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Dirichlet’s Theorem in Function Fields

Arijit Ganguly and Anish Ghosh

Abstract. We studymetric Diophantine approximation for function ûelds, speciûcally, the problem
of improving Dirichlet’s theorem in Diophantine approximation.

1 Introduction

1.1 The Set Up

Let p be a prime and let q ∶= pr , where r ∈ N, and consider the function ûeld Fq(T).
We deûne a function ∣ ⋅ ∣∶Fq(T)→ R≥0 as follows:

∣0∣ ∶= 0 and ∣ P
Q

∣ ∶= edeg P−deg Q for all nonzero P,Q ∈ Fq[T].

Clearly, ∣ ⋅ ∣ is a nontrivial, non-archimedian, and discrete absolute value in Fq(T).
_is absolute value gives rise to ametric on Fq(T).

_e completion ûeld of Fq(T) is Fq((T−1)), i.e., the ûeld of Laurent series over
Fq . _e absolute value ofFq((T−1)),whichwe again denote by ∣ ⋅ ∣, is given as follows.
Let a ∈ Fq((T−1)). For a = 0, deûne ∣a∣ = 0. If a /= 0, then we can write

a = ∑
k≤k0

akT k , where k0 ∈ Z, ak ∈ Fq , and ak0 /= 0.

We deûne k0 as the degree of a, which will be denoted by deg a, and ∣a∣ ∶= edeg a .
_is clearly extends the absolute value ∣ ⋅ ∣ of Fq(T) to Fq((T−1)), and,moreover, the
extension remains non-archimedian and discrete. Let Λ and F denote Fq[T] and
Fq((T−1)) respectively from now on. It is obvious that Λ is discrete in F. For any
n ∈ N, Fn is throughout assumed to be equipped with the supremum norm, which is
deûned by

∥x∥ ∶= max
1≤i≤n

∣x i ∣ for all x = (x1 , x2 , . . . , xn) ∈ Fn ,

and with the topology induced by this norm. Clearly, Λn is discrete in Fn . Since the
topology on Fn considered here is the usual product topology on Fn , it follows that
Fn is locally compact as F is locally compact. We shall also ûx aHaar measure λ on F.

In this paper, we study analogues of Dirichlet’s theorem in Diophantine approxi-
mation and its improvability for vectors in Fn . An analogue of Dirichlet’s theorem for
local ûelds of positive characteristic can be formulated as follows.
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_eorem 1.1 Let t be a nonnegative integer. For y ∶= (y1 , y2 , . . . , yn) ∈ Fn , there
exist q ∈ Λ ∖ {0} and p ∈ Λ such that

∣y1q1 + y2q2 + ⋅ ⋅ ⋅ + ynqn − p∣ < 1
ent and max

1≤ j≤n
∣q j ∣ ≤ e t .

_e theorem above is clearly well known (see [21,_eorem 1.1] and [2, Appendix 1]
for the case of a single linear form), and Diophantine approximation in the context
of local ûelds of positive characteristic has been extensively studied of late. We refer
the reader to [9] for a survey and to [3,20,22,23] for more recent results. Indeed, the
geometry of numbers,which can be used to prove Dirichlet’s theorem,was developed
in the context of function ûelds by Mahler [24] as early as the 1940’s. In Section 2,
we prove a stronger, multiplicative result. _ere are many interesting parallels and
contrasts between the theory of Diophantine approximation over the real numbers
and in positive characteristic. Many results hold in both settings; the main result of
this paper being one such, while there are some striking exceptions. For instance, the
theory of badly approximable numbers and vectors in positive characteristic oòers
several surprises. For instance, there is no analogue of Roth’s theorem, provided that
the base ûeld is ûnite, which we assume throughout this paper. We refer the reader to
[1] for other results in this vein.

1.2 Improving Dirichlet’s Theorem

Following Kleinbock–Weiss [18], the notion of Dirichlet improvability can now be
introduced as follows. Let 0 < ε ≤ 1

e . A vector y ∶= (y1 , y2 , . . . , yn) ∈ Fn is said to
be Dirichlet ε-improvable if there is some t0 > 0 such that for any choice of n and
nonnegative integers t1 , t2 , . . . , tn withmax{t, t1 , . . . , tn} > t0,where t = t1+ t2+⋅ ⋅ ⋅+
tn , one can always ûnd nonzero (p, q1 , q2 , . . . , qn) ∈ Λ × Λn satisfying

∣y1q1 + y2q2 + ⋅ ⋅ ⋅ + ynqn − p∣ < ε
e t

and ∣q j ∣ < εe t j for j = 1, 2, . . . , n.

