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ON THE PARTIALLY ORDERED SET OF PRIME
IDEALS OF A DISTRIBUTIVE LATTICE

RAYMOND BALBES

1. Introduction. For a distributive lattice L, let Z2°(L) denote the poset
of all prime ideals of L together with @ and L. This paper is concerned with
the following type of problem. Given a class % of distributive lattices, charac-
terize all posets P for which P =~ % (L) for some L ¢ % . Such a poset P will
be called representable over €. For example, if & is the class of all relatively
complemented distributive lattices, then P is representable over % if and only
if P is a totally unordered poset with 0, 1 adjoined. One of our main results
is a complete characterization of those posets P which are representable over
the class of distributive lattices which are generated by their meet irreducible
elements. The problem of determining which posets P are representable over
the class of all distributive lattices appears to be very difficult. (See [2].) It
will be shown that this problem is equivalent to the embeddability of P as the
set of meet irreducible elements of a certain distributive algebraic lattice.

Results concerning the degree to which & (L) determines L are presented
in §§ 4 and 5. It is shown that if £ (L) is isomorphic with the power set of a
non-empty set X, then L is a free distributive lattice.

2. Preliminaries. Let P be a poset and .S a non-empty subset of P. Denote
by (S]p, or simply (S], the set {x € Plx < s for some s € S}; abbreviate
({s}] by (s1; [S) is defined dually. S is hereditary if x <y and y € .S imply
x € S. For a non-empty set X, 2% will denote the poset of all subsets of X.

The class of all distributive lattices will be denoted by .%. As stated above,
P (L) is the poset of prime ideals of L together with @ and L (we avoid un-
necessary technical complications by not excluding # and L from £ (L)).
For each x € L, let x* = {I € Z?(L)|x ¢ I}. Note that @ € x* and that
L ¢ x*. It is well known (see, e.g., [4]) that the prime ideal theorem implies
(i) L = {«*|x € L}, and (ii) if 74, T» are non-empty subsets of L and

N {x*fx € Th) S U {y¥ly € T,
then there exist finite subsets 0 = 7, C T, 0 # T3 € T, such that
N {x*fx € TV} S U {y*ly € TY'}.

Finally, recall that an element x € L is meet irreducible (M.I1.) if yz < x
implies that y < x or 3 < x. So (x] € & (L) if and only if x is M.I. The class
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of all distributive lattices which are generated by M.I. elements will be denoted

by ..

3. Posets representable over.o/. We begin by giving a sufficient condition
for a poset P to be representable over .Z.

Definition 1. Let P be a poset with 0, 1. A non-zero element & € P is weakly
compact provided that if @ ¢ D C P, > pD exists, and 2 < Y pD, then there
exists {di,...,d,} € D such that [d;) N ...N[d,) C [k).

Definition 2. A non-empty subset D of a poset P will be called prime provided
that if {s,..., S t1, ..., tn} are weakly compact in P, {{1,...,t,} € D and
)N .. [te) Sls) Y. . Uls,), then s; € D for some ¢ € {1,...,n}.

Let P be a poset with 0 < 1 and K the weakly compact members of P.
Consider the following two conditions on P:

(C1) If p £ ¢ then there exists ¥ € K such that k2 < p and & £ g.

(C2) If D is a prime subset of P then }_pD exists.

THEOREM 3. If P is a poset with 0 < 1 that satisfies (C1) and (C2) then P is
representable over £ .

Proof. Let R be the ring of sets generated by f{[k)'|k € K} where
[k) = P~ [k). For each p€ P, let y¢(p) =1{4 € R|p ¢ 4}. Then
Y(p) € P(R), so p— ¢ (p) defines a function from P into & (R). Now [k)’
is a hereditary subset of P for each & € K, so R is a ring of hereditary sets.
It follows that ¢ preserves order. Condition (C1) implies that [k) € ¢ (p) ~
¥(q), s0 p = g if and only if ¥(p) < ¥(g).

