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Abstract

Let f be an elliptic modular form and p an odd prime that is coprime to the level of f. We study the link
between divisors of the characteristic ideal of the p-primary fine Selmer group of f over the cyclotomic
Z,, extension of Q and the greatest common divisor of signed Selmer groups attached to f defined using
the theory of Wach modules. One of the key ingredients of our proof is a generalisation of a result of
Wingberg on the structure of fine Selmer groups of abelian varieties with supersingular reduction at p to
the context of modular forms.
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1. Introduction

Let p be a fixed odd prime number and f a fixed normalised eigen-cuspform of level
N and weight k£ > 2 with p ¥ N. Let K denote the completion of the Hecke field of
f at a prime above p and write O for its ring of integers. Let V; denote the K-adic
Go-representation of f defined by Deligne [8]. We fix a Galois-stable O-lattice Ty
inside V¢ and write Ay = V;/Tr. We write ]_‘ for the conjugate modular form of f and
we write V=, T7 and A~ for the corresponding Gg-modules attached to f with T7 chosen
to be Homo(Tf, O)(1 — k), where M(j) denotes the jth Tate twist of a Gg-module M.

Let Qcyc be the cyclotomic Z,-extension of Q and let I' denote the Galois group
Gal(Qcyc/Q). The Iwasawa algebra A = O[[I']] is defined to be lln O[T/T?"], where the
connecting maps are projections. After fixing a topological generator y of I, there is
an isomorphism of rings A = O[X] sending ¥ to X + 1. Given a A-module M, denote
its Pontryagin dual by M" := Homo(M, K/O). We write M* for the A-module that
is M as an O-module equipped with a I'-action given by y -, m = y~'m. Finally, if
F € A = O[[X]], we write F* for the power series F(1/(1 + X) — 1).
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420 A. Lei and M. F. Lim 2]

Forg = for 7 and j € Z, let Selg(A4(j)/Qcyc) denote the fine Selmer group of A, ()
over Qcyc (Whose definition will be reviewed in Section 2.1). The fine Selmer groups
of abelian varieties were first systematically studied by Coates and Sujatha in [7] and a
little later by Wuthrich [29]. Various conjectures on the structure of these groups have
been formulated and they are still wide open to this date.

It has been proved by Kato [12] that Sel(A4(/)/Qcyc)" is a finitely generated torsion
A-module. Let §, ; denote a choice of characteristic element (that is, a generator of the
characteristic ideal Chary Selg(Ag( j)/QCyc)V). The main goal of the present article is
to study the divisors of §,; and 3},1(-1‘ for a fixed integer i. These specific twists are
considered due to the perfect pairing

Ty(i) x A7k = i) = ptye

of Gg-modules.
We are able to relate the divisors of §r; and 87 «; to the greatest common

divisors of the signed Selmer groups attached to f(k — i) defined in [16, 17] by the
theory of Wach modules (see Section 2.3, where the definitions of these groups are
reviewed). Let us write ‘&ﬁ,k

~and ‘C‘;;k _for a choice of characteristic elements of the
k—i

Pontryagin duals of these éigned Selmer groups. Under a mild hypothesis on the local
representations at bad primes and a hypothesis on the validity of Kato’s Iwasawa main
conjecture for f(k — 1) (respectively labelled (H0) and (H-IMC) below), we show that
if F is an irreducible element of A that is outside a certain explicit set of linear factors,
F' { &ypiand F & 8?’,(4 if and only if F ¢ gcd(&ﬁf o 8%1(—1')' (See Theorem 4.4 for the

precise statement of this result.)

In the case where T, is the Tate module of an elliptic curve E/Q with good
supersingular reduction at p, a similar result has been proved in [18]. One of the key
ingredients of the proof given in [18] is a link between the fine Selmer group of E over
Qcyc and the maximal A-torsion submodule of the Pontryagin dual of the p-primary
Selmer group of E over Q. that was proved by Wingberg [28] (see also Matar [19],
where an alternative proof is given). In the present paper, we prove Theorem 4.4 by
first establishing analogues of Wingberg’s result in the context of modular forms
(see Theorems 3.1 and 3.4). Wingberg worked with Selmer groups defined using
flat cohomology, whereas Matar worked with Selmer groups defined using Galois
cohomology. In the present paper, the latter definition is used. Our proof is very
different from the ones employed in both [19] and [28]. We make use of Nekovai’s
spectral sequence that seems to give a somewhat simpler and more general proof than
the previous proofs available in the literature. We hope that these results may be of
independent interest.