LetDIε(n) denote the set of Dirichlet improvable vectors in Fn or in Rn ; the context
will make the ûeld clear.

(a) In the deûnition above, we have invoked themore general,multiplicative ana-
logue of Dirichlet’s theorem, forwhichwe provide a proof in _eorem 2.1. _e results
of this paper are valid in this stronger setting.

(b) _is notion can be considered in greater generality for systems of linear forms
as was done by Kleinbock andWeiss. We refer the reader to Deûnition 3.1.

(c) Dirichlet’s theorem can be formulated for global ûelds; e.g., one could con-
sider number ûelds or ûnite extensions of positive characteristic ûelds. However, it is
in general an open problem to determine the optimal constant inDirichlet’s theorem
in this setting, without which of course, the question of improvement does not arise.
_ere are some cases where the constant can be determined. For example in [14],
the theory ofmetric Diophantine approximation for certain imaginary quadratic ex-
tensions of function ûelds was developed. In these ûelds, an analogue of Dirichlet’s
theoremwith the same constant, i.e., 1, holds, and it is plausible that the results of this
paper will work in that setting as well.
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We review brie�y the state of the art on the question of improving Dirichlet’s the-
orem in the context of real numbers. Davenport and Schmidt [7, 8] showed that the
Lebesguemeasure of DIε(n) is zero for every ε < 1. Starting with work ofMahler, the
question of Diophantine approximation on manifolds has received considerable at-
tention. In this subject, one asks if Diophantine properties that are typicalwith respect
to Lebesgue measure are also typical with respect to the push forward of Lebesgue
measures via smooth maps. _e starting point of this theory was a conjecture due to
Mahler, which asked if almost every point on the curve

(1.1) (x , x2 , . . . , xn)

is not very well approximable by rationals. Such maps (or measures) are referred to
as extremal. _is conjecture was resolved by V. G. Sprindzhuk who in turn stated
two generalisations of Mahler’s conjecture that involved a nondegenerate collection
of functions replacing themap above. We refer the reader to the work of Kleinbock–
Margulis [15], where Sprindzhuk’s conjectures are resolved, for the deûnitions. In a
subsequent striking work, Kleinbock, Lindenstrauss, andWeiss [16] extended the re-
sults of [15] to a much wider class of measures, the so-called friendly measures. _is
class includes push-forwards of Lebesgue measure as well as many other self simi-
lar measures including the uniform measure on the middle-third Cantor set. As re-
gards improving Dirichlet’s theorem for manifolds, in [8], the authors showed that
for any ε < 4−1/3 the set of x ∈ R for which (x , x2) ∈ DIε(2) has zero Lebesguemea-
sure. Further results in this vein were obtained by Baker and by Bugeaud in [4–6]. In
[18], Kleinbock andWeiss proved several results in this direction and, in particular,
showed the existence of ε > 0 such that for continuous, good and nonplanar maps f
and Radon, Federer measures ν, f∗(ν)(DIε(n)) = 0. We will deûne these terms later
in the paper. In particular, this generalises thework of Baker and Bugeaud. _e result
that is obtained in [18] holds for ε that are quite a bit smaller than 1, and to prove an
analogous result for every ε < 1 remains an outstanding open problem. In the case
of curves, N. Shah has resolved this problem. See [28] and also [29, 30] for related
results.

In another direction, Kleinbock and Tomanov [17] established S-arithmetic ana-
logues of Sprindzhuk’s conjectures. In positive characteristic, Sprindzhuk [31] estab-
lished the analogues ofMahler’s conjecture, namely the extremality of the curve (1.1)
over Fn and also proved other interesting results, including a transference principle
interpolating between simultaneous Diophantine approximation and systems of lin-
ear forms. _e analogues of Sprindzhuk’s conjectures in positive characteristic were
established by the second author in [13]. However, the question of improvingDirich-
let’s theorem in positive characteristic has been completely open as far aswe are aware.
In this paper, we study the question of Dirichlet improvability of vectors, maps, and
measures in positive characteristic.

Here is a special case of our main result,_eorem 3.7.

