as I = I1 + I2 with I1 := (1/2πi)

∫
C1

g(z) dz and I2 :=

(1/2πi)
∫

C2
g(z) dz, where we split the contour C into the following two parts:

C1 := {z ∈ C : z = reiϕ, −ϕ0 ≤ ϕ ≤ ϕ0} with ϕ0 = ϕ0(n) = n−
1
2 +ε and ε > 0,

C2 := {z ∈ C : z = reiϕ, ϕ0 < ϕ ≤ 2π − ϕ0}.

We first evaluate I1, which turns out to give the main contribution to I, whereas I2

is asymptotically negligible. To do this we require an asymptotic expansion of g(z),
for z ∈C1, that is, for z = reiϕ with |ϕ| small. From 1 + z = 1 + reiϕ = r + 1 + irϕ −
(rϕ2/2) + O(ϕ3) we easily get

(1 + z)m−1 = (r + 1)m−1
(
1 +

r
r + 1

iϕ −
rϕ2

2(r + 1)
+ O(ϕ3)

)m

· (1 + O(ϕ))

= (r + 1)m−1 exp
(
m log

(
1 +

r
r + 1

iϕ −
rϕ2

2(r + 1)
+ O(ϕ3)

))
· (1 + O(ϕ))

= (r + 1)m−1 exp
(
m
( r
r + 1

iϕ −
rϕ2

2(r + 1)
+

r2ϕ2

2(r + 1)2
+ O(ϕ3)

))
· (1 + O(ϕ))

= (r + 1)m−1 · exp
( r
r + 1

imϕ
)
· exp

(
−

r
2(r + 1)2

mϕ2
)
· (1 + O(ϕ) + O(mϕ3)).
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Analogously one obtains from

1 − z = 1 − reiϕ = 1 − r − irϕ +
rϕ2

2
+ O(ϕ3)

the expansion

1
(1 − z)m+2

= (1 − r)−m−2 · exp
( r
1 − r

imϕ
)
· exp

(
−

r
2(1 − r)2

mϕ2
)
· (1 +O(ϕ) +O(mϕ3)).

Together with
1
zn

= r−ne−inϕ,

we obtain the following local expansion of g(z), for z = reiϕ with |ϕ| small:

g(z) =
(r + 1)m−1

rn(1 − r)m+2
· exp

(
iϕ

( r
r + 1

m +
r

1 − r
m − n

))
· exp

(
−

r
2(r + 1)2

mϕ2 −
r

2(1 − r)2
mϕ2

)
· (1 + O(ϕ) + O(mϕ3)).

Using α = m/n and r =
√

1 + α2 − α, one can easily check that

r
r + 1

m +
r

1 − r
m − n = 0.

This shows that for all z = reiϕ ∈C1 the following expansion holds:

g(z) =
(r + 1)m−1

rn(1 − r)m+2
· exp

(
−

r
2

( 1
(r + 1)2

+
1

(1 − r)2

)
mϕ2

)
· (1 + O(n−

1
2 +3ε)). (3.2)

Equation (3.2) leads to the following asymptotic evaluation of the integral expression
I1, for n→∞:

I1 =
1

2πi

∫
C1

g(z) dz ∼
r

2π
(r + 1)m−1

rn(1 − r)m+2

∫ ϕ0

−ϕ0

exp
(
−

r
2

( 1
(r + 1)2

+
1

(1 − r)2

)
mϕ2

)
dϕ

and, by using the substitution ϕ = t/
√

n, further to

I1 ∼
1

2π
(r + 1)m−1

rn−1(1 − r)m+2
√

n

∫ nε

−nε
exp

(
−

r
2

( 1
(r + 1)2

+
1

(1 − r)2

)m
n

t2
)

dt

∼
1

2π
(r + 1)m−1

rn−1(1 − r)m+2
√

n

∫ ∞

−∞

exp
(
−

r
2

( 1
(r + 1)2

+
1

(1 − r)2

)m
n

t2
)

dt.

(3.3)

The integral appearing in (3.3) can be evaluated easily by using∫ ∞

−∞

e−qt2
dt =

√
π
√

q
for q > 0,
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leading to

I1 ∼
1

2
√
π

(r + 1)m−1

(1 − r)m+2rn−1
√

r
2

( 1
(r+1)2 + 1

(1−r)2

)√
m
.

Eventually, simple manipulations yield the expression

I1 ∼
(r + 1)m

2
√
π(1 − r)m+1rn− 1

2

√
r2 + 1

√
m

for n→∞.

To show that the remaining integral expression I2 is asymptotically negligible one
has to consider the integrand g(z) for z ∈C2, that is, for z = reiϕ with ϕ0 < ϕ ≤ 2π − ϕ0.
It is easily seen that for z ∈C2 we get the following bound on g(z):

|g(z)| ≤
|1 + reiϕ0 |m−1

rn|1 − reiϕ0 |m+2
= O

( 1
rn
·

∣∣∣∣∣1 + reiϕ0

1 − reiϕ0

∣∣∣∣∣m)
.

Via standard manipulations, which are omitted here, one can show that∣∣∣∣∣1 + reiϕ0

1 − reiϕ0

∣∣∣∣∣m = O

( (1 + r)m

(1 − r)m
· exp

(
−mϕ2

0
r(1 + r2)
(1 − r2)2

))
.

Since ϕ0 = n−
1
2 +ε and m = αn, we thus obtain for all z ∈C2 the bound

|g(z)| = O
( (1 + r)m

rn(1 − r)m
e−βn2ε

)
with the constant β =

αr(1 + r2)
(1 − r2)2

> 0.

Thus we have also

|I2| =

∣∣∣∣∣ 1
2πi

∫
C2

g(z) dz
∣∣∣∣∣ = O

( (1 + r)m

rn(1 − r)m
e−βn2ε

)
,

which is exponentially small compared to I1. Therefore we get Pm,n = I = I1 + I2 ∼ I1,
which proves the following theorem.

T 3.1. The number Pm,n of permissible lattice paths in an m × n rectangular
grid admits, for m = αn with α > 0 fixed and n→∞, the following asymptotic
equivalent:

Pm,n ∼
(r + 1)m

2
√
π(1 − r)m+1r n− 1

2

√
r2 + 1

√
m

=

√
r

2
√
π
√
α(1 − r)

√
r2 + 1

√
n
·

( (r + 1)α

(1 − r)αr

)n

,

with r =
√
α2 + 1 − α.
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