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ON THE PARTIALLY ORDERED SET OF PRIME 
IDEALS OF A DISTRIBUTIVE LATTICE 

RAYMOND BALBES 

1. Introduction. For a distributive lattice L, let £P(L) denote the poset 
of all prime ideals of L together with 0 and L. This paper is concerned with 
the following type of problem. Given a class ^ of distributive lattices, charac­
terize all posets P for which P = & (L) for some I Ç ? . Such a poset P will 
be called representable over Cf. For example, if ^f is the class of all relatively 
complemented distributive lattices, then P is representable over ^ if and only 
if P is a totally unordered poset with 0, 1 adjoined. One of our main results 
is a complete characterization of those posets P which are representable over 
the class of distributive lattices which are generated by their meet irreducible 
elements. The problem of determining which posets P are representable over 
the class of all distributive lattices appears to be very difficult. (See [2].) It 
will be shown that this problem is equivalent to the embeddability of P as the 
set of meet irreducible elements of a certain distributive algebraic lattice. 

Results concerning the degree to which £P (L) determines L are presented 
in §§ 4 and 5. I t is shown that if & (L) is isomorphic with the power set of a 
non-empty set X, then L is a free distributive lattice. 

2. Preliminaries. Let P be a poset and 5 a non-empty subset of P. Denote 
by (S]P, or simply (5], the set {x G P\x S s for some 5 G S] ; abbreviate 
({s}] by (s]; [S) is denned dually. 5 is hereditary if x rg y and y G S imply 
x G S. For a non-empty set X, 2X will denote the poset of all subsets of X. 

The class of all distributive lattices will be denoted by<=£f. As stated above, 
SP(L) is the poset of prime ideals of L together with 0 and L (we avoid un­
necessary technical complications by not excluding 0 and L from &(!,)). 
For each x G L, let x* = {/ G &(L)\x G / } . Note that 0 G x* and that 
L G x*. It is well known (see, e.g., [4]) that the prime ideal theorem implies 
(i) L ~ {x*\x G L}, and (ii) if Tly T2 are non-empty subsets of L and 

O {**|x G Tx) c U {y*\y G T2J, 

then there exist finite subsets 0 ^ 7Y Q Tlf 0 ^ T2' Q T2 such that 

n {**|* e TV} c u b*b G TYJ. 

Finally, recall that an element x G L is meet irreducible (M.I.) ii yz S x 
implies that y ^ x or z ^ x. So (x] £ & (L) if and only if x is ikf.7. The class 

Received April 30, 1971. This research was supported, in part, by NSF Grant GP11893. 

866 

https://doi.org/10.4153/CJM-1971-097-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-097-3


PRIME IDEALS 867 

of all distr ibutive lattices which are generated by M.I. elements will be denoted 
bysf. 

3. P o s e t s representab le over sf. W e begin by giving a sufficient condition 
for a poset P to be representable over o$f. 

Definition 1. Let P be a poset with 0, 1. A non-zero element ft G P is weakly 
compact provided t ha t if 0 ^ D C P , £ P Z } exists, and ft ^ J^pD, then there 
exists {di, . . . , dn\ QD such t ha t [d{) C\ . . . Pi [dn) Ç [ft). 

Definition 2. A non-empty subset D of a poset P will be called prime provided 
t h a t if {s, . . . , sn, h, . . . , tm) are weakly compact in P , {/i, . . . , tm\ Q D and 
[h) Pi . . . Pi [*TO) Ç [^) U . . . U [>n), then s< G £> for some i G {1, . . . , » } . 

Let P be a poset with 0 < 1 and i£ the weakly compact members of P . 
Consider the following two conditions on P : 

(CI) If p ^ a then there exists k £ K such t h a t k ^ p and & $ g. 
(C2) If D is a prime subset of P then ] C P ^ exists. 

T H E O R E M 3. If P is a poset with 0 < 1 that satisfies (CI) and (C2) then P is 
representable over S£. 

