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Effects of a single spanwise surface wire on a
free-ended circular cylinder undergoing
vortex-induced vibration in the lower
synchronization range
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This experimental study investigated the control induced by a spanwise surface wire on
a rigid circular cylinder undergoing vortex-induced vibration (VIV) under the conditions
of low mass damping in the lower synchronization branch. Being motivated by the idea
of VIV-based energy harvesting from ocean and river flows, this elastically mounted
cylinder was immersed in a water channel, leaving a free end at its bottom spanwise end,
while the free water surface bounded its top. The cylinder was constrained to vibrate
in the cross-stream direction. The wire diameter was 6.25 % of the cylinder diameter.
Experimental research was conducted by attaching this large-scale wire along the span
of the cylinder at various angular positions ranging from 0° to 180° (with respect to the
most upstream point of the cylinder) at a fixed Reynolds number of 104 (based on the
cylinder diameter). Simultaneous to measuring the trajectory of the cylinder motion via
a laser distance sensor, the instantaneous velocity field in the near wake of the cylinder
was obtained using particle image velocimetry. Several VIV response categories were
identified depending on the angular position of the wire, which led to the classification of
distinct angular ranges for the wire application. Associated with the structural vibrations
in these categories, different vortex-formation modes induced by the wire were revealed.
For specific wire positions, decreases of up to 98 % and increases of up to 102 % were
identified in the oscillation amplitude of the cylinder compared with the amplitude of the
clean cylinder under similar conditions.
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1. Introduction

Vortex-induced vibration (VIV) is a significant phenomenon affecting many engineering
structures in fluid flow. These structures can be, for example, offshore risers used in
petroleum extraction, heat exchanger tubes in nuclear plants, aircraft control surfaces in
aeronautical applications and civil engineering structures such as bridges, towers and
industrial chimneys, to name a few. The cause of VIV is the periodic vortex shedding
from an elastic or elastically mounted rigid bluff structure. Periodically shed vortices
impose alternating pressure forces on the surface of the structure, and these forces can
lead to large-amplitude structural vibrations if the vortex shedding frequency is close to the
natural frequency of the structure. The present knowledge base researchers have developed
on the VIV of cylinders over the years is discussed in detail in the reviews of Sarpkaya
(2004), Williamson & Govardhan (2004, 2008), Gabbai & Benaroya (2005), Nakamura &
Kaneko (2008) and Naudascher & Rockwell (2012).

The VIV of an elastically mounted rigid cylinder in the transverse direction mainly
depends on the mass ratio (m∗ = mt/md), damping ratio (ζ = csys/ccrit) and reduced
velocity (U∗ = U/fnD), where mt is the total mass of the oscillating system, md is the
mass of the displaced fluid, csys is the damping of the system, ccrit is the critical damping,
U is the free-stream velocity, fn is the natural frequency of the system and D is the
cylinder diameter. The dependency of the transverse VIV response on these parameters
has been experimentally investigated by many studies, such as Khalak & Williamson
(1997a). For an elastically mounted cylinder with a high mass-damping parameter, m∗ζ ,
the work of Feng (1968) showed that the amplitude of transverse-direction VIVs in the
synchronization range follows two response branches as the reduced velocity is varied:
commonly named as the initial branch and the lower branch. On the other hand, for a
system with a low mass-damping parameter, Khalak & Williamson (1997b) showed that
three response branches exist: namely, initial, upper and lower branches. It should be noted
that some studies, such as Sarpkaya (2004), consider the added mass coefficient Ca in the
calculation of the mass-damping parameter, which then takes the form of (m∗ + Ca)ζ
rather than m∗ζ . The added mass is related to the coupling of the cylinder motion to the
surrounding fluid and is equal to the mass of fluid displaced by the volume of the immersed
structure multiplied by an added mass coefficient Ca. For a circular cylinder in unconfined
flow, the added mass coefficient takes the value of Ca = 1.

A further parameter that affects the free vibration response of a cylinder in the transverse
direction is identified to be its spanwise end condition by Morse, Govardhan & Williamson
(2008). They conducted their tests in a water tunnel under low mass-damping conditions.
The top end of their submerged cylinder was bounded by the free surface of the water,
while for the bottom end, the following three end conditions were tested: a plate unattached
from the cylinder, a plate attached to the cylinder and a free end with no endplate. They
saw that the free vibration response, with its well-documented initial, upper and lower
branches, is virtually the same for the attached and unattached plate cases, provided
that the unattached plate is sufficiently close to the cylinder’s end. On the other hand,
without an endplate, they found that the vibration amplitudes in the lower branch increase
significantly, and the transitional jump between the upper and lower branches disappears.
Also, although the maximum amplitude in the upper branch remains unchanged for the
no endplate case compared with the case with an endplate, the time traces of the cylinder
displacement with no endplate differ from their characteristic patterns found under the
effect of an endplate for both the upper and lower branches. Perhaps the most remarkable
finding of their study is that the vibration response of a cylinder with an unattached
endplate becomes equivalent to having no plate at all when the unattached plate is placed
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at a sufficient distance away from the cylinder. This distance was argued to be around
15 % of the cylinder diameter and higher, which for a 50.8 mm cylinder corresponds to a
distance of nearly 7 mm and above.

Brika & Laneville (1993) were the first to show a correspondence between the vortex
shedding patterns and the response branches in the synchronization regime. In their wind
tunnel tests of a high mass-damping flexible cable that is allowed to undergo transversal
free vibrations, they found that the initial and lower response branches, which are the only
two response branches encountered in a system with a high mass-damping parameter, are
associated with the vortex shedding patterns, denoted as 2S and 2P modes, respectively.
The naming of these modes follows the terminology used by Williamson & Roshko (1988)
for the vortex patterns of forced oscillating cylinders. In the 2S mode, two single vortices
are shed per cycle, and vortices travel downstream along the centreline of the oscillating
cylinder. In the 2P mode, two vortex pairs are shed per cycle, and they travel laterally
outward from the wake centreline while convecting downstream. Govardhan & Williamson
(2000) showed for the first time that the 2P mode of vortex formation also exists in the
upper branch, which is the additional high-amplitude response branch encountered in
systems with low mass-damping. Subsequently, Morse & Williamson (2009) discovered,
in their study, a new vortex mode for the upper branch and called it the 2Po mode. In the
2Po mode, two vortex pairs are formed in each cycle, similar to the 2P mode, but the second
vortex in each pair is much weaker than the first vortex. Furthermore, they demonstrated
that the 2S, 2P and 2Po modes result in positive excitation from vortex-induced forces,
which is a necessary condition for free structural vibrations to occur, and among these
modes, the 2Po mode yields the peak resonant amplitude within the synchronization
region.

While analysing the vibration response and the associated vortex modes, as discussed
by Konstantinidis (2014), the condition of lock-in (also known as synchronization) is
important. In general, the lock-in condition is defined as the situation when the ratio of
two frequencies is constant while some input parameter is varied. In the case of the freely
oscillating cylinder, there are three characteristic frequencies: the natural frequency of
the system (fn) determined by its mechanical properties, the frequency of the structural
oscillation motion (fd) and the frequency of vortex shedding, which is equivalent to the
frequency of streamwise and transverse flow velocity fluctuations in the wake (fu and
fv). Traditionally, the lock-in or synchronization during free vibrations was considered
to happen when the frequency of structural oscillation, as well as the vortex shedding
frequency, matches the natural frequency of the structure so that f ∗

d = fd/fn ≈ 1. This is
indeed found to be true for systems with high mass ratios (Govardhan & Williamson 2000).
However, for low mass ratios, a structure can oscillate at frequencies higher than its natural
frequency during lock-in (for example, f ∗

d ≈ 1.4 was reported in Khalak & Williamson
1997b). Thereby, lock-in can be defined better as the matching between the frequency of
vortex shedding in the wake and the frequency of structural oscillations (Williamson &
Govardhan 2004).

Several methods have been proposed and investigated so far for controlling the
oscillation of structures undergoing VIV. The VIV in civil engineering structures can
be avoided by altering the structures’ stiffness or using vibration dampers; however,
these methods are expensive and sometimes impractical compared with fluid mechanics
methods that mainly modify the flow around the structure. Fluid mechanics methods
of VIV control are based on energizing the boundary layer or altering the vortex
shedding process. These methods include using roughness elements (Chang, Ajith Kumar
& Bernitsas 2011), surface bumps (Owen, Bearman & Szewczyk 2001), splitter plates
(Assi, Bearman & Kitney 2009), vortex generators (Ünal & Atlar 2010), helical strakes
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(Zhou et al. 2011), cactus inspired spines (Levy & Liu 2013), fins (Khashehchi et al.
2014), dimples (Zhou et al. 2015), rectangular grooves (Canpolat & Sahin 2017), strips
(Vinod, Auvil & Banerjee 2018), plasma actuators (Castro Hebrero et al. 2020) and surface
wires (Hover, Tvedt & Triantafyllou 2001). The fluid mechanics methods can be employed
to intensify VIV as well as to suppress it. For instance, Chang et al. (2011) utilized
surface roughness strips to enhance VIV with the purpose of harnessing electricity from
the hydrokinetic energy of ocean/river currents. By appropriately selecting the placement
angle, coverage area and height of the roughness strips, they could amplify the oscillation
amplitude by 1.7 times that of the clean cylinder. In contrast, Owen et al. (2001) used
an arrangement of surface bumps to lessen VIV by suppressing vortex shedding. In their
results, regular vortex shedding could not be detected for a stationary cylinder with surface
bumps; however, when the same cylinder was flexibly mounted, the transverse oscillation
was detectable at low values of the mass-damping parameter m∗ζ with a maximum
amplitude 25 % lower than that of the clean cylinder.

The simplest fluid mechanics control devices that can be applied on the surface of a
cylindrical body are spanwise wires. Their effects on the flow and loading characteristics
have been widely investigated in the literature for fixed cylinders in the subcritical flow
regime. In particular, the work of Nebres & Batill (1993) has laid the groundwork for
research in this area. For a stationary cylinder fitted with a single spanwise surface wire,
they discussed the variation of the non-dimensionalized vortex shedding frequency with
the wire diameter (d)-to-cylinder diameter (D) ratio, wire angular position θ and Reynolds
number. They showed that the dimensionless form of the vortex shedding frequency
(Strouhal number, St) undergoes fundamental changes at multiple wire locations for a
given wire diameter-to-cylinder diameter (d/D) ratio and Reynolds number. Based on
these changes, they defined several fundamental angles for a single-wire application on
the cylinder surface. By carrying out particle image velocimetry (PIV) measurements,
Ekmekci (2006) and Ekmekci & Rockwell (2010) examined the near-wake and shear-layer
flow patterns of a stationary cylinder tripped with a single spanwise wire for various
wire positions. Their results, collected at the subcritical Reynolds number of Re = 104,
demonstrated that a single spanwise surface wire can significantly attenuate the Kármán
vortex shedding from a fixed cylinder when it is placed at a specific small range of angular
positions on the cylinder surface, which they called the first critical wire locations θc1.
Furthermore, they showed that the same wire can be used to intensify the Kármán vortex
shedding when placed at another range of critical locations, named the second critical
locations θc2. Other than the attenuation and enhancement of the Kármán instability,
they associated these two critical wire locations, θc1 and θc2, with further distinctive
characteristics. Namely, a spanwise surface wire at the first critical angle θc1 also led to
a bistable flow regime, early onset of shear-layer instability in the shear layer separating
from the wire side of the cylinder and significant extension in the streamwise length of the
time-averaged recirculation bubble in the near wake. The same surface wire, when placed
at the second critical angle θc2, depicted increased amplitudes of shear-layer flapping,
early onset of shear-layer instability and the utmost level of near-wake contraction. The
subsequent work conducted by Ekmekci & Rockwell (2011) proved that only a spanwise
surface wire that is larger than the boundary layer thickness can attenuate or intensify
the Kármán instability at the critical locations, while a surface wire that is smaller than
the boundary layer thickness was found to have no detectable impact on the strength
and coherence of the Kármán vortex shedding. Soon after, Aydin, Joshi & Ekmekci
(2014) confirmed that a single spanwise surface wire stops the regular formation of
Kármán vortices over long periods of time when placed at a first critical wire location
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θc1, but the regular shedding still resumes intermittently for short times. As a result, in
the time-averaged sense, a drastic attenuation is observed in the autospectral density of
velocity fluctuations at the frequency of Kármán vortex shedding. Also, Aydin et al. (2014)
investigated the dependence of the critical wire locations on the wire size and Reynolds
number (within the subcritical Reynolds number range of Re = 5 × 103 to 3 × 104). Their
results indicated that the range of θc2 is generally independent of both the Reynolds number
and wire size, while the range of θc1 depends on the wire size, and for a given wire size,
θc1 increases with increasing Reynolds number until the Reynolds number of Re = 104

is reached, beyond which θc1 becomes independent of the Reynolds number within the
Re range that they studied. Ekmekci (2006) and Ekmekci & Rockwell (2010) showed
that the bistable phenomenon, observed when the spanwise wire is at the θc1 location,
involves intermittent switching of the shear layer between the states of reattachment and
no reattachment after separation from the wire. This switch in separation mode occurred
at a broad, low-frequency band that is one order of magnitude smaller than the nominal
Kármán vortex shedding frequency. A further independent study conducted by Alam et al.
(2010) observed this bistable phenomenon for the case of a fixed cylinder involving two
spanwise wires that are symmetrically placed with respect to the approach flow, and Joshi
& Ekmekci (2019) also detected the bistable state for asymmetrically arranged spanwise
surface wires when one of the wires passes from the critical location on the cylinder
surface.