2. Definitions of Selmer groups and related objects

2.1. Fine Selmer groups. Let L, be the unique subextension of Q. such that
[L, : Q] = p". Given an algebraic extension L of Q, we write S(L) for the primes of
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L lying above pN as well as the archimedean primes. We write Gg(L) for the Galois
group of the maximal algebraic extension of L that is unramified outside S(L).
For g € {f, f} and j € Z, we define the fine Selmer group of A4(j) over L to be

Selo(A, (/L) = ker (H'(Gs(0). A0 = [ ] H'(LuA(i).

veS(L)

Recall that Selp(A,(/)/Qcyc)” is torsion over A; we write &, ; for a choice of a generator
of the characteristic ideal Chara Sel(Ag(j)/Qcyc)" .
The classical Selmer group of A,(j) over L is defined to be

HY(L,,A.(j
Sel(A,(j)/L) = ker (HI(GS(L),Ag(j)) - 1_[ h,lEL—;g;;)
ves(L) TNl

where Hf1 (Ly,Ag())) is defined as in [4, Section 3].

2.2. Wach modules and signed Coleman maps. We recall the definition of signed
Coleman maps from [16, 17] that generalise those studied in [13, 27] in the context
of elliptic curves with supersingular reduction at p. Here, we do not require p to be a
nonordinary prime for f. The only requirement is that p is coprime to N, so that the
representation V is crystalline at p.

For g € {f, f},j € Z and m € {1, 2}, we shall write

552,1‘/ = liLnHm(Lm Tg(])), H;nd = yLnHm(Ln,py Tg(.]))a

n

where the connecting maps are corestrictions and we have abused notation by writing
p for the unique prime of L, above p. We write loc,, : 55;,;' - H;,J. for the localisation
map.

Let T = Ty(k—1), where g € {f, ?}. We write N(T') for the Wach module of T.
(See [3, Section II.1] for the precise definition of N(7T').) Roughly speaking, N(7) is
a filtered ¢-module over the ring O[[x]l, where 7 is an element in the ring of Witt
vectors of {iinxmp Cp, given by [(1,p, )2, .. )] — 1, and {j» is a primitive p"th root of
unity in C, such that £ ]I,):m = {». One may regard n as a formal variable equipped
with an action of ¢ and 'y = Gal(Q,(u,~)/Q,) given by ¢(r) = (1 +m)” -1 and
o(m) = (1 + o=@ — 1 for o € Ty, where yy is the p-adic cyclotomic character. Let
HIIW(Qp(ypoo), T) = &iLnn H! (Qp(up), T), where the connecting maps are corestrictions.

Berger proved in [2, Appendix A] that there is an isomorphism of O[[I'y]-modules
Hyy(Qp(p). T) = N(TY',

where ¢ is a canonical left inverse of ¢ and the superscript ¥ = 1 denotes the kernel of

v 1.
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422 A. Lei and M. F. Lim [4]
We recall from [16, 17] that for e € {§,b}, on choosing an appropriate basis of
N(T,4(k — 1)), one can define signed Coleman maps

Col} : Hyy (Qp(p), To(k — 1)) — O[Tl

decomposing Perrin-Riou’s big logarithm map defined in [22].
We define the twisted Coleman maps

o 1
Colg:]. tHy;, = A

as follows. We have the O-isomorphism

Hllw(Qp(,up‘”)’ Tg(])) ei)H Hllw(Qp(,up“’)» Tg(k - 1))a

where e is a basis of the Gg,-representation Z,(1) as given in [23, Section A.4]. Let Tw
be the O-linear automorphism on O[Ty ]| sending o € I'y to ycyc(07)om. We can define a
A-morphism

Twi—k+1 ° COI; o ek_l_j : Hllw(Qp(/lpw), Tg(])) - O[IFO]]
and obtain Colz, jon taking the trivial isotypic component of A := Gal(Q,(u,)/Q,).