Proof. Let R be the ring of sets generated by {[k)'\k £ K} where 
[ft)' = P ~ [ft). For each £ 6 P , let ^ ( p ) = {4 G P | £ g 4 } . T h e n 
f(p) € ^ C R ) , so p-*^(p) defines a function from P into ^ ( P ) . Now [ft)' 
is a hereditary subset of P for each ft G i£, so P is a ring of hereditary sets. 
I t follows t h a t \p preserves order. Condition (CI) implies t h a t [ft)' G $(p) ~ 
\(/(q), so p S o if and only if ^ ( £ ) ^ ^(<z). 

Next , observe tha t ^ (0 ) = 0 and ^ (1) = R. Now let 7 be a prime ideal in R 
and set D = {ft G X|[ft) ' G / } . Then P> ^ 0 since 7 ^ 0 . Also, if 

{Sl, . . . , Sn, tij . . . , tm) Ç i£, {̂ l, . . , £TO} Ç P , 

and 

[ / i )n. . .ntu c to w...w[5n), 
then 

W , n . . . n [ 5 , y c [ / 1 ) ' u . . . u [ 0 ' ; 
b u t I is a prime and {[h)', . . , {tm)f} Ç / , so s* G J9 for some i G {1, . . . , n). 
T h a t is, D is a prime subset of P . 

By (C2), p = YipD exists and the proof will be completed by showing t h a t 
x//(p) = I. Let 

n / m \ 

A = n ( u [*„)'). 

First , suppose t h a t 4̂ G ^ ( £ ) ; then p (L A, so 

p e n [fefoi) 
7 = 1 
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for some i0 G {1, . . . , n). Let j G {1, . . . , niQ}. Then kioj ^ p = 2^7}, and 
since kiQj is weakly compact there exists {q±, . . . qn} ÇJ 7) such that 
[gi) P\ . . . H [g j Ç [feioi). But D is prime, so fe*o;- G 7); hence [fe^)' 6 7. 
This means that [&i0iy G 7 for i = 1, . . , niQ, and so i f I . To show the 
reverse inclusion, let A £ I. Say 

u [kuY G /. 
1=1 

Then {kij, . . . , &ini} C D so &i;- t^ IL, D = P for each j . Therefore, 

Pi U [*i,)' 

and p (L A which means that 4̂ G ^(p) . 

Next, we determine the weakly compact elements in £P {L) for L G J^ . 

LEMMA 4. 7/7, Ç J ^ then the following are equivalent: 
(i) I is weakly compact in 8P (L) ; 

(ii) 7 = (x]Lfor some M.I. element x £ L. 

Proof. Let M be the M.I. elements of 7 and set P = £P(L). 
(i) => (ii). Let 7) = {(«;U|tt G -MPi 7}. £> ^ 0 since 7 ^ 0 . Now 7 is the 

ideal generated by U D so, in fact, 7 = X)p7). Since 7 is weakly compact, 
there exist {(ui]L, . . . , (un]L} ÇZ 7) such that 

[ ( « i ] i ) p n . . . n [ ( « l l ] L ) p Ç [7)p. 

Now let x = u\ + . . . + un. We will show (x] = 7. Indeed, ^ G 7 for each 
i G {1, . . . , n} so (x] c; 7. If 7 $£ (x] then there exists y G 7 such that y ^ x 
and therefore a prime ideal / such that x G 7", y (L J- But x G / implies 
7" G [(wj i ) p P\ . . . H [(wJ L)P Q [I)p so y G 7 C / , which is a contradiction. 
Thus, 7 = (x] and since 7 is prime, x is Af .7. 