Spanwise surface wires can be used as a method to modify the VIV of cylinders, but
few studies have been conducted on this topic. One of the earliest studies on the use
of spanwise surface wires on cylinders undergoing VIV is the work of Price (1956),
which involved water channel tests at a Reynolds number of Re = 4.64 × 103 for a
cylinder fitted with three straight wires placed at the specific angles 0◦, +60◦ and −60◦
from the forward stagnation point of the cylinder. For this tripped cylinder arrangement,
Price (1956) detected the same amplitude of vibration found for the clean cylinder and
presumed that the spanwise surface wires are ineffective in suppressing large-scale VIV.
However, the observed results were due to the wire size. The wires they used were smaller
than the boundary layer thickness, and as a result, they did not influence the flow field
appreciably in that work. Hover et al. (2001) studied the vortex-induced load and vibration
characteristics at Re = 3.0 × 104 for a cylinder fitted with two spanwise wires (having
a wire-to-cylinder diameter ratio of d/D = 0.3%) at the angular positions of +70◦ and
−70◦. These surface wires decreased the peak oscillation amplitude moderately in the
reduced velocity range of U∗ = 5.1–6; while above U∗ = 6, the decrease in vibrations
was quite substantial. In particular, at higher reduced velocities, near U∗ = 8 and above,
their results suggest total disruption of synchronization with the addition of the wires
at the particular wire position that they tested for the cylinder, which would otherwise
undergo VIV in the lower synchronization branch. At such high reduced frequencies,
the wires induced very-high-frequency and uncorrelated fluctuating lift and drag forces
on the cylinder. More recently, the fluid forces and vibration response of an elastically
mounted cylinder with two symmetrically positioned spanwise wires (d/D = 12 %) were
investigated by Quadrante & Nishi (2014) for a range of Reynolds numbers from 3.45 ×
103 to 2.04 × 104. They considered four angular positions for the application of the wires,
and reported that the cylinder vibration is intensified when the wires are at ∓60◦ and
∓75◦ and considerably suppressed for wires at ∓105◦ and ∓120◦. It should be noted that,
in their set-up, the cylinder and the spanwise wires had a gap, which was 10 % of the
cylinder diameter, and their mass ratio was quite high (m∗ = 6.13).

As seen from the review of the previous studies above, while the effects of spanwise
wires have been well documented for fixed cylinders, such efforts have remained very
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limited for cylinders undergoing VIV. As reviewed above, only a few studies have
investigated the VIV of cylinders tripped by spanwise wires, where the efforts have
remained limited to having two to four wires at less than a handful of wire placement
angles (at the most) on the cylinder surface, and these studies have lacked an understanding
of the wire-induced changes in the flow patterns. Thus, there is an apparent lack of
knowledge regarding the wire-induced flow structure and vibration response of flexibly
mounted cylinders, where a wide range of wire locations needs to be systematically
assessed. Furthermore, as the plurality of wires may complicate the development of
a thorough understanding in the early stages, rather than starting with exploring the
effects of two or more wires, as has been done in the previous VIV investigations that
involved tripped cylinders, keeping the arrangement deliberately simple in the first steps
by considering a single-wire application on the cylinder surface may provide guidance and
explanation in deciphering the effects of more complex surface modifications. Previously,
Joshi & Ekmekci (2019) used such an approach for stationary cylinders and successfully
explained the origins of more complex effects of multi-wire spanwise tripping based on
the understandings of single-wire tripping.

A further relevant point that has been totally overlooked by previous researchers is
the effects of tripping when the cylinder undergoing VIV is free ended. All previous
experiments in the literature concerning the VIV of a tripped cylinder utilized endplates
that are either attached to the spanwise end of the cylinder or unattached with a very
small gap from the cylinder, whereby VIV of surface-wire-fitted cylinders with a free-end
condition remained unexplored. For example, Quadrante & Nishi (2014) had attached
endplates at the spanwise ends of the tripped cylinder, and the endplates used in Hover
et al. (2001) had a small gap (2.6 % of the cylinder diameter), producing a VIV response
as if the endplates were attached to the cylinder in accord with Morse et al. (2008). As
mentioned above, it is known for a plain cylinder undergoing VIV that the presence of
a free spanwise end significantly changes the character of the vibration response (Morse
et al. 2008). Understanding the effects of spanwise wires for such free-ended cylinders
can find uses, for example, in energy harvesting applications. Although large-amplitude
VIV in engineering structures is usually unwanted and should be avoided or mitigated to
prevent structural damages, with recent advances in piezoelectric technology, VIV-based
energy harvesting has started to gain attention (Erturk & Inman 2011). A recent example
of such a study is the work of Azadeh-Ranjbar, Elvin & Andreopoulos (2018), where
the focus was on harvesting energy from the VIV of a plain, finite-length cylinder with
spanwise free ends in a wind tunnel, where the cylinder was elastically mounted on a
cantilever beam equipped with a piezoelectric patch. A simple possible arrangement for
a VIV-based energy harvester extracting hydrokinetic energy from ocean or river flows
may involve a flexibly mounted cylinder submerged in water with its top end piercing
the free surface of the water while its bottom end is essentially free. Evaluating surface
wire-induced effects on the VIV response of such a system is part of the stimulus of the
present paper. Enhancing the amplitude of the structural oscillations by the effect of a wire
could directly maximize the harvested energy.

Taking the unresolved issues mentioned above into consideration, the current
experimental research focuses on the effects of a single spanwise surface wire on the
oscillation response and flow structure of a low mass-damping rigid circular cylinder
undergoing VIV in the transverse direction. This elastically mounted cylinder was
immersed in a free-surface water channel, leaving a free end at the bottom while its top
end pierced the free surface of the water channel. To ensure that the system responds as
if its bottom end is free, a sufficient gap was left between the bottom end of the cylinder
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and an unattached plate in accordance with Morse et al. (2008). The focus of this study
was on the lower synchronization branch because it is known from Morse et al. (2008)
for a plain cylinder undergoing VIV that the free spanwise end condition affects the
lower synchronization branch the most, yielding vibration amplitudes much higher than
the amplitudes that would be achieved if it were to end with an endplate. To address the
shortcomings of the previous studies in this area, numerous wire positions are considered
over the full range of angular positions on the cylinder surface from θ = 0◦ to 180◦ (with
respect to the most upstream point of the cylinder), while keeping the characteristics of the
oscillation system (such as mass and damping) and the incoming flow properties constant.
The oscillation motion and near-wake velocity fields are measured simultaneously to reveal
the interplay between the vortex formation and the VIV response of the structure under the
surface wire influence. The amplitude, frequency and time traces of structural oscillations
are identified along with the associated vortex shedding modes for the entire range of
wire locations. These results led to the first-time identification of several VIV response
categories depending on the wire location. As an important outcome of this work, the
spanwise wire at specific positions is shown to be effective in suppressing or amplifying
the VIV of the cylinder in question. In comparison with the oscillation amplitude of
the clean cylinder under identical conditions, up to 98 % amplitude reduction and 102 %
amplitude increase in cylinder oscillations are shown to be possible in this study through
the use of the single spanwise surface wire.

2. Experimental set-up

Experiments were conducted in a recirculating water tunnel at the University of Toronto
Institute for Aerospace Studies. The main test section of this tunnel is 5000 mm long and
has a width of 610 mm and a height of 685 mm. The free-stream turbulence intensity is
less than 0.5 % and the flow uniformity is better than 0.3 % within the test section. The
test section walls are made out of Plexiglas material to allow visual access to the flow.
The current study required the test model, which was mounted to a mechanism above the
tunnel, to go through VIV. The top tunnel wall was removed to permit those oscillations,
yielding an end condition where the cylinder pierced the water surface.

The test model was a rigid polycarbonate circular cylinder with a diameter of D =
50.8 mm and a length of L = 534 mm, giving a cylinder aspect ratio of L/D = 10.5. A
transparent acrylic wire was tightly stretched and glued on the surface of this cylinder,
parallel to its span. The diameter of this wire was d = 3.175 mm, which means the
wire-to-cylinder diameter ratio was d/D = 0.0625. All tests concerning the wire-fitted
cylinder (both stationary and free oscillating) were carried out at a free-stream velocity
of U = 0.186 m s−1, which corresponds to a cylinder-diameter-based Reynolds number
of Re = 10 000. The surface wire used was larger than the boundary layer thickness
forming around an equivalent plain circular cylinder at this Reynolds number. This
inference is based on the boundary layer thickness data provided by Aydin et al. (2014).
For experiments where the VIV response branches of the plain cylinder (without a
surface wire) were investigated by collecting the amplitude versus reduced velocity data,
a free-stream velocity range of U = 0.057 m s−1 to 0.258 m s−1 was used, corresponding
to a Reynolds number range of Re = 3000 to 12 500. The angular position of the wire on
the cylinder surface was changed by rotating the cylinder–wire arrangement around the
longitudinal axis of the cylinder using a computer-controlled, high-precision step motor.
The wire angular positions considered in the investigation ranged from θ = 0◦ to 180◦
(θ = 0◦ being the most upstream point of the cylinder). The angular increment of the wire
position was 0.2◦, 1◦, 2◦ or 5◦, depending on the angular resolution needed to detect the
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changes in the cylinder response and flow field. Whenever significant changes in cylinder
response and/or flow field occurred with a change in wire location, a smaller angular
increment was selected. The accuracy of the motorized angular positioning system was
0.067◦; however, the reported angular positions of the wire on the cylinder surface had an
uncertainty of ±1.4◦ due to the added uncertainty in defining the zero-reference angle (i.e.
the most upstream point of the cylinder).

The entire length of the model was immersed vertically inside the water channel. Its
top end was attached to a mechanism, as shown in figure 1, which permitted the model to
vibrate in the cross-stream direction as a result of fluid forcing while preventing motion
in the streamwise direction. For tests where the surface-wire-fitted cylinder was kept
stationary (non-oscillating), this same mechanism was still utilized, but with the addition
of a stopper that prevented structural vibrations. For the stationary cylinder experiments,
the lower end of the cylinder was bounded by an endplate, with no gap left between the
cylinder and the endplate. The endplate was made out of transparent Plexiglas material of
0.25D thickness. Its streamwise length was 7.5D, and its width covered the entire width
of the channel (12D). A 23.6◦ full-depth bevel was put on its upstream end, with the
bevel facing the channel floor to minimize disturbances to the inflow. In accord with the
recommendations of Stansby (1974), Szepessy & Bearman (1992) and Khoury (2012),
the cylinder axis was situated 3D downstream of the leading edge of the endplate. This
endplate design is consistent with those used in the previous literature for stationary
cylinders (Ekmekci 2006; Ekmekci & Rockwell 2010; Aydin et al. 2014; Joshi & Ekmekci
2019). For all experiments involving free oscillations of the cylinder, a gap equal to 13.8 %
of the cylinder diameter (a gap spacing of 7 mm) was left between the bottom end of
the cylinder and the endplate to induce conditions of a free-ended cylinder in accord with
Morse et al. (2008). In § 3.2, the VIV response of the plain cylinder with this end condition
will be compared with the results from this reference to show that this gap left beneath
the bottom end of the cylinder was sufficient to generate the response of a free-ended
cylinder. The two-dimensionality of the flow field with this test set-up was assessed for
the oscillating cylinder and proven to be sufficient in Vaziri (2021). The Froude number
based on the cylinder length was FrL = U/

√
gL = 0.08, indicating a subcritical flow in

the water channel. Also, the maximum elevation changes of the water around the cylinder
were observed to be very small (close to the approximations provided by Hay 1947 and
Chaplin & Teigen 2003). Therefore, the effects associated with free-surface distortions on
the response of the cylinder can be neglected in accord with Gonçlves et al. (2013). The
channel blockage ratio for the experimental set-up was 5.8 %.