Next, observe that ¢ (0) = @ and ¢ (1) = R. Now let I be a prime ideal in R
and set D = {k € K|[k) € I}. Then D @ since I 5 0. Also, if

{ShyeveerySmyblyeeertm) TK, {t1,..,ta} S D,
and
E) Do oM [E) S s1) Yoo U lse),
then
)N N s) S Yoo Ul

but I is a prime and {[¢1), .., {tx)'} & I,s0s; € D forsomes € {1,...,n}.
That is, D is a prime subset of P.

By (C2), p = > pD exists and the proof will be completed by showing that

v(p) = I. Let
4 = Ql (Q [kij)’>‘

j=1
First, suppose that 4 € ¢ (p); then p ¢ 4, so

nig

PE Ql [kiw)
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for some 70 € {1,...,n}. Letj € {1,...,%n;}. Then k;y; < p = >,D, and
since kg ; is weakly compact there exists {qi,...¢,} €D such that
lgi) N ... M [g,) € [ky;). But D is prime, so ky; € D; hence [ky;) € 1.
This means that [k;);)’ € I for ¢ = 1,..,#n44, and so 4 € I. To show the
reverse inclusion, let A € I. Say

ni

U [k1y) € 1.
=1
Then {k1j, ..., ki} & D so ki; £ 2. D = p for each j. Therefore,

pé Ul [k1;)’
Pt
and p ¢ A which means that 4 € ¢ (p).

Next, we determine the weakly compact elements in & (L) for L € .o7.

LemMmA 4. If L € o then the following are equivalent:
(i) I is weakly compact in &P (L);
(ii) I = (x]z for some M.I. element x € L.
Proof. Let M be the M.I. elements of I and set P = £ (L).
(i) = (ii). Let D = {(u]olu € MM I}. D £ @ since I  @. Now I is the

ideal generated by U D so, in fact, I = > pD. Since I is weakly compact,
there exist { (#1]z, ..., (.} € D such that

[@d)p N oo N [(a] ) e S [ e

Now let x = %1 + ...+ u,. We will show (x] = I. Indeed, u; € I for each
1€ {l,...,n}s0 (x] S I.If I Z (x] then there exists y € I such thaty £ «
and therefore a prime ideal J such that x € J, y ¢ J. But x € J implies
JeE[wl)pN . . N [w])p S [I)psoy € I C J,which isa contradiction.
Thus, I = (x] and since [ is prime, x is M.I.

(ii) = (i) Firstly, x € M implies that (x] € P.Supposethat@ = D C P, Y .D
exists, and that (x] & > pD. Let J be the ideal generated by \U D and suppose
that x ¢ J. Then there is a prime ideal J’ such that x ¢ J/, J C J'. So
K C JC J for each K € D and hence (x] € > D C J’, which is a con-
tradiction. Thus, since x € J, there exist I, ..., I,in D and x; € I, such that

x £ %1+ ..+ x, Finally,

(L) N N [L) S [(]2) e

for if K¢ P and K ¢ [I;)N\...MN[],), then for each 7 ¢ {1,...,n},
x; € I; C K,sox € K. Hence (x], C K.

THEOREM 5. A poset P is representable over &7 if and only if P satisfies (C1)
and (C2).

Proof. Suppose first that P satisfies (C1) and (C2). Now the ring R con-
structed in Theorem 3 was generated by {[k)’|k € K} for some non-empty
subset K C P. From this, it is easily verified that [k)’ is M.I. for each k& € K.
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Conversely, suppose that P = & (L), where L is generated by the set M of
M.I. elements of L. For (C1), suppose that {I, J} € P and that I € J. Then
there is an element x € I ~ J. But since x is a sum of products of members of
M, there is an element # € M M (I ~ J). By Lemma 4, («] is weakly com-
pactin P, and also (u] C I, (u] £ J. For (C2), suppose that D is prime in P.
Let J be the ideal in L generated by U D. Clearly, if J € P, then >, D will
exist and equal J. Now to prove that J is a prime ideal, it is sufficient to show
that if {uy...,4,) €M and #uy-...-u, € J, then u;, € J for some
¢ € {1,...,n}. But if #y-...-u, € J, then there are members Iy, ..., I,
of D and elements x; € I;such that u;-... %, £ %1+ ...+ x,. Now I, is
weakly compact since D is prime, so I; = (y;] where y; € M for each
1€ {1,...,m}. Hence u1... 4, Ey1+ ...+ v, and so

()N o NN [l )r S [@a])p Yoo \J [(1a] 1) pe
Invoking the primeness of D again, we find that (#,], € D for some i, so
U; 6 J.
To show how conditions (C1) and (C2) can be applied in specific cases we

present the following corollary:

CoRrOLLARY 6. If P is o poset with 0 < 1 and [p) is finite for each p # 0,
then it is representable over < .