2.3. Signed Selmer groups and main conjectures. Let H! (Qcye,ps A?(k — 7)) denote
the orthogonal complement of ker Col} ; under the local Tate pairing

Hy (Qp(p=), () X H' (Qeye,ps A7k = ) = Qp/Z.
We define the signed Selmer groups Sel® (A?(k —1)/Qqyc) as

Hl (Qcyc,p’Af(k - l)) Hl(Qcyc,vv A?(k - l)) )

X
7 HIQoops Ak - ) 1;,[ H} (Qege.n Ak = )

Ker (H'(Gs(Que), A(k - 1)

Note that when Az(k — i) is given by E[p®] for some elliptic curve E/Q with good

supersingular reduction at p or when ap(?) = 0, one may choose an appropriate basis
of the Wach module so that these Selmer groups coincide with the ones studied in
[13, 14, 27] (see [ 16, Sections 5.2-5.4]).

Let z;; be Kato’s zeta element inside HIIW(QCYC, T¢(i)) ®z, Q, as defined in [12].
It is conjectured that z;; € HIIW(QCYC, T¢(i)) (see [12, Conjecture 12.10]). Assuming
this (which we shall do for the rest of the article), recall from [16, Equation (61)] the
Poitou—Tate exact sequence

Sj}’i Image(Col}, P

00— —
Az (L;,)

— Sel*(A7(k — 1)/ Qeye)’ — Selo(A7(k — i)/ Qeye)’ — 0,
@2.1)

where L}, = Col},i o loc,(zs,) is the signed p-adic L-function associated to f(k —0). If
L7, # 0, then Sel'(A;(k —1)/Qcyc)” is a finitely generated torsion A-module. We write

Ty?k _for a characteristic element of this module.
K=l
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Kato [12] proved that the first and fourth terms of (2.1) are A-torsion. He further
formulated the Iwasawa main conjecture:

Char/\g)}',i/AZf,i = Chary Selo(A7(k = )/Qeye)” = (F74_)- (2.2)
It follows from (2.1) that this is equivalent to
Chary Sel'(A?(k = 0)/Qeye)’ = Chary Image(Col5 )/(L3), (2.3)

provided that L7, # 0.
For the rest of the article, we shall assume that the following hypothesis holds.

(H-IMC) Kato’s Iwasawa main conjecture (2.2) holds and both Lf, and L'I’7 are nonzero.

REMARK 2.1. We say a few words on the hypothesis (H-IMC). In his seminal work
[12], Kato established that the inclusion ‘C’ in (2.2) holds after tensoring by Q,
under the assumption that the image of the representation Tflgwpm) contains a copy
of SL»(Z,), provided that certain local terms vanish (see, in particular, [12, Theorem
12.5(4)]). Note that in [12, Conjecture 12.10], Kato’s main conjecture is formulated
in terms of étale cohomology groups. Kobayashi and Kurihara showed that it can
be recast in terms of Galois cohomology groups and fine Selmer groups (see, for
example, [13, Proposition 7.1]). The reverse inclusion of (2.2) has been established in
the monumental work of Skinner and Urban [26] for a p-ordinary modular form (under
certain hypotheses; see [26, Theorem 1]). In the nonordinary form, there have been
several recent breakthroughs in this reverse direction (see [5, 6, 9]). Finally, the work
[16] has supplied many sufficient conditions for the nonvanishing of Lf, and L;’, (see
[16, Corollary 3.29 and Proposition 3.39]). In view of these developments, it seems
reasonable to assume hypothesis (H-IMC); our main results rely on it.

2.4. Images of signed Coleman maps. We review an explicit description of the
images of these Coleman maps. Recall that vy is a fixed topological generator of I
giving the identification A = O[[X]| via X =y — 1. Let u = ycy.(y). From [17, Section
5A], if 7 is a character on A, then there exist constants ¢, ; € K such that

eyImage(Col’, & Col’)) ® K = {(F,G) € A*: F(u/ - 1) = ¢,;G(w’ = 1),0 < j < k—2}.

(In [17], it is assumed that f is nonordinary at p, meaning that a,(f) is a nonunit in O.
But the same calculations still apply to the ordinary case. See [17, Remark 1.10].) In
particular, this tells us that there is an isomorphism of A-modules
A2 ®o K N A®p K
eylmage(Col’ @ Coll) o K [T} (X —u/ + 1)’

where ¢, denotes the idempotent attached to 7.
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LEMMA 2.2. There is a pseudo-isomorphism of A-modules
A? A
eImage(Col @ Col}) 155X —u/ + 1)

PROOF. It is enough to show that the u-invariant of the quotient on the left-hand side
vanishes. For simplicity, let us write

C= enImage(Colﬁc @ Col;) and C, = enImageCol} for e € {#§,b}.