To conduct free-oscillation experiments, a unique mechanism was designed with
attention to minimizing the mass ratio m∗ and damping ratio ζ of the system. This
mechanism was sitting atop the water channel, as seen in the sketch in figure 1. This
mechanism consisted of a rotary step motor to which the cylinder was attached, a mounting
square where the step motor and two supporting shafts were connected, two linear
extension springs, two spring holders and four air bushings. The springs were placed
between the mounting square and the spring holder on each side of the model. The
use of air bushing technology in this set-up reduced the structural friction significantly
while constraining the cylinder–wire model to move only in the transverse direction
(perpendicular to the flow direction). The rotary step motor, mounting square and two
supporting shafts were the components that moved with the cylinder while the spring
holders and air bushings were fixed to the tunnel. During calibration of the mechanism
in air, the response matched with the response of a damped harmonic oscillator with an
average correlation coefficient of 0.953, signifying that the mechanism used behaves as
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Mounting square

Step motor

Laser distance sensor

Spring holders

Spring

Cylinder with wire

End plate

CCD camera

Nd:YAG laser

Air bushings

Supporting shafts

Figure 1. Three-dimensional sketch of the experimental set-up.

a linear system. A detailed discussion of this mechanism and the determination of the
damping ratio ζ and natural frequency fn of the system via a ‘pluck test’ can be found
in Vaziri (2021). The free-oscillation system used in the present study, as a whole, had
a mass ratio of m∗ = 2.581, a damping ratio of ζ = 0.027 and its natural frequency was
fn = 0.36 Hz.

A high-resolution laser distance sensor (Wenglor CP24MHT80) was mounted at a fixed
position on top of the channel (see figure 1) to capture the instantaneous position of the
cylinder with no contact. Its output voltage was sampled at a frequency of 1000 Hz.
The uncertainty of the cylinder position, captured by this sensor, is 0.025D, and the
uncertainty associated with the frequency of the acquired oscillation motion of the cylinder
is ±0.005 Hz.

The motion of the cylinder undergoing free vibrations can be highly irregular for some
surface wire positions. As a result, the amplitude of oscillations cannot be simply defined
as half of the difference between the maximum (peak) and minimum (valley) points in the
displacement signal. To account for the variations in peaks and valleys, the present study
reported the cylinder amplitude as half of the distance swept by the cylinder between
the overall upper and lower limits of the oscillation motion. The overall upper limit was
defined as the average value of peaks ȳp plus the standard deviation of the peak values σp.
Similarly, the overall lower limit was defined as the average value of valleys ȳv minus the
standard deviation of valley values σv . To employ this method, a peak detection algorithm
was applied to the time series of the displacement signal to determine the peaks yp and
valleys yv . Then, the following expression was used to determine the oscillation amplitude
normalized by the cylinder diameter:

A∗ = (ȳp + σp) − (ȳv − σv)

2D
. (2.1)
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High-image-density PIV was used to capture the velocity field information in the
near wake. For this technique, the flow was seeded with neutrally buoyant hollow-glass
particles, having a nominal mean diameter of 8 to 1 μm. Illumination of the flow field
was achieved using a double-pulsed Nd:YAG laser system with a maximum energy output
of 20 mJ pulse−1 at a wavelength of 532 nm. A series of cylindrical and spherical lenses
converted the laser-beam output of this system to a laser sheet, which illuminated the
planar flow region of interest. In all tests, a sequence of 1000 image pairs was recorded at
a rate of 14.5 frame pairs per second via a PowerView Plus 2 MP CCD camera, which had
an array size of 1600 × 1200 pixels. This sampling rate corresponded to approximately
69 s of sequential data acquisition. For tests involving cylinder vibrations, the PIV data
acquisition was synchronized with the laser distance sensor data employing a LaserPulse
Model 610035 synchronizer. As seen in figure 1, the laser sheet was aligned horizontally,
and the CCD camera was placed vertically beneath the water channel. The acquired
field of view during the free-oscillation tests covered 2.1D in the streamwise direction
starting from the cylinder’s most downstream point and had a total length of 3.2D in
the cross-stream direction. This field of view included the downstream regions of both
shear layers separating from the oscillating cylinder. For the stationary cylinder, the field
of visualization was 3D × 2.2D, which also contained the two shear layers separating
from the cylinder. During image processing, an interrogation window size of 32 × 32
was used with an overlap of 50 %, producing a total of 7227 velocity vectors (99 × 73)

for both the free-oscillation and stationary cylinder tests. Based on the dimensions of the
field of view, the velocity vector resolution for the PIV data was approximately 0.0321D
for the free-oscillation tests and 0.0297D for the stationary cylinder tests. The dominant
frequency of the streamwise and transverse velocity components (fu and fv) over the
global flow field was determined by applying fast Fourier transformation (FFT) to PIV
snapshots. The selected size of the visualization field provided sufficient spatial resolution
for both velocity vectors and the autospectral density amplitude of velocity fluctuations.
The uncertainty associated with the frequency of velocity fluctuations obtained from the
FFT of the PIV data was ±0.007 Hz.

3. Results

The focus of the present study is on developing an understanding of the structural
oscillations and vortex shedding characteristics of a surface-wire-fitted, elastically
mounted cylinder moving in the transverse direction with low mass-damping and one free
end. The wire influence is assessed for having a single wire at different locations on the
surface of the cylinder. First, before studying the impact of the wire on the elastically
mounted cylinder that undergoes free transverse oscillations, the influence of the wire on
the near-wake flow structure of the stationary cylinder for varying wire positions will be
discussed in § 3.1 to form the baseline scenario. Then, in § 3.2, the oscillation response of
the plain (untripped) cylinder as a function of reduced velocity for the end conditions
and system parameters used in the VIV tests of this study will be characterized and
compared with a similar previous investigation. Section 3.3 is where the results related
to the wire-fitted cylinder undergoing free-oscillation motion will be presented. Therein,
the § 3.3.1 will focus on the oscillation characteristics of the wire-fitted cylinder (again
for various wire locations), while in § 3.3.2 the unsteady near-wake flow structure will be
discussed for the same oscillating cylinder with the surface wire at different locations, and
the vortex shedding frequency in comparison with the frequency of cylinder oscillations
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will be examined to explore the link between the structural oscillations and the flow field
characteristics. Finally, in § 4, the conclusions will be outlined.

3.1. The surface-wire-fitted cylinder under stationary condition
For a stationary circular cylinder, it is known that several critical angular locations can
be defined on its surface for the application of a large-scale wire. Most of these critical
locations are related to distinct changes in the trend of the non-dimensional vortex
shedding frequency (i.e. Strouhal number) with the change of the wire location, as shown
by Nebres & Batill (1993). Two specific critical angles are related to the attenuation and
intensification of the Kármán instability. They can be distinguished as locations where
the application of the wire significantly attenuates or intensifies the spectral amplitude of
velocity fluctuations at the Kármán frequency, as addressed by Ekmekci (2006), Ekmekci
& Rockwell (2010) and Aydin et al. (2014). Critical locations generally depend on the
wire diameter to cylinder diameter ratio (d/D) and the Reynolds number (Nebres & Batill
1993; Aydin & Ekmekci 2014). Among all the critical locations, those that are based on
the spectral amplitude of velocity fluctuations associated with the Kármán instability are
called the first and second critical locations θc1 and θc2. A brief overview of these two
critical angles and their essential features were discussed in the introduction section earlier.

For the d/D ratio and Reynolds number used in the present study, the first critical angle
θc1 ranged from 41.2◦ to 43◦, and the second critical angle θc2 ranged from 50◦ to 80◦.
These angular ranges are determined in the current study by evaluating the autospectra of
the flow velocity taken from the PIV measurements in the near wake. It should be noted
that the angular resolution of the test cases in these PIV experiments was refined to 0.2◦
around these critical locations. The θc1 and θc2 locations obtained in the present study
show good correspondence with the values reported earlier by Joshi & Ekmekci (2019),
where the range of θc1 was reported as 42◦ to 44.5◦, and the range of θc2 was 52◦ to
80◦ for the same d/D ratio and Reynolds number. The slight discrepancy in the reported
ranges of critical angles between the present study and Joshi and Ekmekci’s study can be
attributed to the error in defining the θ = 0◦ wire location (±1.4◦ in the present study)
and the arrangement of the experimental set-up (i.e. use of the open channel flow in the
present study versus closed water tunnel in the Joshi and Ekmekci’s work).

The contour patterns in figure 2 illustrate the autospectral density of streamwise velocity
fluctuations at the predominant Kármán frequency, Su(St), for the case where the wire
is at the second critical position θc2 = 58.2◦ and the case representing the non-tripped
scenario (θ = 180◦). It is known from previous work on stationary cylinders that, being at
the base region, a surface wire at θ = 180◦ shows no significant influence on the strength
and coherence of the Kármán instability (Nebres & Batill 1993; Ekmekci & Rockwell
2010). Also, in this figure, the global contour patterns of autospectral density are shown
for the first critical angle θc1 = 41.6◦ at the frequency corresponding to the bistable flow
separation, as identified by Ekmekci & Rockwell (2010). To obtain these results, first, the
autospectral density of the streamwise velocity fluctuations was determined at a total of
7227 locations over the global near-wake region from the PIV data. Then, the autospectral
magnitude corresponding to the frequency in question was extracted from each spectrum
and shown as a contour plot. The frequencies corresponding to the autospectral density
contours in figure 2 are indicated in the insets in terms of Strouhal number St. It should
be noted here that the value of the dominant St varies as a function of the wire application
location θ , as reported in previous investigations (Ekmekci & Rockwell 2010; Aydin et al.
2014). When the wire is applied at the first critical angle θc1, figure 2 shows that the
bistable separation of the shear layer induces moderate levels of low-frequency activity
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25 35 45 55 65 75 85 95 105

|Su(St)|

|Su(St = 0.004)|

θc1 = 41.6°

|Su(St = 0.166)|

θc2 = 58.2°

|Su(St = 0.217)|

θ = 180°

Figure 2. Contours of autospectral density of the streamwise velocity fluctuations at the specific Strouhal
number value indicated in the inset for the stationary cylinder fitted with the surface wire at the first θc1 and
second θc2 critical angles, and at θ = 180◦ (representing the clean cylinder). Minimum and incremental values
of the contours are [|Su(St)|]min = 25 mm s−1 and �[|Su(St)|] = 2.5 mm s−1.

(at St = 0.004) in the upper shear layer separating from the wire side of the cylinder;
however, a dominant frequency corresponding to the Kármán vortex shedding did not
exist for this case in the entire near wake, implying an attenuation in the Kármán vortex
shedding process. The wire at the second critical angle θc2 enhances the strength and
coherence of the Kármán instability as apparent from the existence of high autospectral
amplitudes in the near wake. These results are in total agreement with the results shown
earlier for a wire-fitted stationary cylinder by Ekmekci & Rockwell (2010).

From the global spectrum results discussed in this section, it is apparent that the surface
wire used in this study affects the Kármán vortex shedding substantially for the stationary
cylinder. Plausibly, it is not unreasonable to expect the spanwise wire to affect the
oscillation response of a cylinder undergoing VIV significantly. For example, the observed
time-averaged attenuation of the Kármán vortex shedding with the wire at θc1 position for
the stationary cylinder suggests that VIV may be suppressed when the wire is placed at
this critical location. With similar reasoning, because of the observed enhancement in the
coherence and strength of the Kármán vortex shedding with the placement of the wire at
θc2 in the stationary cylinder case, the wire at the same critical location may be expected
to aggravate the VIV response of an elastically mounted cylinder. However, as will be seen
in § 3.3, the effects of the spanwise wire on the free-oscillation motion of the cylinder are
not as expected at the critical angles of the stationary cylinder. Other critical locations will
be identified where the placement of the wire substantially affects the characteristics of
the cylinder oscillations and the flow field.