Proof. Let D be a non-empty subset of P ~ {0}. For each finite, non-empty
subset 7" C D, M er[t) is finite and contains 1. Let # be the least number of
elements in M ,r[t) for any such TC D and let Ty be a finite non-empty

subset of D such that Mer[t) = {1, ..., %,}. Then the elements {x1, ..., x,}
are all upper bounds of D, for clearly ¢t < x,forall¢ € Tyand ifd € D ~ T,
then

(Nierol)) N [E) C Nuerolt) = {21, ..., 5%},
so by the minimality of #,

(Nerl)) N [d) = {x1, ..., %}
and hence d = x;.

We now proceed to verify (C1). Suppose that p £ 0, > pD exists, and that
p = > pD. But then u € M ,epo[t) implies that x; < « for some< € {1, ..., n}
and as x; is an upper bound for D, p < 3 »D = x; < u. Thus, Nierolt) S [p).
For (C2), suppose that D is prime in P. Let {uy, ..., u#,} be the minimal
elements of {xi,...,%,} so that Nierlt) = [u) U ...\ U [u,). By the
definition of prime, #;, € D for some %o € {1,...,m}. But then

(Neerelt)) M [15) S {1, -+, X}
and again by the minimality of #,

(i) = (Niewlt)) N [ugw) = {x1, ..., 2.

It follows that > pD exists and equals .
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COROLLARY 7. Every finite poset and every totally unordered poset, with 0 and 1
adjoined, is representable over o7 .

4. Uniqueness of posets representable over 7. Corollary 7 implies that
posets representable over .2/ may also be representable by distributive lattices
outside of .o7. Indeed, choose a non-atomic Boolean algebra B. Then there is
a lattice L € & such that & (B) = £ (L). However, within the class.o/, we
do have uniqueness.

TuEOREM 8. If L and L' are members of & and PP (L) = P (L'), then L= L.

Proof. Let M and M’ be the sets of M.I. elements of L and L’, respectively,
and let f: (L) — £ (L') be an isomorphism. Since f induces an isomorphism
between the set of weakly compact elements of (L) and the set of weakly
compact elements of &2 (L’), Lemma 4 implies the existence of an isomorphism
g:M — M’ such that f((x]) = (g(x)]. To show that g can be extended to a
homomorphism G:L — L', it is sufficient to prove that if S and T are finite
non-empty subsets of M, and II.S < 3 T, then IIg(S) = X g(7). Indeed,
this condition implies that the function G:L — L’ defined by

G(ILS, + ... + 1IIS,) = IIg(S,) + ...+ IIg(S,)

is well defined. 1t is easy then to verify that G is a homomorphism; the details
can be found, for example, in [1, Lemma 1.7].

Now suppose that IIg(S) £ > g(7"). Then there exists I € P(L’) such that
> g(T') € Tand Ilg(S) ¢ I. Foreach ¢t € T, g(t) € I, so f({¢]) = (g(t)] < I.
Hence, ¢ € (#] € f~1(I). But then . T € f~1(I), so s € f~1(I) for some
s €S and, therefore, (s] € f~1(I). Finally, g(s) € (g(s)] = f((s]) € I,
which is a contradiction. Thus, there is a homomorphism G:L — L’ such that
G|M = g. Similarly, there is a homomorphism G’:L’— L such that
G'|: M’ = g1, It follows that G is an isomorphism.

The existence and uniqueness of representable chains can now be described
completely.

THEOREM 9. If C is a chain which is representable over &L, then C is complete
and each interval (a,b] contains an element with an immediate predecessor.
Moreover, the representation of C over £ is unique. Conversely, if C is a complete
chain 1n which each interval (a, b] contains an element with an immediate prede-
cessor then C = P (C1) for some chain Ci.