_eorem 1.2 Let f1 , f2 , . . . , fn be polynomials so that 1, f1 , f2 , . . . , fn are linearly in-
dependent over F. Fix some open set U of F and consider themap

f(x) = ( f1(x), f2(x), . . . , fn(x))
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deûned for all x ∈ U . _en there exists ε0 > 0 such that whenever ε < ε0, f(x) is not
Dirichlet ε-improvable for λ almost all x ∈ U .

_eorem 3.7, themain result of this paper, is far more general and holds for good,
non-planarmaps andRadon, Federermeasures. Itmay be regarded as a positive char-
acteristic version of [18,_eorem 1.5]. Since the statement of the general form of the
theorem is fairly technical, we have chosen to postpone it to later in the paper. _e
constant ε can be estimated, so the proof is “eòective” in that sense. However, it is
likely to be far from optimal. We compute ε0 in the special case n = 2 and f i(x) = x i

for i = 1, 2 (see Section 7) as an example. Our proof proceeds along the lines of
[18], and themain tool is a quantitative non-divergence result for certain maps in the
space of unimodular lattices, which can be identiûed with the non-compact quotient
SL(n + 1, F)/ SL(n + 1,Λ).

2 Review of the Classical Theory

In this section, we provide a proof of Dirichlet’s theorem in positive characteristic for
completeness and to aid the reader. In what follows, for k ∈ N, Zk

+ denotes the set
of all k tuples (t1 , t2 , . . . , tk) where each t i is a nonnegative integer . We prove the
following theorem.

_eorem 2.1 Let m, n ∈ N, k = m + n, and

a+ ∶= { t ∶= (t1 , t2 , . . . , tk) ∈ Zk
+ ∶

m

∑
i=1

t i =
n

∑
j=1

tm+ j} .

Consider m linear forms Y1 ,Y2 , . . . ,Ym over F in n variables. _en for any t ∈ a+, there
exist solutions q = (q1 , q2 , . . . , qn) ∈ Λn ∖ {0} and p = (p1 , p2 , . . . , pm) ∈ Λm of the
following system of inequalities:

(2.1)
∣Yiq − p i ∣ < e−t i for i = 1, 2, . . . ,m,

∣q j ∣ ≤ e tm+ j for j = 1, 2, . . . , n.

To prove this theorem,we ûrst introduce the “polynomial part” and the “fractional
part” of a Laurent series. For any Laurent series

a = ⋅ ⋅ ⋅ + a2

T2 +
a1
T
+ (a0 + a1T + a2T2 + ⋅ ⋅ ⋅ + akT k)

in F, where k ∈ Z, a i ∈ Fq , and ak /= 0, let us deûne the polynomial part of a as

a0 + a1T + a2T2 + ⋅ ⋅ ⋅ + akT k

if k ≥ 0; otherwise, it is deûned to be 0. _e fractional part of a, denoted by ⟨a⟩, is
deûned as

α − polynomial part = a1
T
+ a2

T2 + ⋅ ⋅ ⋅ .

Now, let a ∶= a1
T + a2

T2 + ⋅ ⋅ ⋅ ∈ F and α ∶= α0 + α1T + α2T2 + ⋅ ⋅ ⋅ + αkT k ∈ Γ ∖ {0}
with degrees ≤ k, where k ≥ 0 is an integer. Let us observe that, for any s ∈ N, the
coeõcient of 1

T s in αa is
asα0 + ⋅ ⋅ ⋅ + as+kαk .
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It follows that, for any m ∈ N, ∣⟨αa⟩∣ < 1
em if and only if the system Ax = 0 of linear

equations over Fq , where the coeõcient matrix

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 ⋅ ⋅ ⋅ ak+1
a2 a3 ⋅ ⋅ ⋅ ak+2
⋮ ⋮ ⋮
am am+1 ⋅ ⋅ ⋅ am+k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
has (α0 , α1 , . . . , αk) as a nontrivial solution.
Continuing along the same line, let us now take two Laurent series a = a1

T +
a2
T2 +⋅ ⋅ ⋅,

b = b1
T + b2

T2 + ⋅ ⋅ ⋅ , and two nonzero polynomials α ∶= α0 + α1T + α2T2 + ⋅ ⋅ ⋅ + αkT k ,
β ∶= β0+β1T+β2T2+⋅ ⋅ ⋅+β lT l ,withdegree≤ k, l , respectively,where k, l = 0, 1, 2, . . . .
For any s ∈ N, the coeõcient of 1

T s in αa + βb is easily seen to be

asα0 + ⋅ ⋅ ⋅ + as+kαk + bsβ0 + ⋅ ⋅ ⋅ + bs+l β l .