3.2. The VIV response of the plain cylinder
Figure 3 shows the variation of the vibration amplitude A∗ with reduced velocity U∗ for the
plain version of the cylinder used in this study (i.e. cylinder without a wire) as it undergoes
VIV with the end conditions and system parameters used throughout this investigation
compared with those obtained by Morse et al. (2008). In the referenced work, the top end
of their submerged plain cylinder was bounded by the free surface of the water channel
as in the present study, while different end conditions were considered for the lower end.
The response plots for two of these end conditions are included in figure 3. These are:
the case with an unattached endplate, leaving a gap of 2 mm (which corresponds to

950 A7-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

81
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.810


Effects of a single spanwise surface wire
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Current study:

Unattached endplate:

No endplate

2.581

m∗

A∗

U∗

(m∗ + Ca)ζ

9.3

9.3
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0.014

0.014

0
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0.8

1.0

1.2

Figure 3. Comparison of the vibration response amplitude (A∗) of the plain cylinder as a function of reduced
velocity (U∗). Blue square: current study (m∗ = 2.581, (m∗ + CA)ζ = 0.097, an unattached endplate with a
gap equal to 13.8 % of the cylinder diameter); red circle: Morse et al. (2008) (m∗ = 9.3, (m∗ + CA)ζ = 0.014,
an unattached endplate with a gap equal to 4 % of the cylinder diameter); green triangle: Morse et al. (2008)
(m∗ = 9.3, (m∗ + CA)ζ = 0.014, no endplate).

a distance of 4 % of the cylinder diameter) at the bottom end of the cylinder, and the
case with no endplate. They noticed that the free vibration response of the cylinder when
the endplate is unattached with such a small gap is nearly equivalent to the response for
having the plate attached to the cylinder, with the typical initial, upper and lower response
branches (as seen in the response plot corresponding to the unattached plate case taken
from Morse et al. 2008 in figure 3). However, with no endplate, the free-ended cylinder
depicts remarkable distinctions in its response plot. While the peak amplitude in the upper
branch stays almost unchanged, the vibration amplitude of the case with no endplate
shows a gradual decrease from this peak as U∗ is increased, with this trend continuing
in the lower branch. Also, no sign of a jump is distinguishable between the upper and
lower branches for the no-endplate response. An important finding in their study is that
the vibration response of the cylinder with the unattached endplate becomes equivalent
to the response of the free-ended cylinder (with no endplate at all), provided that the
unattached plate case has a large enough gap. This gap was estimated in their study
to be around 15 % of the cylinder diameter, which means that for a 50.8 mm-diameter
cylinder, the gap should be close to approximately 7.6 mm or above to produce the
vibration response of a free-ended cylinder. In the present investigation, leaving a gap
of 7 mm between the free end of the cylinder and the endplate yielded the response plot
given in figure 3, which exhibits good correspondence with the no-endplate case of Morse
et al. (2008). It shows a gradual decrease from the peak amplitude in the upper branch
until the end of the lower branch, with no distinct transitional jump between the two
branches. Because the response data in the present study are from a system with slightly
higher mass-damping than the no-endplate case of Morse et al. (2008), the amplitudes
in the upper branch are smaller in the present study compared with theirs. Also, having
a smaller mass ratio compared with theirs results in the range of synchronization being
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Figure 4. Time traces of the cylinder position for the application of the wire at different angular locations on
the cylinder surface. The axis of angular values, where the range divisions are shown, is not to scale.

wider in the present, in accord with Govardhan & Williamson (2000). Consequently, a
one-to-one comparison of the response plots between the present study and the no-endplate
case of Morse et al. (2008) shows that the 7 mm gap left between the lower end of the
cylinder and the unattached endplate is sufficient to produce the response of a free-ended
cylinder.

From the discussions above, it can be seen that the effect of the free-end condition
on the VIV of a cylinder is that it significantly increases the oscillation amplitudes,
particularly in the lower branch, compared with the end condition of an attached endplate
(or an unattached endplate with a small gap). In the present study, a reduced velocity
of U∗ = 10.44 is considered, which lies within the lower branch of synchronization, for
investigating the wire effects on the vortex shedding and oscillation of the free-ended
cylinder. This point in the lower branch is marked by a circle symbol in figure 3. Note
that, at this U∗ value, the sensitivity of the plain cylinder’s oscillation amplitude to small
variations in U∗ is low (such that a variation of approximately 5 % in the value of U∗ leads
to a small change of 5.6 % in the oscillation amplitude).

3.3. The surface-wire-fitted cylinder undergoing free-oscillation motion

3.3.1. Cylinder oscillation patterns
Time traces of the cylinder position are shown in figure 4 with the spanwise surface wire
in question at different angular locations. In all plots, the horizontal axis depicts a total
of 30 s in non-dimensional form t∗ = tU/D for visual clarity of the oscillation patterns,
although the acquired displacement signal of the cylinder was longer (180 s). The vertical
axis in the plots shows the position of the cylinder in non-dimensional form y∗ = y/D.
Here, y∗ = 0 in the vertical axis corresponds to the equilibrium position of the model in
still water, and the positive y∗ direction shows cylinder displacements in the direction of
the wire-fitted side of the cylinder. Based on the characteristics of the oscillation motion,
the wire angular position is divided into eight angular ranges in figure 4.

For the wire angular positions that fall in range I (0◦ ≤ θ < 47◦), the position around
which the cylinder oscillates shifts toward the wire-fitted side of the cylinder while the
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cylinder displacements follow a regular sinusoidal pattern. In figure 4, θ = 35◦ is provided
as a representative case from this first range. In range II (47◦ ≤ θ < 51◦), the regular
sinusoidal response of the cylinder motion is disrupted intermittently by large-amplitude
displacements. In figure 4, the oscillation pattern for θ = 48◦ is given as a sample case
from this range. Because the cylinder response in this second range of wire positions
is a combination of low-amplitude sinusoidal and high-amplitude disturbed motions
that appear randomly, this angular range II can be considered a critical range for wire
placement. As θ increases within this range starting from the wire position of θ = 47◦, the
disturbed motion appears more and more frequently, and eventually gives way to another
pattern starting at θ = 51◦. For range III (51◦ ≤ θ < 60◦), a non-sinusoidal but distinct
oscillation pattern, repeating at every period, is observed, as depicted for the sample case
of θ = 53◦ in figure 4. Starting from θ = 60◦, the cylinder with the wire in the angular
range IV (60◦ ≤ θ < 70◦) depicts a motion consisting of quasi-sinusoidal displacements
along with the sporadic appearance of irregular oscillation patterns. When the surface wire
is placed within range V (70◦ ≤ θ < 75◦), the cylinder shows a response that is nearly
sinusoidal. This pattern is not symmetric around the equilibrium position such that the
oscillation pattern has a wider peak for movements on the wire side (for positive values of
y∗). In range VI (75◦ ≤ θ < 105◦), the oscillation pattern has a quasi-uniform character,
with the appearance of small-amplitude modulations between cycles. When the wire is
placed at any of the angular positions in range VII (105◦ ≤ θ < 109◦), the amplitude of the
cylinder oscillations diminishes substantially. In this seventh range, the largest attenuation
in the amplitude of the cylinder motion occurs when the wire is at around θ = 107◦, where,
as shown in figure 4, the cylinder stays at its equilibrium state with almost no oscillatory
motion. For wire positions of range VIII (109◦ ≤ θ ≤ 180◦), the oscillatory motion for the
cylinder restarts with a nearly sinusoidal pattern, as seen in figure 4 for the representative
scenario of θ = 110◦ from this range, and as the wire approaches θ = 180◦, the oscillation
pattern resembles more and more the regular sinusoidal pattern of the clean cylinder (with
no wire).

3.3.2. Cylinder oscillation frequency
The dominant frequency of cylinder oscillations fd is observed to change significantly
depending on the wire angular position θ . This variation is depicted in figure 5, where
the dominant frequency of the cylinder motion fd is given in non-dimensional form
by normalizing it with the natural frequency of the oscillating system fn in still water
(i.e. f ∗

d = fd/fn). The non-dimensional dominant frequency of oscillations for the clean
(untripped) cylinder, which corresponds to a value of f ∗

d = 1.29, is also marked in figure 5
with a horizontal dashed line as the baseline to compare with. As discussed earlier, the
cylinder depicts a regular sinusoidal motion when the wire is placed in the angular range I
(0◦ ≤ θ < 47◦). In this range, as the angular position of the wire is increased starting from
θ = 0◦ until approximately θ = 15◦, the frequency of the cylinder oscillations remains
constant at a value of f ∗

d = 1.28, which is only slightly below f ∗
d of the clean cylinder. After

θ = 15◦, the frequency of oscillations in range I gradually increases as the wire angular
position increases. When the wire is placed in the angular range II (47◦ ≤ θ < 51◦),
a single dominant frequency is not discernible for the cylinder oscillations because, as
seen in figure 4, the sinusoidal cylinder motion is disrupted by the random appearance of
irregular oscillations spanning a wide range of amplitudes and frequencies. For this reason,
the second θ range in the f ∗

d −θ plot, given in figure 5, is filled with a hatch pattern. For
angular locations of range III (51◦ ≤ θ < 60◦), the displacement motion has two dominant
frequencies, as marked in figure 5. Both dominant frequencies in range III increase with
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θ

Figure 5. Variation of the frequency of cylinder oscillations in non-dimensional form (f ∗
d = fd/fn) with the

wire angular position. The horizontal dashed line indicates the non-dimensional frequency of the oscillation
motion for the clean (untripped) cylinder.

an increase in the angular location of the wire placement. The displacement response
has one dominant frequency at angular locations in the ranges IV, V and VI, where the
frequency of oscillations increases with the wire angle. Here, f ∗

d shows a sudden increase
at θ = 75◦, which is the start of range VI (75◦ ≤ θ < 105◦). In the angular range VII
(105◦ ≤ θ < 109◦), there is no dominant frequency because the cylinder does not undergo
any discernible oscillation motion (as seen in figure 4). Thus, this range is also covered
with a hatch pattern in figure 5. It should be noted here that the hatched areas for the
angular ranges II and VII in figure 5 have different interpretations. In the angular range II
(47◦ ≤ θ < 51◦), the cylinder motion consists of a combination of sinusoidal and irregular
motions (as seen in figure 4) encompassing a wide range of amplitudes and frequencies,
so a specific frequency cannot be selected as the prevailing one. However, in range VII
(105◦ ≤ θ < 109◦), the cylinder does not have a discernible oscillation motion, so that a
dominant frequency is not detectable. For the angular positions of the wire in range VIII
(109◦ ≤ θ ≤ 180◦), a dominant frequency for cylinder oscillations is perceptible again,
and figure 5 shows that this frequency is close to the oscillation frequency of the clean
cylinder, particularly for θ ≥ 135◦.

To explore the possible temporal variations in the dominant frequency of cylinder
oscillations when the surface wire is applied, the short-time Fourier transform (STFT)
has been applied to the cylinder displacement data for different wire placement positions.
Figure 6 shows the time–frequency spectrogram of the cylinder oscillations, determined
via STFT, for the same wire angular locations provided earlier in figure 4. Each angle in
figure 6 is representative of the situation seen within one of the eight angular ranges.
In these spectrogram plots, the horizontal axis shows the non-dimensional time t∗ =
tU/D, and the vertical axis shows the non-dimensional displacement frequency f ∗

d of
the wire-fitted cylinder. The colour-coded contour levels indicate the magnitude of the
autospectral density at a given frequency and time (i.e. Sy∗(t∗, f ∗

d )). The colour maps for
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Figure 6. Time–frequency spectrogram of the cylinder oscillations for having the wire at different angular
locations on the cylinder surface. The axis of angular values, where the range divisions are shown, is not to
scale.

the amplitude of autospectral density in the spectrogram plots of figure 6 are provided
in logarithmic scale to demonstrate the differences in spectral amplitudes for different
θ ranges. Therein, the red regions mark the highest spectral amplitudes, while the blue
regions mark the lowest amplitudes. In order to depict a holistic picture of the frequency
variation with time, the frequency spectrogram plots presented in figure 6 are shown over
a longer period compared with the displacement time traces given earlier in figure 4.

In range I (0◦ ≤ θ < 47◦), there is only one dominant value for the frequency f ∗
d , and

this frequency is unchanged with time, as apparent from the time–frequency spectrogram
of the representative case (θ = 35◦) given in figure 6. For range I, the presence of one
constant frequency for the largest spectral magnitudes over the entire time domain is
consistent with the regular oscillation motion seen in figure 4. For range II (47◦ ≤ θ <

51◦), as seen for the representative case of θ = 48◦ in figure 6, the dominant frequency
of the cylinder oscillations scatters over a wide range depending on the time. This
time-varying nature of the frequency f ∗

d is consistent with the intermittent switching of
the oscillation mode observed in figure 4 for this range. The short periods during which
the dominant frequency of the cylinder oscillations f ∗

d has a fixed value correspond to the
times when the cylinder undergoes regular sinusoidal oscillations, and the times when
the dominant frequency f ∗

d is spread over a wide range of values in the spectrogram
plot correspond to the times when the cylinder motion becomes irregular, spanning
a wide range of amplitudes and frequencies. It should be emphasized here that these
characteristics in the time–frequency domain of the sample case (θ = 48◦) are observed
for all angular locations within range II (47◦ ≤ θ < 51◦).

When the wire is located in range III (51◦ ≤ θ < 60◦), as can be observed from the
spectrogram plot of the θ = 53◦ case in figure 6, two dominant frequencies co-exist at any
given time in the displacement signal of the cylinder. This result implies that the cylinder
oscillations consist of the superposition of two sinusoidal motions, which is consistent
with the displacement pattern presented earlier in figure 4 for this third angular range.
For θ = 53◦ in figure 6, it should be noted that, in the time–frequency spectrogram of the
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cylinder oscillations, there exists a few occasions where the dominant frequency f ∗
d varies

over a range of values. During these short time periods, a disturbed motion exists, which
occurs randomly within the angular locations of range III.