Proof. 1If C = P (L) for some L €. %, then C is closed under arbitrary
unions, so Cis complete. For {I, J} C £ (L), if I C J, then there is an element
x € J~1I,s0l C (x] CJ.Since Cis a chain, so is L, and hence (x] € Z°(L).
The immediate predecessor of (x] is {u € Llu < x}. Next, if Z (L) =
C=~= %P (L), then L and L' are chains and hence in.#. By Theorem 8, L =~ L'.
For the converse, it is sufficient to prove that if ¢ € C has an immediate
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predecessor ¢/, then ¢ is weakly compact. Thus, suppose that ¢ < > pD. If

d<cforalld € D, thend £¢,soc =3 pD = ¢ <c. Hence, ¢ = dy for
some dy € D.

5. Free distributive lattices. In this section we show that P = 2¥ is
representable only as the free distributive lattice on |X| free generators. The
fact that & (L) = 2%¥ when L is free is well known.

LemMa 10. Let L be a distributive lattice and suppose that P = P (L) is
complete. If T is a finite non-empty set of M.I. elements of L, then

(3) X pllee T = (X1,
and > T 1is M.I. in L.

Proof. For each t € T, t € (] C X p{ (]|t € T}, so
(X TIC X pi(lt e T,

Conversely, if u ¢ (3_ 77, then there is a prime ideal I such that u» ¢ I,
> 7 € I.ButthenT C I,so0 ({] C Iforeacht € I.Hence > p{(f]|t € I} C I,
andsou ¢ X p{ (]|t € I}. Since (3 T] € P, > Tis M.I.

LEMMA 11. Let L € ¥ and let P = P (L) = 2% for some X 5 @. Then I is
an atom in P if and only if I = (m)], where m is M.I. in L and is minimal in
the set of all M.I. elements in L.

Proof. Sufficiency. Suppose that I has no greatest element. Then for each
u € I, there exists v, € [ and I(u,v,) € P such that v, £ u, u € I(u,v,),
and v, € I(u,v,). Let S = {I(u,v,)|u € I}. Since v, € I ~ I(u,v,), we have
I & Jforall J €.S. ButIisan atom in P which implies that I-J = 05 for
all 7 € S. Now I C U S C Y S, and since the Boolean algebra P is (2, o0 )-
distributive,
] = I * Z PS
=2 p{l-JJ €S
= OPv

contradicting the definition of an atom.

So I has a greatest element m. It follows that I = (m], m is M.I., and is,
in fact, minimal in the set of all M.I. elements in L.

Necessity. Under the conditions of the hypothesis, (m] € P and
(m] # 0 = 0p. So there is an atom J € P such that J C (m]. But from the
converse, J = (n] where n is M.I. Since m is minimal in the set of M.I.
elements and #» < m, we have n = m, so (m] = J is an atom in P,

THEOREM 12. If L is a distributive lattice and P (L) = 2% for some non-
empty set X, then L is the free distributive lattice on |X| free generators.

https://doi.org/10.4153/CJM-1971-097-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1971-097-3

872 RAYMOND BALBES

Proof. Let P = & (L) and let S be the minimal elements in the set of M.1.
elements of L. |S| = [X| > 0 by Lemma 11. We prove first that S is an inde-
pendent set.

Let 77 and T be finite non-empty subsets of .S such that II7; £ 3 7. By
Lemma 10, > 75 is M.I., so there exists {; € T such that s, < > 7.

Now

LIS X Ty =X p{Ut € Ty},

and since £ € S, (4] is an atom in P; so there exists £, € T, such that
(tl] _C_ (tz] The mmlmahty Of to and 21 é Lo 1mply tl = [g.

Since independent sets generate free distributive lattices, it suffices to
prove that S generates L. For this purpose, let S% = {3 T|T is a finite non-
empty subset of S}. Recall from Lemma 10 that the members of S* are M.1.

in L. We prove that if I € P and I 5 @, then I N S? # @ and
2@t e INS? =U {(lte INSH.

Since I # @, it is a sum of atoms in P. By Lemma 11, there is a member
y € Ssuch that (y) € I, soy € IN.SC IN S2 For the second part of the
assertion it is easily verified that

U {@lt € IN S} € P.