_erefore, for anym ∈ N, ∣⟨αa+βb⟩∣ < 1
em if and only if (α0 , α1 , . . . , αk , β0 , β1 , . . . , β l)

is a nontrivial solution of the system

[A B] [xy] = 0,

where

A ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 ⋅ ⋅ ⋅ ak+1
a2 a3 ⋅ ⋅ ⋅ ak+2
⋮ ⋮ ⋮
am am+1 ⋅ ⋅ ⋅ am+k

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and B ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 ⋅ ⋅ ⋅ b l+1
b2 b3 ⋅ ⋅ ⋅ b l+2
⋮ ⋮ ⋮
bm bm+1 ⋅ ⋅ ⋅ bm+l

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

It is obvious thatwe can generalize this observation for any such n Laurent series and
nonzero polynomials.

Now we are ready to start the proof of _eorem 2.1. Each Yi , being a linear form
over F in n variables,must be of the form

y i1x1 + y i2x2 + ⋅ ⋅ ⋅ + y inxn ,

for some y i j ∈ Fq , j = 1, 2, . . . , n. It suõces to consider the case where ∣y i j ∣ < 1; i.e.,
the polynomial part of y i j is zero, for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
From the observations wemade earlier, we see that each y i j gives rise to amatrix

M i j having t i rows and tm+ j + 1 columns, and more importantly, the existence of
solution of the system (2.1) is equivalent to the existence of nontrivial solutions of the
following system of linear equations over Fq :

⎡⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 ⋅ ⋅ ⋅ M1n
M21 M22 ⋅ ⋅ ⋅ M2n
⋮ ⋮ ⋮

Mm1 Mm2 ⋅ ⋅ ⋅ Mmn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

Clearly the above coeõcient matrix has∑m
i=1 t i rows and∑n

j=1(tm+ j + 1) columns.
As∑m

i=1 t i = ∑n
j=1 tm+ j ,we see that thematrix hasmore columns than rows, and hence

nontrivial solution exists. _is completes our proof.
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3 The Main Theorem

We shall now introduce the notion of “Dirichlet improvability” in a greater generality.
Let a+ be as given in _eorem 2.1, T be an unbounded subset of a+ and let 0 < ε ≤ 1

e .

Deûnition 3.1 For a system of linear forms Y1 ,Y2 , . . . ,Ym over F in n variables, we
say that DT can be ε-improved along T, or we use the notation Y ∈ DIε(T), where Y
is them × n matrix having Yi as the i-th row for each i, if there exists t0 > 0 such that
for every t ∶= (t1 , t2 , . . . , tk) ∈ T with ∥t∥ > t0 the following system admits nontrivial
solutions (p, q) ∈ Λm × Λn :

(3.1)
∣Yiq − p i ∣ <

ε
e t i

for i = 1, 2, . . . ,m,

∣q j ∣ < εe tm+ j for j = 1, 2, . . . , n.

In particular, a vector y ∶= (y1 , y2 , . . . , yn) ∈ Fn is said to be Dirichlet ε-improvable
along T if the corresponding row matrix [y1 y2 ⋅ ⋅ ⋅ yn] ∈ DIε(T).

By analogy to what was shown in [18], here also we want to prove that if ε > 0 is
suõciently small and an unbounded subset T of a+ is chosen, the set of all Dirichlet
ε-improvable vectors along T is negligible. _e setup here is multiplicative; i.e., one
studiesDiophantine inequalities where the Euclidean or supremum norm is replaced
with the product of coordinates. _e changed “norm” introduces several complica-
tions, and the subject of multiplicative Diophantine approximation is generally con-
sideredmore diõcult than its euclidean counterpart.
Before proceeding to our main theorem, we will recall some terminology intro-

duced in the papers of Kleinbock and Margulis, and Kleinbock, Lindenstrauss, and
Weiss and used in several subsequent works bymany authors. _e following is taken
from [17, §1 and 2].

Deûnition 3.2 Let X be a metric space. We will say X is Besicovitch if there exists
a constant NX such that for any bounded subset A of X and for any collection C of
nonempty open balls in X such that every a ∈ A is the center of some ball in C, there
exists a countable subcollection {B i} of C with

1A ≤∑
i
1B i ≤ NX .