In range IV (60◦ ≤ θ < 70◦), as the spectrogram plot of the θ = 60◦ case in figure 6
shows, the predominant frequency of cylinder oscillations shows a slight variation with
time within a narrow range of frequencies. However, there is only one dominant frequency
at each time step for the displacement motion. These observations comply with the
oscillation pattern seen earlier in figure 4 for range IV, which consists of quasi-sinusoidal
oscillations with the sporadic appearance of non-sinusoidal patterns. The variation in the
dominant oscillation frequency becomes smaller with increasing wire angular location in
this range. Consequently, examining the cylinder motion for different angular locations in
this range shows that the irregular motion manifests less frequently as the wire angular
location increases.

For the next range of angular locations, range V (70◦ ≤ θ < 75◦), the time–frequency
spectrogram analysis shows continuous contours of very high autospectral magnitudes at
one fixed frequency, as seen for θ = 72◦ in figure 6. This signifies a regular, coherent
oscillation motion for the angular locations of range V. One noticeable feature in the
spectrogram plot of θ = 72◦ in figure 6 is the appearance of a short-time small increase in
the dominant frequency at around t∗ = 320, which is accompanied by a temporary drop in
the amplitude of the cylinder oscillation. Such frequency variations in range V, however,
occur very rarely.

In range VI (75◦ ≤ θ < 105◦), the dominant frequency of the cylinder oscillations
remains constant, while the spectral magnitude of cylinder displacements at the dominant
frequency shows changes with time, as can be seen in the spectrogram plot of θ = 86◦
in figure 6. Such fluctuations in the spectral amplitude of the dominant frequency suggest
the presence of variations in the coherency of the oscillation motion. The quasi-uniform
character of the oscillation pattern with small-amplitude modulations, seen before for
range VI in figure 4, complies with this observation.

When the wire is placed at angular locations of range VII (105◦ ≤ θ < 109◦), there is
no regular oscillation motion, as seen earlier for θ = 107◦ in figure 4. As a result, there
is no dominant frequency, and the spectral magnitude of the displacements is at the noise
level for this range, as observed in the spectrogram plot of θ = 107◦ in figure 6.

The time–frequency spectrogram of cylinder oscillations at θ = 110◦ in figure 6 reveals
the existence of a dominant frequency since the oscillation motion resumes in the angles
of range VIII (109◦ ≤ θ < 180◦), as depicted in figure 4. Although the spectral magnitude
has low values and continuously fluctuates with time at θ = 110◦, as the wire is placed at
the higher angular locations of range VIII, the spectral magnitude becomes constant with
time (not shown in figure 6), and the time traces of the cylinder displacement turn into
perfect sinusoids.

To further examine the frequency characteristics of cylinder oscillations, the
autospectral density of cylinder displacements Sy∗( f ∗

d ) was evaluated using the classical
FFT analysis. These results are presented in figure 7 for every 1◦ increment of θ within
the ranges I to IV, where the scale of the vertical axis is the same in each plot to ease
the comparison of the spectral amplitudes. Figure 7(a) presents the displacement spectra
for four angles at the end of range I as a basis for comparison. As mentioned earlier,
the cylinder undergoes a uniform sinusoidal oscillation for every wire angular location
in range I. It is, therefore, observed that there is only one peak in the spectra of the
displacement signal in figure 7(a), and this observation confirms the existence of only
one dominant frequency in the first angular range. For all wire angular locations of range
II (47◦ ≤ θ < 51◦), small spectral amplitudes are distributed over many frequencies, and
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Figure 7. Autospectral density of the cylinder displacements, Sy∗ ( f ∗
d ), for select locations of the wire in:

(a) range I (0◦ ≤ θ < 47◦), (b) range II (47◦ ≤ θ < 51◦), (c) range III (51◦ ≤ θ < 60◦) and (d) range IV
(60◦ ≤ θ < 70◦).

therefore, no dominant frequency can be selected, as apparent from the spectra provided
in figure 7(b). This result complies with the time traces of the cylinder position given in
figure 4 and the time–frequency spectrogram of the cylinder oscillations shown in figure 6
for range II, where intermittent switching between seemingly sinusoidal and disturbed
cylinder motions was revealed. Although the cylinder fitted with the wire at the angular
locations of range II undergoes short periods of somewhat sinusoidal-looking oscillations,
a single frequency is still not discernible for this range, as observed in figure 7(b).

In the wire angular range III (51◦ ≤ θ < 60◦), the co-existence of dual frequencies
in the time–frequency spectrogram of the cylinder oscillations, seen in figure 6, agrees
with the FFT spectra of the cylinder displacements, given in figure 7(c). For all θ

in figure 7(c), two dominant frequencies are discernible in the spectra of the cylinder
displacements. This indicates that the oscillation motion of the cylinder in this θ range
mainly consists of a superposition of two sinusoidal motions with different frequencies,
which was also apparent from the time traces of the cylinder position given in figure 4
for the representative case of θ = 53◦. This twin-peak phenomenon in cylinder motion
derives from the vortex shedding mechanism prevalent in this θ range, as will be discussed
in § 3.4. One interesting observation that comes out of figure 7(c) is that the two dominant
frequencies increase with increasing wire angular position. The vertical dashed lines in
figure 7(c) mark the minimum and maximum values of these frequencies. Furthermore,
as the angular position of the wire increases, the spectra demonstrate a gradual transfer
of energy from the larger-frequency motion to the lower-frequency motion, eventually
yielding a single-peak spectrum at θ = 60◦, which is the start of the fourth range.

In the wire angular range IV (60◦ ≤ θ < 70◦), the cylinder displacement data for
θ = 60◦, given earlier in figure 4, displayed a pattern consisting of both sinusoidal
and irregular patterns, which was further supported by the time–frequency spectrogram
presented in figure 6 for the same θ . To further elaborate on this interesting observation,
the autospectral density of the cylinder displacement is presented in figure 7(d) for varying
θ in range IV. In this range, a slight gradual increase in the dominant frequency of cylinder
oscillations is discernible with an increase in the angular position of the surface wire from
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Figure 8. Variation of the non-dimensional amplitude of oscillations A∗ with the wire angular position θ .
The horizontal dashed line indicates the oscillation amplitude of the clean cylinder, which has the value of
A∗ = 0.44. The uncertainty is the same for all cases and is marked on the plot for some data points as a
reference.

θ = 60◦ to θ = 65◦, after which the dominant frequency remains constant. This aspect
was also visible in figure 5 for range IV. Furthermore, as the wire angle increases, the
small, non-dominant spectral amplitudes gradually decrease while the spectral amplitude
of the dominant frequency increases, suggesting lessening in the irregular motion as the
wire angular location increases.

3.3.3. The amplitude and mid-position of the cylinder oscillations
The variations of the amplitude and the mid-position of the cylinder oscillations with the
angular position of the wire are shown in figures 8 and 9, respectively. In these figures,
a polynomial curve is fitted for each range of wire angular positions to demonstrate the
overall change. To fit the data within each range to a polynomial function, a standard
least-squares algorithm is used. The order of the polynomial function is selected manually.
In figure 8 and throughout the study, the amplitude of the cylinder oscillations is defined
as half of the distance between the two overall phase-averaged limiting positions that
the cylinder sweeps during its oscillations, as explained in § 2, and this amplitude is
given in non-dimensionalized form based on the cylinder diameter D, as denoted by A∗
(see (2.1)). The mid-position of the cylinder oscillation y∗

mid is calculated by averaging
the displacement signal, and it is also normalized using the cylinder diameter ( y∗

mid =
yavg/D).

As can be seen in figure 8, as the wire angle increases within the angular range I (0◦ ≤
θ < 47◦), the oscillation amplitude A∗ decreases, attaining its minimum value at θ = 46◦,
which is 37 % lower than the amplitude of a clean (untripped) cylinder that undergoes VIV
under the same flow conditions. Meanwhile, figure 9 depicts that, in this same range (0◦ ≤
θ < 47◦), the mid-position y∗

mid of oscillations increases significantly with the wire angle,
which implies that the wire in this range induces a gradually increasing net time-averaged
lift force towards the wire side of the cylinder as θ increases. Remember that the range
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Figure 9. Variation of the mid-position y∗
mid of the oscillating cylinder with the wire angular position. The

positive direction of the vertical axis corresponds to the wire side of the cylinder. y∗
mid = 0 is the equilibrium

state in still water for both clean and tripped cylinders. The horizontal dashed line indicates the mid-position of
oscillation for the clean cylinder. The uncertainty is the same for all cases and is marked on the plot for some
data points as a reference.

of the first critical angle for a stationary cylinder exposed to the same flow conditions
was 41.2◦ ≤ θc1 < 43◦ (as discussed earlier in § 3.1), which falls within the range I of the
cylinder undergoing VIV. As discussed earlier, this critical wire location was attributed
to the attenuation of the Kármán instability, in the time-averaged sense, for stationary
cylinders. However, the cylinder undergoing VIV motion here shows a regular sinusoidal
motion at θc1, similar to the results presented in figures 4–6, while its oscillation amplitude
is decreased considerably compared with the clean cylinder undergoing VIV, as apparent
in figure 8.

In angular range II (47◦ ≤ θ < 51◦), figure 8 shows a gradual increase in the amplitude
of cylinder oscillations with increasing wire angle. As seen earlier in figure 4, the
seemingly sinusoidal oscillation of the cylinder is intermittently disrupted by an irregular
motion that involves a range of amplitudes from low to high. However, the high-amplitude
irregular motion dwarfs the low-amplitude irregular motion, and that is the reason for
the abrupt increase in the amplitude of the cylinder oscillations at the beginning of range
II. Due to the presence of both somewhat sinusoidal and irregular motions in this range,
two mid-positions can be defined for the cylinder oscillations, as seen in figure 9. The
higher values in the mid-position y∗

mid plot of range II in figure 9 correspond to the near
sinusoidal motion, while the lower data points in the same plot represent the mid-position
of the oscillations during irregular motion. As the switch of the oscillations between
the regular and irregular motions is intermittent for all θ in this range, the cylinder
oscillates sometimes around the upper and sometimes around the lower mid-position given
in figure 9 for range II.

The overall inspection of figure 8 shows that, throughout the angular ranges II, III, IV
and V, the oscillation amplitude of the cylinder continually increases with the wire angular
position, reaching its highest value at θ = 73◦ (in the angular range V), which is 102 %
higher than the oscillation amplitude of the clean cylinder. Note that attainment of such a
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large level of oscillation amplitude at this θ was observed to persist even for a wide range
of U∗ values (related result not shown here for brevity). Moreover, figure 9 shows a gradual
decrease of the mid-position of the cylinder oscillations with increasing wire angle in the
angular range III, and an increase in ranges IV and V.

As seen earlier in figures 4 and 5, both the pattern and the frequency of oscillations
change abruptly at θ = 75◦ (which is the start of range VI). Likewise, at this θ , abrupt
changes are also visible in both the amplitude and the mid-position of the cylinder
oscillations from figures 8 and 9, respectively. In the angular range VI, figure 8 depicts that
the oscillation amplitude decreases with increasing wire angular position. Interestingly,
the negative value of the cylinder mid-position in range VI (in figure 9) implies that the
oscillating cylinder is pushed towards its clean side by the effect of the wire (unlike the
other ranges). It should be noted that the range of the second critical angle for the stationary
cylinder counterpart (50◦ ≤ θc2 ≤ 80◦) is a wide range, which starts from the end of range
II and extends to the beginning of range VI of the wire-fitted cylinder undergoing VIV. As
discussed earlier, the wire at θc2 enhances the Kármán vortex shedding from the stationary
cylinder. However, the employment of the wire in the range of the second critical angle of
the stationary cylinder has varying effects on the motion characteristics of the oscillating
cylinder, depending on the θ range defined in figure 4.

In the angular range VII, the oscillation amplitude of the cylinder dropped drastically,
with the wire at θ = 107◦ yielding the minimum value, which is 98 % lower than the
amplitude of the clean cylinder (figure 8). At and around θ = 107◦, as seen earlier in
figure 4, the cylinder is almost motionless, and its mid-position stays near its equilibrium
position, as shown in figure 9. This level of amplitude attenuation was observed at
around this θ even over a wide range of reduced velocities. This observation is extremely
significant and suggests that something as simple as a single spanwise wire can be used to
suppress the VIV of a cylinder almost totally.

The sinusoidal oscillations for the cylinder resume starting from θ = 109◦ (which is the
start of the angular range VIII). For the wire angular positions in range VIII, figure 8 shows
that the amplitude of oscillations increases with increasing θ , approaching asymptotically
a finite value of A∗ = 0.61. Furthermore, inspection of figure 9 shows that the cylinder
oscillations in range VIII occur around its equilibrium position.