Consider the tautological short exact sequence 0 — C — A% — A?/C — 0. This
gives the exact sequence

0 - (AYO)[@] - C/w —> Ao,

where @ is a fixed uniformiser of O. Similarly, we have the exact sequences

0 = (A/C)@] = CoJw —> Ajw  for e € {#,b).

Recall from [17, Theorem 5.10] that the p-invariants of A/C, are zero. Therefore,
ker @, = (A/C,)[w] is finite for both choices of e. Note that C C C;® C, and ® =
(®y ® Dy)|c/ by definition, which implies that

ker @ C ker @y @ ker @,,.

Hence, ker ® = (A?/C)[w] is finite. In particular, the y-invariant of A%/C is zero,
which finishes the proof of the lemma. ]

REMARK 2.3. In the case where T is the p-adic Tate module of an elliptic curve with
good supersingular reduction at p, we can in fact describe the set C explicitly. See
[15, Proposition 2.2].

It follows from Lemma 2.2 that there is an exact sequence

0—Hj, = A* > Cri— 0, 2.4)

where the first map is given by Colljfi EBColl’f’i and Cy; is a A-module, which is
pseudo-isomorphic to A/ny;, with r;; being the image of Hf;oz(X —u/ + 1) under the

twisting map Tw'*+1,

3. A generalisation of a result of Wingberg

Let A be an abelian variety over Q with supersingular reduction at p. Wingberg
proved that there is a pseudo-isomorphism of A-modules

(Sel(ﬂ[pm]/Qcyc)v)A—tor ~ (SGIO(ﬂZ[pm]/Qcyc)v)tv

where A’ is the dual abelian variety of A (see [28, Corollary 2.5]). Here, Ma_io;
denotes the maximal torsion submodule of a A-module M, Sel(A[p™]/Qcyc) is the
p-primary Selmer group of A over Qg and Selo(A'[p™]1/Qcyc) is the p-primary fine
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Selmer group of A’ over Qcy defined in a similar manner to the fine Selmer groups
for Ag(j) in Section 2.1 above. We prove the following analogue of Wingberg’s result
in the context of modular forms.

THEOREM 3.1. We have a pseudo-isomorphism of A-modules
(Hl(QcyCaAg(j))v)A—tor ~ (5§J)L’
where g € {fj} andj € Z.

2]

PROOF. From the low-degree terms of Nekovéi’s spectral sequence (see [20, Lemma
9.1.5]),

Exth (H;y* Qeye, Te())s A) = H " (Qeye, Ag(f))",
we obtain the exact sequence of A-modules
0 — Exty (Hp, (Qeye, Te (1)), A) — H'(Qeye, Ag(j))” —> Homa(Hyy, (Qeye, To())), A).

Since HomA(HI'W(QCyc, T,()), A) is a reflexive A-module by [21, Corollary 5.1.3], it is
A-torsion-free. Hence, it follows from the exact sequence that there is an isomorphism

(H' (Qeye, Ag(N)actor = Bxty (Hf, (Qeyes Te()), A)

of A-modules. By [21, Proposition 5.5.13], the latter is pseudo-isomorphic to (SﬁﬁJ)‘,
which concludes the proof of the theorem. ]

When f is nonordinary at p, we shall establish a direct analogue of Wingberg’s
theorem on the level of Selmer groups under the following hypothesis on the local
representation A; (see Theorem 3.4 below).

(HO) For all v € S(Qcyc), the group HO(QCyC’V,A?(k — 1)) is finite.

REMARK 3.2. Note that when v | p, the group HO(QCYCJ,,A?(IC — 1)) is always finite by
[10, Lemma 3.3]. See also [10, Section 5], where sufficient conditions and explicit
examples of the finiteness of HO(QCyC,v,A#k —1i)) for v | N are studied.

LEMMA 3.3. Under (H0), we have a pseudo-isomorphism of A-modules

Selo(A7(i)/Qeye)” ~ $2, .