Standard examples of Besicovitch spaces are the Euclidean spacesRn (see [25,_e-
orem 2.7]) and Fn withmetric induced by supremumnorm as deûned in Section 1. In
fact, the constant NFn is equal to 1, as this is an ultrametric space. In otherwords, any
covering by balls of any bounded subset of Fn admits a countable subcover consisting
of pairwisemutually disjoint balls.

Suppose X is a Besicovitch metric space, U ⊆ X is open, ν is a Radon measure on
X, (F, ∣⋅∣) is a valued ûeld and f ∶X → F is a given function such that ∣ f ∣ ismeasurable.
For any B ⊆ X, we set

∥ f ∥ν ,B ∶= sup
x∈B∩supp(ν)

∣ f (x)∣.
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Deûnition 3.3 For C , α > 0, f is said to be (C , α)-good on U with respect to ν if
for every ball B ⊆ U with center in supp(ν), one has

ν({x ∈ B ∶ ∣ f (x)∣ < ε}) ≤ C( ε
∥ f ∥ν ,B

)
α
ν(B).

_e following properties are immediate from Deûnition 3.3.

Lemma 3.4 Let X ,U , ν,F, f ,C , α, be as given above.
(i) f is (C , α)-good on U with respect to ν if and only if so is ∣ f ∣.
(ii) If f is (C , α)-good on U with respect to ν, then so is c f for all c ∈ F.
(iii) For all i ∈ I, f i are (C , α)-good onU with respect to ν, and supi∈I ∣ f i ∣ ismeasurable

⇒ so is supi∈I ∣ f i ∣.
(iv) If f is (C , α)-good on U with respect to ν and g∶V → R is a continuous function

such that c1 ≤ ∣ fg ∣ ≤ c2 for some c1 , c2 > 0, then g is (C( c2c1 )
α , α)-good on U with

respect to ν.
(v) Let C2 > 1 and α2 > 0. If f is (C1 , α1)-good on U with respect to ν and C1 ≤

C2 , α2 ≤ α1, then f is (C2 , α2)-good on V with respect to ν.

We say amap f = ( f1 , f2 , . . . , fn) from U to Fn , where n ∈ N, is (C , α)-good on U
with respect to ν, or simply (f , ν) is (C , α)-good on U , if every F-linear combination
of 1, f1 , . . . , fn is (C , α)-good on U with respect to ν.

Deûnition 3.5 Let f = ( f1 , f2 , . . . , fn) be amap from U to Fn , where n ∈ N. We say
that (f , ν) is nonplanar if for any ball B ⊆ U with center in supp(ν), the restrictions of
the functions 1, f1 , . . . , fn on B ∩ supp(ν) are linearly independent. In other words, if
f(B ∩ supp(ν)) is not contained in any aõne subspace of Fn for any ball B ⊆ U with
center in supp(ν).

For m ∈ N and a ball B = B(x; r) ⊆ X, where x ∈ X and r > 0, we will use the
notation 3mB to denote the ball B(x; 3mr).

Deûnition 3.6 Let D > 0. _emeasure ν is said to be D-Federer on U if for every
ball B with center in supp(ν) such that 3B ⊆ U , one has

ν(3B)
ν(B) ≤ D.

We are now ready to state our main theorem, which addresses improvements of
Dirichlet’s theoremin themultiplicative setting for good, nonplanarmaps andFederer
measures over local ûelds of positive characteristic.

_eorem 3.7 For any d , n ∈ N and C , α,D > 0 there exists ε0 = ε0(n,C , α,D)
satisfying the following: if ν is a Radon measure on Fd , U is an open set of Fd such that
ν(U) > 0 and ν isD-Federer on U , and f ∶U → Fn is a continuous map such that (f , ν)
is (C , α)-good and nonplanar is given then for any ε < ε0,

f∗ν(DIε(T)) = 0 for any unbounded T ⊆ a+ .
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We use the so-called “quantitative nondivergence”, a generalization of non-diver-
gence of unipotent �ows on homogeneous spaces, to prove our main theorem. Simi-
larly to the approach adopted in [18], in the following sectionwewill ûrst translate the
property of a system of linear forms over F being Dirichlet improvable into certain
recurrent properties of �ows on some homogeneous space.