(ii) =» (i) Firstly, x G M implies that (x] G P. Suppose that 0 ^ D C P , E P ^ 

exists, and that (x] Ç ^PD. Let J be the ideal generated by U D and suppose 
that x £ J. Then there is a prime ideal J7 such that x g T7, J ÇZ J7. So 
K Ç1 J Q Jf for each K £ D and hence (x] Ç X!P7) £ -7'» which is a con­
tradiction. Thus, since x G 7", there exist 7i, . . . , In in 7) and xt G 7Z such that 
x ^ Xi + . . + xn. Finally, 

[ii)n...n[in)Q[(x]L)P; 

for if K G P and X G [7i) H . . . Pi [/„), then for each i G {1, . . . , n}, 
Xi G Ii ^ i£, so x G i£. Hence (xjz, Ç K. 

THEOREM 5. A poset P is representable over se if and only if P satisfies (CI) 
and (C2). 

Proof. Suppose first that P satisfies (CI) and (C2). Now the ring R con­
structed in Theorem 3 was generated by {[fe)'|fe G K} for some non-empty 
subset K Q P. From this, it is easily verified that [k)f is il7.7. for each k G K. 
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Conversely, suppose that P = &(£,), where L is generated by the set M of 
M J. elements of L. For (CI), suppose that {I, J] Ç P and that I £ J. Then 
there is an element x G I ~ J. But since x is a sum of products of members of 
M, there is an element u G M C\ (I ~ J). By Lemma 4, (u] is weakly com­
pact in P , and also (u\ C / , (u\ £ J. For (C2), suppose that D is prime in P. 
Let J be the ideal in L generated by U D. Clearly, if J G P, then X) ^ will 
exist and equal J. Now to prove that / is a prime ideal, it is sufficient to show 
that if {ui, . . . , un] CI M and u\ • . . . • un G / , then ut ^ J for some 
i G j l , . . . , w | . But if U\ - . . . • un G / , then there are members Ji, . . . , Im 

of D and elements xt £ It such that wi • . . . • un S #i + . . . + xm. Now It is 
weakly compact since D is prime, so Ii = (yt] where yt G M for each 
i G {1, . . . , m}. Hence Wi . . . ww ^ yx + . . . + ym and so 

[ (yik)p H . . . H [ ( y j ^ p ç [ M L ) P U . . . U [(un]L)P. 

Invoking the primeness of D again, we find that (Ui]L G D for some i, so 
ut G / . 

To show how conditions (CI) and (C2) can be applied in specific cases we 
present the following corollary: 

COROLLARY 6. If P is a poset with 0 < 1 and [p) is finite for each p 5e 0, 
then it is representable over s/. 

Proof. Let D b e a non-empty subset of P ~ {0}. For each finite, non-empty 
subset T Cl D, Pl/çrtO is finite and contains 1. Let n be the least number of 
elements in PherW f° r a n v s u c n T Q D and let T0 be a finite non-empty 
subset of D such that Pi «er0[0

 = lxi» • • • , #»} • Then the elements {#i, . . . , xn} 
are all upper bounds of D, for clearly t ^ xt for all / G Po and if d G -0 ^ r 0 l 

then 

(n 
X i , . . . , Xn f , 

so by the minimality of n, 

(n«€ro[0) ^ [<0 = {̂ i> • • • >Xn] 
and hence d ^ xt. 

We now proceed to verify (CI). Suppose that p ^ 0, Z ) P ^ exists, and that 
p S UPD- But then u G Pi «erotO implies that xt S u for some i G {1, . . . , n] 
and asXj is an upper bound for D,p ^ J2 pD ^ %i ^ u. Thus, n*€ro[0 £ [£)• 
For (C2), suppose that Z) is prime in P. Let {ui, . . . , um] be the minimal 
elements of {xlt . . . , xn] so that PlierotO = twi) ^ • • • ̂  K ) . By the 
definition of prime, uî0 G £> for some i0 G {1, . . . , w}. But then 

x i , . . . , xw y 

and again by the minimality of n, 

[Uio) = (n«€«oW) ^ [«*>) = {̂ 1» • • • > *»}• 

It follows that ^PD exists and equals uiQ. 
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COROLLARY 7. Every finite poset and every totally unordered poset, with 0 and 1 
adjoined, is representable overs/. 