The characteristics of the cylinder motion discussed so far are expected to be intimately
related to the vortex shedding mechanism. To elucidate this aspect, the subsequent section
focuses on the flow field characteristics.

3.4. Flow field characteristics

3.4.1. Near-wake structure
In this section, to increase insight into the vortex shedding patterns associated with
different wire locations, contour patterns of instantaneous vorticity in the near-wake region
will be discussed in relation to the cylinder motion for all wire angular ranges. The results
presented here aim to reveal the vortex shedding processes featured by the different wire
angular ranges, and during this investigation, no assumption is made regarding the phase
difference between the fluid forcing and the cylinder motion. In all figures given here, the
flow is from left to right, and the wire (not shown in the figures) is located on the upper
side of the image of the cylinder. On the contour plots of the instantaneous vorticity, an
arrow shown on the image of the cylinder signifies the direction of the cylinder motion at
that instant. No arrow is provided whenever the cylinder comes to an instantaneous stop at
the beginning or end of an oscillation stroke. Also, in the figures, the time is represented
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in non-dimensional form t∗ = tU/D and its origin is selected to be the instant when the
cylinder is at its lowest point in the particular cycle that is being discussed.

In figure 10, the contours of instantaneous non-dimensional vorticity ωD/U are shown
for the wire at θ = 45◦ at instants corresponding to four different cylinder positions
selected from one full oscillation cycle of the cylinder. These four cylinder positions are
marked on the time trace of the cylinder position, which is also given in the same figure.
The wire position θ = 45◦ belongs to angular range I. Inspection of the contour plots in
figure 10 reveals the following vortex shedding process at this θ : when the cylinder is
at position 1 (marked on the y∗ versus t∗ plot), a vortex indicated as V1 is formed near
the upper side (wire side) of the cylinder. This vortex grows in size and is shed further
downstream when the cylinder is at the mid-position of the cycle (position 2). Then, when
the cylinder is at its top-most position in this cycle (position 3), another vortex, named
V2, is formed. V2 is significantly stretched and shed in the downstream direction while
also moving in the transverse direction when the cylinder reaches position 4, which is
a position that comes slightly after the mid-position of this oscillation cycle during the
downward stroke. The characteristics of V1 and V2 are different; V1, on the wire side, has
a nearly circular shape and travels along the streamwise direction while V2 stretches and
moves in the transverse direction (in the positive y∗ direction) as it sheds downstream. The
observed process of vortex shedding for θ = 45◦ may be considered, at first sight, to be
similar to the 2S vortex shedding mode, which was revealed by Williamson & Roshko
(1988) for clean cylinders undergoing VIV at low reduced velocities. As discussed in
their study, in the 2S vortex shedding mode, one vortex is shed during the acceleration
of the cylinder at each half of the oscillation cycle, and vortices travel in the streamwise
direction in a row. However, in the present case, although there is one single vortex shed
per half-cycle, the character of the second vortex is very different from the 2S mode. The
second vortex shedding from the smooth side undergoes significant stretching and lateral
movement while convecting downstream, which is presumably why the cylinder has been
pushed toward the wire side so significantly, as seen in figure 9.

When the wire is placed at the angular positions of range II, starting from θ = 47◦, the
sinusoidal motion of the cylinder is intermittently disrupted, as demonstrated earlier in
figure 4 for a representative θ from this range. Figure 11 shows the normalized vorticity
contours at four instants selected from different parts of the cylinder’s motion for θ = 48◦
as an example case from range II. Points 1 and 2, marked on the y∗ versus t∗ plot, are
instants from a cycle during the cylinder’s sinusoidal motion. Point 1 shows the instant
when the cylinder is moving away from its lowest point. This point comes slightly after the
start of this upward move. Point 2 is π away from point 1 in the cycle and corresponds to an
instant when the cylinder is moving away from its top-most position. As the cylinder passes
from points 1 and 2, vortices V1 and V2 are formed, respectively, and the vortex shedding
process appears to be generally the same as that observed for range I. In this case also V2
is stretched and moves in the transverse direction as the cylinder passes the mid-position
of the cycle in its downward stroke (which is not shown in figure 11 for brevity). Point 3
is from an instant when the wire interrupts the vortex shedding and introduces irregular
cylinder motion. At this point, there are two streams of vorticity coming from each side
of the cylinder. Later on, the regular Kármán vortex shedding resumes, as is the case at
point 4, creating a new vortex, marked as V ′

1, which yields sinusoidal cylinder motion
again. From these results, it can be concluded that, in range II, the cylinder switches
intermittently between two modes of oscillation (i.e. sinusoidal and irregular motions),
which is accompanied by a corresponding switch in the vortex shedding process.
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Figure 10. Contours of instantaneous normalized vorticity (ωD/U) for the wire angular position θ = 45◦
(from range I) along with the time traces of the cylinder displacement. The minimum absolute value and the
incremental value of contour levels are: [|ω|D/U]min = 9 and �(ωD/U) = 1.15.
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Figure 11. Contours of instantaneous normalized vorticity (ωD/U) for the wire angular position θ = 48◦
(from range II) along with the time traces of the cylinder displacement. The minimum absolute value and the
incremental value of contour levels are: [|ω|D/U]min = 9 and �(ωD/U) = 1.15.
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Figure 12. Time–frequency spectrogram of the streamwise velocity component for: (a) the stationary cylinder
with the wire at the first critical angle (θc1 = 42◦), and (b) the oscillating cylinder with the wire placed at
θ = 48◦ (within the angular range II). The magnitude of spectra |S∗

u| is normalized based on the maximum
value in the entire period, and the incremental value of the contour levels is �[|S∗

u|] = 0.02.

The switch in the vortex shedding mode of the oscillating wire-fitted cylinder for
the angular range II (47◦ ≤ θ < 51◦) is remarkably similar to the switch between the
irregular shedding and the regular shedding modes first observed by Aydin et al. (2014)
for a stationary cylinder when the wire is at a first critical angle. Recall from § 3.1
that the range of the first critical angle for the stationary cylinder was found to be
41.2 ≤ θc1 < 43◦ for the wire size and Reynolds number considered in the present study.
In the referenced work of Aydin et al. (2014), it was shown that for the stationary cylinder,
the wire at θc1 causes the formation of Kármán vortices to stop for the majority of the
time, while the regular vortex shedding resumes only intermittently for short periods
of time. For the oscillating cylinder in the present work, the wire at angular range II
induces irregularities in the cylinder motion at a wide range of frequencies, as shown
in figure 7, and the regular vortex shedding occurs intermittently, as seen in figure 11. To
further investigate the similarity in vortex shedding interruption between the stationary and
oscillating wire-fitted cylinders, the streamwise velocity signal u was extracted from the
PIV data at point (1.35D, 0.56D) in the near wake and the corresponding time–frequency
spectrogram was obtained from the STFT analysis. The contour plots in figure 12 show
these spectrograms for the stationary cylinder fitted with the wire at the first critical angle
θc1 = 42◦ and the oscillating cylinder fitted with the wire at θ = 48◦. These plots depict
the variation of the normalized frequency of the streamwise velocity ( f ∗

u = fu/fn) with
the non-dimensional time (t∗ = tU/D). At times when there is a regular vortex shedding,
a specific dominant frequency for flow fluctuations is visible from the high-amplitude
contour levels in figure 12. From these spectrograms, it is clear that the vortex shedding
process is sporadic for both the stationary and oscillating wire-fitted cylinders in question.
Hence, it can be concluded that, for the oscillating cylinder, the effect of wire on disrupting
the vortex shedding is shifted to the angular positions of range II (47◦ ≤ θ < 51◦), which
are higher than the first critical angles of the stationary cylinder (41.2◦ ≤ θc1 < 43◦).

In the wire angular range III, it has been seen so far that the cylinder motion is the
superposition of two sinusoidal oscillations with different frequencies (as discussed in
figures 5–8). This observation can be linked to the vortex shedding process, which is
depicted in figure 13 for the representative θ = 53◦ case from range III. When the cylinder
starts its upward motion in the positive y∗ direction (at position 1), a vortex indicated as
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V1 forms. This vortex sheds when the cylinder reaches the mid-position of the cycle (the
corresponding vorticity contour is not shown in the figure). Another vortex, V2, forms as
the cylinder continues to move upwards toward position 2, and this vortex sheds when
the cylinder is at the top position of the oscillation pattern. During the acceleration of the
cylinder in the negative y∗ direction, a third vortex, V3, forms near the wire side of the
cylinder (V3 formation during downward stroke is not shown in the figure). In this case,
the wire has induced an additional vortical structure, and the cylinder gains an additional
reciprocal motion. As can be seen from the time trace of the cylinder position given in
figure 13, for position 3, the cylinder motion diverges starting near the mid-position of
the downward stroke of the first sinusoidal motion and V3 has already shed when the
cylinder starts to move in this positive y* direction. Next, V4 is formed from the clean
side of the cylinder as the cylinder moves in the negative y∗ direction. Consequently, four
vortices are shed per cycle for wire angular range III. This vortex pattern is different from
the 2P vortex shedding mode observed during the VIV of a clean cylinder in the lower
synchronization range. In the 2P mode, as Williamson & Roshko (1988) discussed, two
vortices are shed per half-cycle, and two vortices of opposite sign pair together while
travelling downstream. In the vortex pattern of θ = 53◦ (representative of range III) given
in figure 13, four vortices are shed in total; however, they do not travel together. It is
worth mentioning here that, for higher angles in range II, when the cylinder oscillation
pattern switches between being sinusoidal and irregular, the vortex shedding mode just
discussed for range III is observed occasionally, and as a result, the vortex shedding
mode alternates between three modes: the mode observed for range I, the mode observed
for range III and the no regular vortex shedding mode (the corresponding results are
not shown here for brevity). This switch in the vortex modes in range II is irregular,
resulting in a change in the oscillation pattern as the wire angular location increases toward
range III.

The wire at angular locations of range IV induces quasi-sinusoidal oscillations with
the random appearance of irregular motions, as can be seen in the time trace of the
displacement signal given in figure 14 for θ = 60◦ as a representative case from this
range. Figure 14 also shows the vortex shedding process for this θ over two consecutive
oscillation cycles. The first oscillation cycle of the cylinder motion that includes positions
1 to 4 is similar to the oscillation motion observed in range III. Accordingly, the vortex
shedding process in the first cycle shown in figure 14 for range IV is also identical to the
vortex shedding process of range III. As described earlier for figure 13, four vortices are
shed in one cycle, and the last two vortices (marked as V3 and V4 in the vorticity contour
plots of positions 3 and 4 in figure 14) induce an additional reciprocating motion on the
oscillating cylinder. However, the same vortex shedding process does not always yield this
additional reciprocating motion, as seen in the second cycle, which includes positions 5
to 8 in figure 14. At position 5, the first vortex of the cycle, indicated as V ′

1, is formed.
This vortex moves downstream as the cylinder reaches the end of that upward stroke. The
second vortex V ′

2 is formed and starts moving downstream as the cylinder changes its
direction of motion right before position 6. At position 6, the cylinder moves slowly in
the negative y∗ direction. Then, the third vortex V ′

3 is shed at position 7. As the cylinder
accelerates in the same direction toward position 8, the fourth vortex V ′

4 is forming. As
can be seen in figure 14, the vortex shedding processes of the second cycle and the first
cycle are similar, while the motion of the oscillating cylinder is different. By comparing
positions 3 and 7, it is visible that the two vortices, V3 and V ′

3, look identical, but the
direction of motion for the cylinder is opposite. It should be noted that this observed vortex
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Figure 13. Contours of instantaneous normalized vorticity (ωD/U) for the wire angular position θ = 53◦
(from range III) along with the time traces of the cylinder displacement. The minimum absolute value and the
incremental value of contour levels are: [|ω|D/U]min = 9 and �(ωD/U) = 1.15.

shedding process is repeated in the rest of the oscillation pattern for θ = 60◦ as well as at
all other angular locations in range IV.