We will now show that each x € L is a finite product of members of SZ=.
The work is divided into two cases.
Firstly, assume that S M [x) # 0. Then

(4) =N {y*ly € TN [0)}.
To see this, let I € x*. Thenx ¢ I,soy € SN [x) implies thaty ¢ I and,
therefore, that I € y*. Conversely, suppose that
IeM{y¥ly € STNM [x)} ~u*.
Now
I=% p{{lt€S*NI}
= U {@lteSENI},

and as x € I, x € (f] for some t € SEM I. So t € SEM [x) and, therefore,
I € t*, whichisacontradiction. Butby (2), (4) implies thatx* = y,* M ... N y,*
for some y; € S% and hence that x = y;-... -y, which completes the proof
for this case.

Finally, suppose that S* M [x) = @. Thus, x £ ¢ for all ¢ € S%. Then
(5) x* = U {s*s € S}.

Indeed, if I ¢ x* then x € I = U {({]|t € IN S2}, so x <t for some
t € S, which is a contradiction. If I € x*, then x ¢ I, so either I = @ or
there is an atom (s], s € .S, such that (s] € I and therefore, in either case,
Ie U {s*s €S}

From (5), it follows thatx = s; + ...+ s, € S=.
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6. Posets representable over .¥. A characterization of those posets
representable over L can be obtained immediately from (1) and (2).

THEOREM 13. A poset P is representable over & if and only if P has 0 < 1
and there is a ring R of non-empty, proper, hereditary subsets of P satisfying:
(i) If p £ q then there exists A € R such that p ¢ A and q € A.
(1) If {4} ier and {B;} jer are non-empty families in R and

N {dili € I} © {B)lj € T},
then there exist finite non-empty subsets I' C I and J' C J such that
N{di € I'} T U {B,j€ J}.

Another characterization can be obtained by distinguishing the prime ideals
in the class of all ideals of a distributive lattice.

THEOREM 14. A poset P with 0 < 1 is representable over &£ if and only if P
is the set of M.I. elements of a distributive algebraic lattice L in which the non-
zero compact elements K form a sublattice of L.

Proof. For the sufficiency of the condition, we show that P =~ £ (K). For
each p € P, let ¢(p) = {q € K|qg < p}. The relation p — ¢(p) establishes a
function from P into & (K) which is order preserving in both directions. To
show that ¢ is onto, first note that ¢ (0) = @ and that ¢ (1) = K. Now let I
be a prime ideal in K. Set p = 3 .I. To show that p is M.I., suppose that
xy < pbutx £ pandy £ p for some {x,y} & P. Since L is algebraic, there
exists {s,¢} € Ksuchthats S «x,sfpandt =y, tf£p. Butst Sxy = p =
> 11, and since K is a sublattice of L, there exists {x1, ..., x,} C I such that
st=x1+ ...+ %, But I is prime, so s €I or t€ I. Thus, either
s=XI=port=3 I=p,whichisa contradiction. Hence, p € P and it
follows that ¢ (p) = I.

Conversely, suppose that L is a distributive lattice and that P = £ (L).
Let £ (L) be the poset of all ideals in L together with @. £ (L) is a complete
lattice where II.S = NS and X S is the ideal generated by U S. Since L
is distributive, it follows that £ (L) is also distributive. Since I € # (L) can
be represented by I = Y. {(x]|x € I}, it is easily verified that £ (L) is an
algebraic lattice. It remains to show that I € 2 (L) if and only if I is M.I. in
J@L). Let I € P(L) and let J-J, C I. If J & I, then there is an element
u € J~ 1 Butthen J, CI; for,if x € Jy, thenxu € INJ,=J-J,C I,
and so x € I. On the other hand, if I is M.I. in # (L) and xy € I, then
x]-(y] = @@y] €I, so x] ST or (y] € I. Hence, x € I or y € I, and
IePL).

Neither Theorem 13 nor Theorem 14 is an optimal solution, since neither
really tells us much about P itself. We therefore ask for a characterization of
posets representable over %, which is analogous the solution for & given in
Theorem 5.
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