4. Uniqueness of posets representable over J / . Corollary 7 implies that 
posets representable over se may also be representable by distributive lattices 
outside of s/. Indeed, choose a non-atomic Boolean algebra B. Then there is 
a lattice L G s/ such that £P (B) = gP(L). However, within the class J / , we 
do have uniqueness. 

THEOREM 8. If L and V are members ofs/ and 0> (L) ^ SP (Z/), then L ^ L'. 

Proof. Let M and M' be the sets of M.I. elements of L and Z/, respectively, 
and le t / : & (L) ~» SP (L') be an isomorphism. Since/ induces an isomorphism 
between the set of weakly compact elements of £P (L) and the set of weakly 
compact elements of & (U), Lemma 4 implies the existence of an isomorphism 
g:M —> If' such tha t / ( (# ] ) = (#(#)]. To show that g can be extended to a 
homomorphism G:L—*Lf, it is sufficient to prove that if S and T are finite 
non-empty subsets of ilf, and II S ^ ]£ T, then IIg(*S) ^ 2] g(T). Indeed, 
this condition implies that the function G:L—» 1/ denned by 

G(IISi + . . . + TLSn) = IIg(SB) + . . . + Ug(Sn) 

is well defined. It is easy then to verify that G is a homomorphism; the details 
can be found, for example, in [1, Lemma 1.7]. 

Now suppose that IIg(S) ^ ]C g(T). Then there exists I G P(Lf) such that 
L g{T) G f and H^(5) g f. For each t G 7\ g(*) G J, so/((*]) = &(*)] ç J. 
Hence, / G (*] Ç / " 1 ^ ) . But then £ T G / ^ C O , so 5 G / ^ ( f ) for some 
.s G 5 and, therefore, (5] <^f~l(I). Finally, g(5) G (g(5)] = / ( (* ] ) C f, 
which is a contradiction. Thus, there is a homomorphism G:L —> 1/ such that 
G\M = g. Similarly, there is a homomorphism G':Z/ —* L such that 
G'\\Mr = g_1. It follows that G is an isomorphism. 

The existence and uniqueness of representable chains can now be described 
completely. 

THEOREM 9. If C is a chain which is representable over J£, then C is complete 
and each interval (a, b] contains an element with an immediate predecessor. 
Moreover, the representation of C over ̂  is unique. Conversely, if C is a complete 
chain in which each interval (a, b] contains an element with an immediate prede­
cessor then C = 0{Ci) for some chain C\. 

Proof. If C = &{L) for some L G c£f, then C is closed under arbitrary 
unions, so C is complete. For {I, J} ÇZ gp (L), iî I (Z J, then there is an element 
x£J~IjSoId. (%] C J. Since C is a chain, so is L, and hence (x] G 0 (L). 
The immediate predecessor of (x] is {u G L\u < x}. Next, if SP (L) ~ 
C = & (Z/)> then L and L' are chains and hence i n ^ . By Theorem §,L = L'. 
For the converse, it is sufficient to prove that if c G C has an immediate 
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predecessor c'y then c is weakly compact. Thus, suppose that c S H pD. If 
d < c for all d G D, then ^ c', so c ^ J ? D ^ c' < c. Hence, c ^ d0 for 
some d0 G 7). 

5. Free distributive lattices. In this section we show that P = 2X is 
representable only as the free distributive lattice on \X\ free generators. The 
fact that & (V) == 2X when L is free is well known. 

LEMMA 10. Let L be a distributive lattice and suppose that P = SP (V) is 
complete. If T is a finite non-empty set of M.I. elements of L, then 

(3) ZP{(t]\te T] = E n 

and E T is M.I. in L. 

Proof. For each t G T, t G M Q E p{ Ml* G P}, so 

( E ^ ] ^ E P { W I ^ r} . 