In figure 15, the contours of instantaneous normalized vorticity are shown for θ = 74◦
as an example case from the wire angular range V. In this θ range, the cylinder undergoes
high-amplitude, nearly sinusoidal oscillations with one dominant frequency. However, the
vortex shedding mechanism in range V is significantly different from the other ranges
that exhibit sinusoidal cylinder motion. The vortex shedding process in range V appears
to be similar to that in ranges III and IV. As the cylinder moves upward (in the positive
y∗ direction), a vortex, marked as V1 at position 1 in figure 15, forms from the upper
side (which is the wire side) of the cylinder. At this position, the vortex marked as V0 is
from the previous cycle. As the cylinder accelerates to the mid-position of the cycle, V1
stretches and moves laterally in the negative y∗ direction. At position 2, the second vortex
V2 is formed from the clean side of the cylinder. This vortex is moved to a downstream
location at position 3. When the cylinder reaches the top-most position in the cycle, the
wire induces the third vortex, V3, which is seen at position 3; V3 travels downstream
as the cylinder moves downward (in the negative y∗ direction), as shown in position
4. Furthermore, the fourth vortex V4 is formed while the cylinder continues moving
downward, as seen at position 4. V4 starts to travel downstream when the cylinder reaches
the end of the cycle (not shown in the figure). In figure 15, V4 at position 4 is equivalent
to V0 at position 1. Accordingly, for the wire angular range V, four vortices are shed per
cycle, similar to the ranges III and IV; however, the cylinder motion is different, such
that, in range V, the cylinder’s direction of motion does not change when the additional
vortex (V3) is induced, but when V3 is formed, the cylinder moves more slowly around
the top position compared with a sinusoidal motion. A careful inspection of the cylinder
oscillation pattern, given in figure 15, shows that the sinusoidal oscillation pattern is
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Figure 14. Contours of instantaneous normalized vorticity (ωD/U) for the wire angular position θ = 60◦
(from range IV) along with the time traces of the cylinder displacement. The minimum absolute value and the
incremental value of contour levels are: [|ω|D/U]min = 9 and �(ωD/U) = 1.15.

not symmetrical. The peaks are wider than the valleys. Although four vortices are shed
per cycle for the wire angular range V, the vortex shedding pattern cannot be confirmed
as the 2P vortex shedding mode of a clean cylinder because the pairing of vortices in
the downstream region of the wake is not visible from the current field of view. On rare
occasions, the vortex shedding process in range V is interrupted (not shown in the figure),
which causes a temporary drop in the amplitude of the cylinder oscillation accompanied
by a short-time small increase in the oscillation frequency; one such instance was seen in
the time–frequency spectrogram of θ = 72◦ (from range V) in figure 6.

The subsequent wire angular range is range VI, for which the cylinder depicts a
quasi-sinusoidal motion with a lower amplitude and higher frequency in comparison with
range V. Range VI starts at θ = 75◦, for which the cylinder oscillation pattern and the
vorticity contours are presented in figure 16. Similar to the sinusoidal oscillation pattern
of range I, two vortices are shed for the wire angular positions within range VI. The
first vortex, V1 on the wire side, is forming at position 1 (which corresponds to the
phase when the cylinder starts to accelerate upwards). At position 2, V1 is seen at a
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Figure 15. Contours of instantaneous normalized vorticity (ωD/U) for the wire angular position θ = 74◦
(from range V) along with the time traces of the cylinder displacement. The minimum absolute value and the
incremental value of contour levels are: [|ω|D/U]min = 9 and �(ωD/U) = 1.15.

downstream location. Next, the second vortex V2 is formed from the clean side of the
cylinder, as seen at position 3; V2 is shedding downstream when the cylinder passes
the mid-position of the cycle at position 4. The characteristics of vortices in range VI
are different from the previous ranges, such that the vortices are more stretched and the
small-scale structures are more discernible in the vorticity contours.

When the wire is placed in the θ range VII (105◦ ≤ θ < 109◦), figure 4 revealed
that the sinusoidal oscillation motion of the cylinder ceases, and figure 8 depicted that
the amplitude of the cylinder motion reduces by more than 90 % compared with the
clean cylinder case. Contour patterns of instantaneous normalized vorticity (ωD/U) are
shown in figure 17 for the cylinder that is fitted with the wire at θ = 107°, which is the
case yielding the largest-amplitude reduction in cylinder motion (to be specific, 98 %
reduction compared with the clean cylinder). Note that, for the wire angular range VII,
experiments were repeated with an extended field of view in the downstream direction
to better investigate the observed vortex shedding modes. Two distinct vortex shedding
modes are revealed in this range. Figure 17(a) depicts a snapshot from one of these modes,
named Mode I here. In this mode, vortices are shed alternately into the wake. Moreover,
in this mode, the vortices do not move away from the cylinder centreline as they convect
downstream. The second mode, Mode II, is depicted as a snapshot in figure 17(b). In this
mode, two vortices that are symmetric about the cylinder centreline form (marked as V ′

1
and V ′

2). After circulating in their position for a brief while, they shed downstream in the
form of small-scale vortices along the centreline of the cylinder. Long-time PIV records
of the near wake (for approximately 54 vortex shedding cycles) show that the vortex
shedding pattern switches randomly between these two vortex shedding modes (Mode I
and Mode II).

To further assess the random switch between the two vortex shedding modes (Mode
I and Mode II), STFT of the streamwise velocity signal, u, extracted from one point in
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Figure 16. Contours of instantaneous normalized vorticity (ωD/U) for the wire angular position θ = 75◦
(from range VI) along with the time traces of the cylinder displacement. The minimum absolute value and the
incremental value of contour levels are: [|ωD/U]min = 9 and �(ωD/U) = 1.15.

the near wake of the clean cylinder undergoing VIV motion is compared with that of a
cylinder fitted with the wire at θ = 107◦. The STFT of the streamwise velocity signal is
calculated at point (1.62D, 0.51D) for the clean cylinder and at point (2.13D, −0.41D) for
the cylinder having the wire at θ = 107◦ to represent the differences discernibly. Figure 18
shows the variation of the spectral amplitude, which is normalized by its maximum value
in the entire time period studied. The clean cylinder oscillates with a constant frequency,
and its synchronized vortex shedding frequency has a fixed frequency of f ∗

u = 1.31, as
apparent from figure 18(a). For the same flow conditions, when the wire is paced at
θ = 107◦, the vortex shedding frequency varies, as shown in figure 18(b). The high spectral
amplitudes (coloured in red based on the colour bar) correspond to the instants where the
alternating shedding of vortices occurs (Mode I), and the lower magnitudes of spectra
point out to the periods of interrupted vortex shedding (Mode II). Note that Mode I
involves the shedding of vortices at a frequency identical to the vortex shedding frequency
of a stationary clean cylinder at Re = 104 (f ∗

u = 2.14, or in other words, St = 0.21), while
Mode II involves shedding of vortices with no predominant frequency. Although here the
vortex shedding modes are depicted only for the θ = 107◦ case, these modes were equally
observed for all θ in range VII (105◦ ≤ θ < 109◦). It can be concluded that, in range VII,
the wire achieves attenuation in the VIV response of the cylinder by altering the shedding
mode of the vortices.

In range VIII, the cylinder resumes its regular sinusoidal oscillation motion with one
dominant frequency, as discussed in figures 4 and 5. The vortex shedding process for
θ = 140◦ as a representative of range VIII is shown in figure 19, along with the time trace
of the cylinder oscillation. The vortex shedding in this range of wire angular locations
involves four vortices. When the cylinder is accelerating at the beginning of the cycle in
the positive y∗ direction, the first vortex V1 is formed. This vortex is moved downstream
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Figure 17. Contours of instantaneous normalized vorticity (ωD/U) for the wire angular position θ = 107◦
(from range VII) with random switching of the vortex shedding mode between (a) Mode I and (b) Mode II. The
minimum absolute value and the incremental value of contour levels are: [|ω|D/U]min = 9 and �(ωD/U) =
1.15.
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Figure 18. The short-time Fourier transform (STFT) of the streamwise velocity for: (a) the clean cylinder and
(b) the cylinder fitted with the wire at θ = 107◦. The magnitude of the velocity spectra is normalized based
on the maximum value in the entire period. The normalized frequency resolution is 0.02 and the temporal
resolution is 0.21 s. The incremental value of contour levels is �[|S∗

u|] = 0.02.

at position 1. When the cylinder passes the mid-position of the cycle, the second vortex
V2 with the same vorticity sign as V1 is shed, which can be seen at a downstream location
later at position 2. During the second half of the cycle, the third vortex V3 forms from the
smooth side of the cylinder. This vortex is seen at a downstream location at position 3.
The fourth vortex V4 with the same vorticity sign as V3 starts to form slightly after the
mid-position of the cycle. In figure 19, V4 is seen at a downstream location at position 4
(when the cylinder reaches the end of the cycle). Based on these results, it can be concluded
that four vortices are shed in a given oscillation cycle of the wire-fitted cylinder for the
wire angular locations of range VIII, and during this shedding process, two vortices of
the same vorticity sign (e.g. V1 and V2) shed one after another. This vortex shedding
process is remarkably similar to the 2P vortex shedding mode reported by previous studies
for clean cylinders oscillating within the lower synchronization range (Brika & Laneville
1993; Govardhan & Williamson 2000). This similarity between the clean cylinder and
the cylinder with the wire attached at the angular locations of range VIII was further
verified in the present study by examining the vortex shedding from the clean cylinder
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Figure 19. Contours of instantaneous normalized vorticity (ωD/U) for the wire angular position θ = 140◦
(from range VIII) along with the time traces of the cylinder displacement. The minimum absolute value and
the incremental value of contour levels are: [|ω|D/U]min = 9 and �(ωD/U) = 1.15.

undergoing VIV under the same conditions. The results of the oscillating clean cylinder
are not presented here for brevity.

3.4.2. Global patterns of velocity spectra
To gain further insight into the unsteady flow characteristics, global representations of
velocity spectra have been constructed from the PIV data. This process involved the
determination of the autospectra of the streamwise velocity fluctuations at every point
in the PIV field of view, detection of the frequency of streamwise velocity fluctuations
prevailing over the entire flow field and plotting of the spectral amplitude corresponding
to this frequency over the entire near-wake region in the form of contour plots. The
contour plots presented in figure 20 show the amplitude of the streamwise velocity spectra,
|Su( f ∗

u )|, at the prevailing frequency of streamwise velocity fluctuations. In this figure,
the plots are provided for select wire positions representative of each angular range. The
prevailing frequency of velocity fluctuations depends on the wire location θ , and its value
is indicated for each θ in figure 20 in non-dimensional form f ∗

u (based on the natural
frequency of the system, i.e. f ∗

u = fu/fn). Also, to take into account the global effect of the
cylinder motion on the near-wake flow field, the mid-position and the oscillation amplitude
A∗ are also marked in figure 20 on the images of the cylinder. The wire (not shown in the
figure) is positioned on the upper side of the cylinder in these plots.

The most salient observation that comes out of the overall inspection of the plots in
figure 20 is that, for both wire angular positions of θ = 48◦ (from range II) and θ = 107◦
(from range VII), the peak spectral amplitudes are relatively low over the whole near-wake
region in comparison with the peak spectral amplitudes of the other angular positions.
This attenuation is observed not only for the representative θ given from the angular
ranges II and VII, but also for all wire placement angles of these two ranges. As a result,
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Figure 20. Contours of the amplitude of the autospectral density corresponding to the streamwise velocity
component at the prevailing frequency of velocity fluctuations |Su( f ∗

u )| for different wire angular positions that
are representative of each wire angular range. The mid-position and the displacement range of the cylinder
are also depicted on the image of the cylinder in each plot. Minimum and incremental values are as follows:
[|Su( f ∗

u )|]min = 30 mm s−1 and �[|Su( f ∗
u )|] = 2.5 mm s−1.

no prominent frequency was detectable for the angular ranges II and VII. The spectral
amplitudes in the contour plots of θ = 48◦ and θ = 107◦ in figure 20 correspond to an
arbitrarily selected frequency; however, the same low-amplitude contours existed for all
other frequencies at these angles. For the angular ranges II and VII, the non-existence of
a dominant frequency corresponding to velocity fluctuations in the wake implies that the
strength and coherence of Kármán vortices (indicated by the magnitude of the autospectral
density) are drastically attenuated for these wire positions. Notice that this attenuation is
more significant in range VII compared with range II because of the observed random
switch between the vortex shedding Modes I and II.

For all wire angular positions outside the angular ranges II and VII, a dominant
frequency was distinctively identifiable from the spectra of the streamwise velocity
component. The peak amplitudes of velocity spectra can ultimately be related to the
coherence and strength of periodic vortex shedding. For wire applications that lead to
regular sinusoidal motion, such as those within the angular ranges I, V, VI and VIII, very
high peak amplitudes are visible in the contour plots of |Su( f ∗

u )| in figure 20, indicating
highly coherent shedding of vortices. For the wire angular range IV, it was deduced from
the time traces of the cylinder motion, given in figure 4, as well as the time–frequency
spectrogram of cylinder oscillations, given in figure 6, that the sinusoidal cylinder motion
is disturbed intermittently by irregular oscillations. The lower spectral peak observed in
velocity fluctuations in figure 20 for the representative case of θ = 60◦ from this range
compared with the above-mentioned ranges (I, V, VI and VIII) is consistent with the
intermittently appearing irregular cylinder motion, pointing out the intimate link between
unsteady flow characteristics and the cylinder motion.