PROOF. Let n > 0 be an integer. By the Poitou—Tate exact sequence (see, for example,
[23, Section A.3.1]), we have the exact sequence

P HOWosAsth ~ i) — HAGs(Ly). Ty(@)"
veS(Ly)

H'(Gs(Ly), A7tk = ) = @D H' (L, A7k - ).
veS(L,)
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By definition,
Image(o) = ker(1) = SCIQ(A?(]C —0)/L,).
This gives the exact sequence

B HOLuy. Ak - i) — HAGs(Ly). T(0)” — Selo(A7(k — i)/Ly) — 0.
veS(Ly)
By the local Tate duality,
H(Lyy, Ak = i) = H*(Ly, T5(i))
for all v € S. Thus, after taking Pontryagin duals and inverse limits,
0 — Selo(A7(k=)/Qeye)” — H},(Gs(Qeye). Tr(i) — D) H Qe Aptk—=1))".
veS(Qeye)

Therefore, the lemma follows from (HO0). |

THEOREM 3.4. Suppose that f is nonordinary at p and (H0) holds. We have a
pseudo-isomorphism of A-modules

(Sel(Af(i)/Qcyc)v)A—tor ~ (SeIO(Af(k - i)/Qcyc)v)L-
PROOF. Consider the defining sequence of the Selmer group

Hl(Qcyo ws Af(i))
0 — Sel(Af(i)/Qeye) — H'Quyer Ap()) — P Tt
f g g f Wes(@cyc) Hf! (Qcyc,w’Af(l))

By [4, Proposition 3.8], there is an isomorphism
Hl (Qcyc,ww Af(l)) )V
Hfl (Qcyc,w’ Af(l)) ’

where w, € S(L,) is such that w, lies below w and w,,;. When w { p, this is zero
by [12, Section 17.10]. When w | p, it is also zero by [24, Theorem 0.6] under the
hypothesis that f is nonordinary at p. Hence, we have an isomorphism

Sel(Af(i)/Qcyc) = Hl(Qcyc, Af(l))
of A-modules. Combining this with Theorem 3.1, we obtain a pseudo-isomorphism
(Sel(A £(i)/Qeye) Inctor ~ (97,)

of A-modules. But the latter is pseudo-isomorphic to Sel(A ¢(i)/Qcyc)" by Lemma 3.3
under (HO0). This concludes the proof of the theorem. O

tim ' (L, Tk = 1) =

4. Comparison of characteristic elements

4.1. Preliminary lemmas. We prove several preliminary lemmas that will be used
in the proofs of Theorems 4.3 and 4.4 below.
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LEMMA 4.1. Assume that (HO) holds. If F is an irreducible element of A such that
F ¢t g?,k—i’ then we have a psuedo-isomorphism

(EL)1/ 9 IF] ~ Selo(A (i) /Qeye) " [F]
of A-modules. In particular, (Hlyi / 55}’1.)[F 1 is finite if and only if F* { &y .
PROOF. We have the Poitou—Tate exact sequence
— H'(Qeye. A7k = 1))’ — Selo(A7(k = )/ Qeye)* — 0.

0— Sj}l - ]HI}.J

This gives the short exact sequence
0 — (Hy;/9;) = H' Qeye, A7tk = ) — Selo(A7(k = )/Qeye)” = 0,
which in turn induces the exact sequence
0 = (HY,/9EIF¥] = H' (Qeye, Atk = 1) [F*] = Selo(A7(k = i)/ Qeye) ' [F].

By assumption, Selo(Af(k—i)/QCyc)V[F”] is finite. Therefore, we obtain a
psuedo-isomorphism

(Hy /D) JF] ~ H' (Qeye, A7k = ) [F~].
By Theorem 3.1 and Lemma 3.3, we have the pseudo-isomorphism of A-modules
H 1(Qcyc,z‘\y(k — )" [F] ~ Selo(A;()/Qeye) " [F].
Combining these two pseudo-isomorphisms finishes the proof of the lemma. O

LEMMA 4.2. Assume that (H-IMC) holds. Let F be an irreducible element of A such
that F 1 ;. Recall that loc,, denotes the localisation map from 55}’1. to H}J. Then one
has a pseudo-isomorphism

(WA, B DIF™] ~ (H],/(loc, (2 )]
of A-modules. Hence, F ¢ gcd(‘&% o C&b? k_i) ifand only if (H! ’i/(locp(zf,,-)))[F] is finite.
PROOF. By (2.4) and (2.3), we have the exact sequence
0= Hj i/(ocy(zy.)) = A*/AF, & )= A = 0.