Conversely, if u G ( E P]> then there is a prime ideal 7 such that u G I, 
I T G I. But then 7 C 7, so (*] ç 7 for each t G I . Hence E p{ Ml* 6 I) Q I , 
and s o ^ E P{ (*]|* G 7}. Since ( E T] G P , E T is If./. 

LEMMA 11. Let L G i f awd let P = 0>(L) ^ 2 x / o r seme X ^ 0. PAgw 7 is 
an atom in P if and only if I — (m], where m is M.I. in L and is minimal in 
the set of all M.I. elements in L. 

Proof. Sufficiency. Suppose that I has no greatest element. Then for each 
u G I, there exists vu G 7 and I(u, vu) G P such that vu ^ u, u G I(u, vu), 
and vu G I(u, vu). Let 5 = {7(w, vu)\u G 7}. Since ^ G I ~ I(u, vu), we have 
I (jL J ior all J £ S. But 7 is an atom in P which implies that I - J — 0P for 
all / Ç 5. Now 7 Ç U ^ Q E pS, and since the Boolean algebra P is (2, oo )-
distributive, 

I = / - E P S 

= I P ( / ' / | / G 5 ) 

= oP, 
contradicting the definition of an atom. 

So I has a greatest element w. It follows that 7 = (m], m is il7.7., and is, 
in fact, minimal in the set of all M.I. elements in L. 

Necessity. Under the conditions of the hypothesis, (m] G P and 
(m] 9^ 0 = Op. So there is an atom J £ P such that J C (Wj. But from the 
converse, J = (n\ where n is 717.7. Since m is minimal in the set of il7.7. 
elements and n ^ m, we have n = m, so (m] = J is an atom in P . 

THEOREM 12. 7/ L is a distributive lattice and &(L) = 2X for some non­
empty set X, then L is the free distributive lattice on \X\ free generators. 
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Proof. Let P = & (L) and let 5 be the minimal elements in the set of M.I. 
elements of L. \S\ = \X\ > 0 by Lemma 11. We prove first that 5 is an inde­
pendent set. 

Let Ti and T2 be finite non-empty subsets of 5 such that TLPi S ]C T2. By 
Lemma 10, J2 Pi is M.I., so there exists h G Pi such that h ^ ^ P*> 
Now 

(h]Q (Er 2 ] = E,((fl |J6 r 2 j , 

and since h G S, (ti\ is an atom in P ; so there exists t2 G 2̂ 2 such that 
(k] £ (£2]. The minimality of t2 and £1 ^ £2 imply £1 = t2. 

Since independent sets generate free distributive lattices, it suffices to 
prove that S generates L. For this purpose, let 5 s = {^ P\P is a, finite non­
empty subset of S}. Recall from Lemma 10 that the members of 5 s are M.I. 
in L. We prove that if I G P and I ?* 0, then 7 P 5 s ^ 0 and 

E P I M N ir\s*} = u {(/]|/6 ir\s*}. 
Since 7 5̂  0, it is a sum of atoms in P. By Lemma 11, there is a member 
y G S such that (3/] C 7, so 3/ G 7 P 5 C 7 P 5 s . For the second part of the 
assertion it is easily verified that 

u {(*]|/ G / n ^ | G P. 
We will now show that each x G 7, is a finite product of members of 5 s . 

The work is divided into two cases. 
Firstly, assume that »SS P [x) 9e 0. Then 

(4) x* = n {y*|y G S S P [ X ) } . 

To see this, let 7 G x*. Then x $ 7, so 3/ G 5 s P [x) implies that y Q I and, 
therefore, that / Ç 3/*. Conversely, suppose that 

I G P j;y*|3/ G S2 H [x)} ~ x*. 
Now 

/ = £ p { ( * ] | * e s * n / } 
= U { ( ^ G S S P 7 } , 

and as x \3 J- ) x G (£] for some £ G 5 s P 7. So J G 5 s Pi [x) and, therefore, 
7 G J*, which is a contradiction. But by (2), (4) implies that x* = y±* P . . . C\yn* 
for some ^ G 5 s and hence that x = 3/1 • . . . • yn, which completes the proof 
for this case. 