The two frequencies dominating the cylinder oscillation motion simultaneously,
detected earlier in figure 5, for the wire locations in range III are also the predominant
frequencies in the streamwise velocity spectra. Therefore, for the representative case of
θ = 53◦ in figure 20, two autospectral density contours are provided corresponding to
these two frequencies dominating the velocity fluctuations. The peak spectral amplitudes
detected in these two plots have comparable levels. However, the locations of these peaks
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Figure 21. Variation of the dominant frequency of the oscillation motion f ∗
d and the dominant frequency of the

streamwise velocity fluctuations f ∗
u with the wire angular position θ for the oscillating wire-fitted cylinder. The

horizontal dashed line marks both the oscillation frequency and the dominant frequency of streamwise velocity
signals for the clean cylinder undergoing VIV under the same conditions.

in the near wake are relatively upstream for the lower dominant frequency, reasons of
which are not immediately apparent.

3.4.3. Vortex shedding synchronization
Figure 21 depicts the dominant non-dimensional vortex shedding frequency based on the
streamwise velocity component ( f ∗

u = fu/fn) as a function of the wire angular position.
For determining the dominant vortex shedding frequency, the global autospectral density
of the streamwise velocity signals, obtained from the PIV data, was calculated for a
wide range of frequency values, and the frequency with the highest peak magnitude of
spectra from the near wake was selected as the dominant frequency. The non-dimensional
oscillation frequency of the cylinder ( f ∗

d = fd/fn) from figure 5 is also shown in this figure
for comparison. For the clean cylinder counterpart, it is known that the vortex shedding is
synchronized with the oscillation motion as the reduced velocity considered in the present
study (U∗ = 10.44) is from the lower synchronization range, as discussed earlier in § 3.2.
Hence, for the clean cylinder f ∗

u = f ∗
d . The horizontal line in figure 21 marks the dominant

non-dimensional frequency of both the cylinder oscillations and vortex shedding for the
clean cylinder.

As can be seen from figure 21, similar to the case of the clean cylinder, the vortex
shedding of the wire-fitted cylinder is synchronized with the oscillation motion of the
cylinder for all angular positions of the wire, except for the angular ranges II (47◦ ≤ θ <

51◦) and VII (105◦ ≤ θ < 109◦). Hence, the ranges II and VII are hatched in figure 21.
It should also be noted that, similar to figure 5, the interpretation of the hatched areas
in figure 21 is different for the angular range II and range VII. In range II, the vortex
shedding occurs intermittently (as shown in figure 11), and consequently, the cylinder
randomly oscillates with sinusoidal and disturbed motions, as seen in figure 4. However,
a dominant frequency cannot be selected for the entire period of the cylinder oscillation.
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Figure 22. Frequency spectrum of velocity signals at a point with maximum value of spectral magnitude
for wire angular positions of range III ((51◦ ≤ θ < 60◦)). Existence of two distinct dominant frequencies is
depicted for both: (a) the streamwise velocity component u and (b) the transverse velocity component v.

On the contrary, in range VII, there is no detectable oscillation motion for the cylinder,
and the vortex shedding switches intermittently between Mode I and Mode II (as shown in
figure 17). As a result, there is no dominant frequency in range VII.

Another phenomenon revealed in figure 21 is the simultaneous presence of two
dominant frequencies throughout the angular range III (51◦ ≤ θ < 60◦) not only for the
cylinder oscillation motion but also for the vortex shedding process. The oscillation of
the wire-fitted cylinder in range III was seen earlier (in figures 4–7) to be dominated
by two sinusoidal motions having different frequencies. To demonstrate the existence
of dual-frequency domination in velocity fluctuations for this angular range, figure 22 is
provided, where the autospectral density of the streamwise u and transverse v components
of the velocity, Su( f ∗

u ) and Sv( f ∗
v ), are shown for the wire angular positions of θ = 51◦ to

59◦ (angular range III). Each spectrum shown in figure 22 is determined using the velocity
signal extracted from the PIV data corresponding to the respective point in the near wake
that gives the highest spectral magnitude. As seen in figure 22(a), two distinct peaks are
detectable in the spectra of the streamwise velocity component, Su( f ∗

u ). The first peak is
always the predominant one for all wire angular positions, except for θ = 51◦, which is
the beginning of range III. On the other hand, figure 22(b) shows that the second peak is
the predominant one in the spectra of the transverse velocity component, Sv( f ∗

v ), for all
angular locations in this range. In figure 22, the vertical dashed lines indicate the range of
values within which the two dominant frequencies change with the wire angular location,
θ . The range of increase in the two dominant frequencies with increasing θ is identical for
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Figure 23. Time traces of displacement of the cylinder y∗, the streamwise velocity component u∗ and the
transverse velocity component v∗ for the wire angular location of θ = 53◦ (from range III). The period of the
non-dimensionalized time is the same for all plots. One cycle of oscillation motion is marked between the two
vertical dashed lines.

flow fluctuations and the displacement of the cylinder, so the vertical dashed lines show
the same values in figures 7(c), 22(a) and 22(b).

To further address the observed double frequency phenomenon in range III, the time
traces of cylinder displacement, y∗, the streamwise velocity component, u∗, and the
transverse velocity component, v∗, are provided in figure 23 for θ = 53◦ as a representative
sample case from the angular range III. The values on the time axis are the same for all
plots, and they are presented in non-dimensional form t∗. The velocity signals are extracted
from the PIV data at the point that gives the highest spectral magnitude in the near wake,
and the spectra given in figure 22 for θ = 53◦ correspond to the velocity signals shown in
figure 23. The vertical dashed lines in figure 23 indicate one full oscillation cycle of the
cylinder, and the dash-dot line represents the start of the second reciprocating motion of
the cylinder within the cycle. It was mentioned earlier that the oscillation motion in range
III is the superposition of two sinusoids with different frequencies. A careful inspection
of the displacement signal y∗ reveals that the first dominant frequency f ∗

1 (the low value)
represents one full cycle of the oscillation motion, and the second dominant frequency f ∗

2
(the high value) represents the additional reciprocating motion within the cycle. The two
dominant frequencies (f ∗

1 and f ∗
2 ) are marked in figure 23 for θ = 53◦. From the time trace

of velocity signals in the same figure, it can be observed that the low- and high-frequency
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values correspond to the frequency of oscillations in the streamwise and transverse velocity
components in the wake, respectively. This observation aligns with the higher spectral
magnitude of f ∗

1 seen for u∗ in figure 22(a) and the higher spectral magnitude of f ∗
2 seen

for v∗ in figure 22(b). It should be recalled that four vortices are shed per cycle for the
angular range III, as discussed in figure 13. Combined with this knowledge, it can be
deduced that the first dominant frequency f ∗

1 represents the frequency of the entire vortex
shedding process during one oscillation cycle, and the second dominant frequency f ∗

2 can
be associated with the frequency of shedding for a pair of vortices.

4. Concluding remarks

For a rigid circular cylinder undergoing transversal VIVs with low mass-damping in the
lower synchronization range, the extent to which the use of a single spanwise surface wire
alters the vibration and vortex shedding characteristics has been investigated by conducting
simultaneous PIV and displacement measurements. Motivated by the VIV-based energy
harvesting applications from ocean or river flows, the spanwise ends of the cylinder
immersed in a water channel were the free water surface at the top and the free end at
the bottom. With a diameter equal to 6.25 % of the cylinder diameter, the wire considered
in this study had a scale larger than the boundary layer thickness forming around the
cylinder. The wire-fitted cylinder was tested at a Reynolds number of 10 000, considering
variations in the surface wire location over the complete 180◦ angular range. Based on the
vibration characteristics of the wire-fitted cylinder, several angular ranges were identified
for the wire placement. Pattern, amplitude and frequency of the structural oscillations in
connection to the vortex shedding modes have been determined for each of these angular
ranges. Highlights from these findings are as follows:

Range I (0◦ ≤ θ < 47◦): the wire-fitted cylinder undergoes regular sinusoidal motion.
A total of two vortices are shed per oscillation cycle, where the vortex on the smooth
side of the cylinder undergoes significant stretching and lateral movement, resulting in a
time-averaged net lift force toward the wire side of the cylinder.

Range II (47◦ ≤ θ < 51◦): placement of the wire within this range causes the
cylinder motion to switch intermittently between sinusoidal and irregular oscillations. The
intermittent switch in the cylinder motion is linked to a switch in the vortex shedding
process, where regular vortex shedding switches into an irregular vortex shedding mode.
This switch in the vortex shedding modes is remarkably similar to the sporadic switch
between the irregular and regular shedding modes observed in previous studies on
stationary cylinders fitted with a surface wire at the first critical location. However, for the
oscillating cylinder, this same effect occurs at slightly higher angular positions. Due to the
random appearance of irregular cylinder motion and irregular vortex shedding, a single
dominant frequency is not discernible for the cylinder oscillations and vortex shedding
within this range.

Range III (51◦ ≤ θ < 60◦): the wire in this range induces regular cylinder oscillations
consisting of a combination of two sinusoidal motions having different frequencies. As a
result, these two frequencies co-dominate the cylinder oscillations. This motion is linked
to the vortex shedding process where four vortices are shed alternately per cycle, with the
shedding of the third vortex inducing a reciprocal cylinder movement. The two dominant
frequencies also co-exist in velocity fluctuations, where the lower frequency represents
the frequency of the entire vortex shedding process during one complete oscillation cycle,
whereas the higher frequency is linked to the shedding of each vortex pair.

Range IV (60◦ ≤ θ < 70◦): the wire at angular locations of this range yields
quasi-sinusoidal cylinder oscillations along with the random appearance of irregular
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motions, although the same vortex shedding process of range III with four alternate
vortices shedding per cycle continued to exist in this range.

Range V (70◦ ≤ θ < 75◦): the most striking feature of this range is that the amplitude
of the wire-fitted cylinder’s oscillations increases more than 94 % compared with a
clean cylinder (with no wire), with the maximum amplitude increase of 102 % occurring
when the wire is at θ = 73◦. When the wire is in this range, the cylinder undergoes
high-amplitude and near-sinusoidal oscillations. Four vortices are shed per oscillation
cycle, similar to ranges III and IV. However, the formation of the third vortex when the
cylinder reaches its farthest position on the wire side does not change the cylinder’s
direction but instead slows it down compared with a sinusoid.

Range VI (75◦ ≤ θ < 105◦): the wire-fitted cylinder’s oscillations have a quasi-
sinusoidal character, with small-amplitude modulations between cycles. Two alternate
vortices were shed per oscillation cycle, similar to range I, where sinusoidal oscillation
motion was detected. However, vortices in this range appear more stretched and contain
more small-scale structures, presumably being the cause of the observed amplitude
modulation.

Range VII (105◦ ≤ θ < 109◦): the wire in this range stops the sinusoidal oscillation
motion of the cylinder and achieves more than 90 % reduction in the vibration amplitude
compared with a clean cylinder under the same conditions. The maximum amplitude
reduction of 98 % occurs when the wire is at θ = 107◦, where the motion of the cylinder
almost completely ceases. This is a remarkable finding for VIV suppression applications.
There is no dominant frequency for cylinder motion in this range since the cylinder does
not oscillate regularly and undergoes only very small-amplitude vibrations. The wire
imposes a random switch in the vortex shedding patterns between two modes, named Mode
I and Mode II. In Mode I, regular vortex shedding occurs where vortices shed alternately
into the wake in a row. On the other hand, in Mode II, vortices form simultaneously on both
sides of the cylinder wake, being symmetric about the cylinder centreline. After circulating
in their position for a while, these vortices break up into small-scale vortices and then shed
downstream.

Range VIII (109◦ ≤ θ ≤ 180◦): the wire-fitted cylinder returns to its regular sinusoidal
motion with one dominant frequency. Four vortices are shed per oscillation cycle of the
cylinder, where two vortices of the same sign shed one after the other similar to the
2P vortex shedding mode of clean cylinders oscillating within the lower synchronization
range.

One of the prominent results of the present study is that it reveals the existence of two
angular ranges that may be significant in practical applications. Enhancing the amplitude
of structural oscillations by more than 94 % compared with a clean cylinder, with a
maximum of 102 %, using a wire at range V implies an increase in the extracted energy
in VIV-based energy harvesters. On the other hand, more than 90 % reduction in VIV
amplitude, with a maximum decrease of 98 %, using a wire in range VII provides a
method to reduce unwanted structural vibrations. Finally, it should be noted that the
enhancement and attenuation of the VIV amplitude by placing the wire in angular ranges
V and VII, respectively, have also been confirmed to exist for varying reduced velocities
in the lower branch (not presented here, but results can be found in Vaziri 2021). However,
further investigations should be conducted to evaluate the effect of reduced velocity on the
identified angular ranges.
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