This gives the exact sequence
0= (<l /oc, (2 MIF™] = (N IAGE, 8% F™] = Al F).
The last term is finite since F 1 n;;. Hence, the result follows. O

4.2. Comparison between characteristic ideals of fine Selmer groups and signed
Selmer groups. The goal of this section is to prove a generalisation of [18, Theorem
1.2] (see Theorem 4.4 below). We shall do so via the following intermediate result.
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THEOREM 4.3. Assume that (H-IMC) and (HO0) hold. Let F be an irreducible element
of A such that F { n; and F 1 8{?,k_i. There is a pseudo-isomorphism of A-modules

(A*JAGEE, 8% DIF] ~ Selo(A()/Qeye) ™ [F™).
In particular, F* 1 §y,; if and only if F & ng(%; R

fik—i
PROOF. By Lemma 4.2, we have a pseudo-isomorphism

(A*JAGE, 8% DIF] ~ (H} /(o (zp)IF™]
of A-modules. Consider the short exact sequence
0 — $y,/Azs; — Hy /(locy(zs) = Hy /9, — 0.

Since 35 ./ Azy;is atorsion A-module with Chara (9! i JAZp;) = §7 7 ki Ot divisible by
F, we have the following pseudo-isomorphism of A-modules:

(Hj ,/(locy(zs DDIF®] ~ (H) ,/H) )IF].

By Lemma 4.1, the latter is pseudo-isomorphic to Sely(A #(i)/Qcye)*[F*]. On com-
bining these pseudo-isomorphisms, the theorem follows. ]

We can now state and prove the main result of the article.

THEOREM 4.4. Assume that (H-IMC) and (HO) hold. Let F be an irreducible
element of A such that F t n;. Then F'{ &y and F ¢ ‘&?’k_i if and only if F ¢

ged @ 3 ).

PROOF. Theorem 4.3 tells us thatif F* { &y; and F ¢ 37’k7i,thenF 1 gcd(i}ﬁ? ‘&*}k ).
This proves the ‘only if” implication. "

Conversely, suppose that F { g(:d((’yﬁ7 o 8; k_i). From the inclusion

Selo(A?(k -i)C Sel’(A?(k - 1)),

we have F ¢ 3?’]{4. The remaining assertion that F*{ §y; now follows from
Theorem 4.3. m

REMARK 4.5. Let E/Q be an elliptic curve with good supersingular reduction at p. In
[18], it is stated in the proof of Proposition 3.1 that by [28, Corollary 2.5], we have the
equality

CharA(selp"" (E/Qcyc)v)A—tor = CharA SelO(E/Qcyc)v'

However, one of the two Selmer groups should be twisted by ¢ in order for the equality
to hold. As such, for the rest of the proof to go through, the additional hypothesis that
the irreducible element f (not to be confused with the notation for a modular form in
the present article) satisfies (f) = (f*) is required. Consequently, the statement of [18,
Theorem 1.2] should also be modified.
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Specialising our Theorem 4.4 to the case F = w, where @ is a uniformiser of O, we
may deduce the following result.

COROLLARY 4.6. Assume that (H-IMC) and (H0) hold. Then the following statements
are equivalent.

(@) The p-invariants of Selo(A¢(i)/Qcye)" and Selo(A7(k — i)/ Qeye)” are zero.

(b) At least one of Selﬁ(Af(k—i)/QCyc)V and Selb(Af(k—i)/QcyC)v has trivial
U-invariant.

REMARK 4.7. From [7, Conjecture A], [11, Conjecture A] and [, Conjecture 1.2],
the p-invariants of Selo(A £(i)/Qcy)” and Selo(A7(k —1)/Qeyc)" are predicted always
to vanish. Corollary 4.6 gives an alternative formulation of these conjectures in terms
of signed Selmer groups. In fact, numerical calculations carried out by Pollack (see
[25, Section 7] and http://math.bu.edu/people/rpollack/Data/data.html) suggest that
the p-invariants of both Selﬁ(A?(k —1)/Qeyc)” and Selb(A?(k —1)/Qcyc)" are zero when
Af(k —1) is given by E[p™] for some elliptic curve E/Q with good supersingular
reduction at p.
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