Finally, suppose that 5 s P [x) = 0. Thus, x $ / for all £ G S2 . Then 

(5) x* = U {s*\s G 5} . 

Indeed, if 7 G x* then x G 7 = (J {0(||* G 7 Pi 5 s } , so x ^ t for some 
£ G 5 s , which is a contradiction. If 7 G x*, then x G 7, so either 7 = 0 or 
there is an atom (s], s G S, such that (s] $£ 7 and therefore, in either case, 
7 G U {s*\s G S}. 

From (5), it follows that x = Si + • . . + sn G 5 s . 
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6. Posets representable over S£. A characterization of those posets 
representable over L can be obtained immediately from (1) and (2). 

THEOREM 13. A poset P is representable over <=£? if and only if P has 0 < 1 
and there is a ring R of non-empty, proper, hereditary subsets of P satisfying: 

(i) If p % q then there exists A G R such that p (£ A and q G A. 
(ii) If {Af} îÇ7 and {Bj} jeJ are non-empty families in R and 

n {At\ie i] s iBjijej), 
then there exist finite non-empty subsets F C I and J' CI J such that 

n [At\ie i'} Q u \Bj\jeJ'}. 
Another characterization can be obtained by distinguishing the prime ideals 

in the class of all ideals of a distributive lattice. 

THEOREM 14. A poset P with 0 < 1 is representable over ££ if and only if P 
is the set of M J. elements of a distributive algebraic lattice L in which the non­
zero compact elements K form a sublattice of P. 

Proof. For the sufficiency of the condition, we show that P = £P(K). For 
each p G P , let if/(p) = {q G K\q ^ p). The relation p^-^^(p) establishes a 
function from P into & (K) which is order preserving in both directions. To 
show that \[/ is onto, first note that ^(0) = 0 and that ^(1) = K. Now let 7 
be a prime ideal in K. Set p = ]T] iJ- To show that p is M.I., suppose that 
xy ^ p but x ^ p and y dfc p for some {x, y] Ç̂  P . Since P is algebraic, there 
exists {s, t) C K such that s ^ x, s ^ p and t ^ y, t ^ p. But st S xy ^ p = 
]£ LI, and since K is a sublattice of P, there exists {xi, . . . , xn] Ç I such that 
st S X\ + • • • + xn. But 7 is prime, so s £ I or t G I. Thus, either 
s ^ ^ I = p or t-^Y^I — Pi which is a contradiction. Hence, p G P and it 
follows that ^(p) = 7. 

Conversely, suppose that P is a distributive lattice and that P = £P(JJ). 
Let */ (P) be the poset of all ideals in P together with 0. </ (P) is a complete 
lattice where II S = C\ S and X) S is the ideal generated by U S. Since P 
is distributive, it follows that J (P) is also distributive. Since I G i (P) can 
be represented by I — ]£ {(x]\x G 7}, it is easily verified that J (P) is an 
algebraic lattice. It remains to show that I G & (V) if and only if I is M J. in 
</(P). Let 7 G «^(P) and let J • Pi C 7. If P $£ 7, then there is an element 
u £ J ~ I. But then Pi C 7; for, if x G Pi, then xu G P A Pi = J - Ji Q I, 
and so x G P On the other hand, if 7 is ikf.P. in */ (P) and :ry G / , then 
(x] • (y] = (xy] Q 7, so (x] Q I or (3/] C| 7. Hence, x G 7 or 3/ G 7, and 
7 G ^ ( P ) . 

Neither Theorem 13 nor Theorem 14 is an optimal solution, since neither 
really tells us much about P itself. We therefore ask for a characterization of 
posets representable over S£, which is analogous the solution for se given in 
Theorem 5. 
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