4 The Correspondence

Let G ∶= SL(k, F), Γ ∶= SL(k,Λ), and let π be the quotient map G → G/Γ. _en
G acts on G/Γ by le� translations via the rule gπ(h) = π(gh) for g , h ∈ G. For
Y ∈ Mm×n(F), deûne

τ(Y) ∶= [Im Y
0 In

] and τ ∶= π ○ τ,

where I l stands for the l × l identity matrix, l ∈ N.
Since Γ is the stabilizer of Λk under the transitive action of G on the set Lk(F)

of unimodular lattices in Fk we can identify G/Γ ≃ Lk(F). _us, τ(Y) becomes
identiûed with

{(Yq − p, q) ∶ p ∈ Λm , q ∈ Λn} .

Now for ε > 0, let Kε denote the collection of all unimodular lattices in Fk that
contain no nonzero vector of norm smaller than ε, that is,

(4.1) Kε ∶= π({ g ∈ G ∶ ∥gv∥ ≥ ε∀v ∈ Λk ∖ {0}}) .

Next, for t ∶= (t1 , t2 , . . . , tk) ∈ a+, we associate the diagonal matrix

gt ∶= diag(T t1 , . . . , T tm , T−tm+1 , . . . , T−tk) ∈ G .

Let us come to the relevance of deûning the above objects. An immediate observation
shows that, for given t ∈ a+, the system (3.1) has nonzero polynomial solutions if and
only if gtτ(Y) ∉ Kε . _us, we have the following proposition.

Proposition 4.1 Let 0 < ε ≤ 1
e and unbounded T ⊆ a+ be given. _en for any

Y ∈ Mm×n(F),

Y ∈ DIε(T)⇐⇒ gtτ(Y) ∉ Kε∀t ∈ T with ∥t∥ ≫ 1,

or equivalently one has,

DIε(T) =
∞
⋃
n=1

⋂
t∈T ,
∥t∥>n

{Y ∈ Mm×n(F) ∶ gtτ(Y) ∉ Kε} .

Hence, in view of the above proposition, it is clear that if in addition a Radon
measure ν on Fd , an open set U of Fd , and a map F∶U → Mm×n(F) are given, then
to prove that F∗ν(DIε(T)) = ν(F−1(DIε(T)) = 0, it is enough to show that

(4.2) ν(F−1( ⋂
t∈T ,
∥t∥>n

{Y ∈ Mm×n(F) ∶ gtτ(Y) ∉ Kε})) = 0
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for all n ∈ N. Suppose now that we have some c ∈ (0, 1) with the property that for any
ball B ⊆ U centered in supp(ν), there exists s > 0 such that

(4.3) ν(B ∩ F−1({Y ∶ gtτ(Y) ∉ Kε})) = ν({x ∈ B ∶ gtτ(F(x)) ∉ Kε}) ≤ cν(B)

holds for any t ∈ a+ with ∥t∥ ≥ s. _en it is easy to see that for any n ∈ N and any ball
B ⊆ U centered in supp(ν),

ν(B ∩ F−1(⋂t∈T ,∥t∥>n{Y ∈ Mm×n(F) ∶ gtτ(Y) ∉ Kε}))
ν(B)

=
ν(⋂t∈T ,∥t∥>n B ∩ F−1({Y ∈ Mm×n(F) ∶ gtτ(Y) ∉ Kε}))

ν(B)

≤ cν(B)
ν(B) = c < 1.

(4.4)

It follows that for any given n ∈ N, no x ∈ U ∩ supp(ν) is a point of density of the set

F−1( ⋂
t∈T ,
∥t∥>n

{Y ∈ Mm×n(F) ∶ gtτ(Y) ∉ Kε}) ,

as (4.4) holds true for any ball B with x ∈ B ⊆ U . _us, (4.2) will be achieved in view
of the following theorem, an analogue of Lebesgue’s density _eorem for ultrametric
spaces. _is result is well known, and, for probabilitymeasures, a proof can be found
in [26]. Indeed, it can be proved bymaking appropriatemodiûcations to the standard
argument for Euclidean space [12].

_eorem 4.2 For any measurable Ω ⊆ Fd , almost every x ∈ Ω ∩ supp(ν) is a point
of density of Ω, i.e.,

lim
ν(B)→0
x∈B

ν(B ∩Ω)
ν(B) = 1.

5 The Proof of Theorem 3.7

As Fd is locally compact,Hausdorò, and second countable, every open set is the union
of some countable collection of compact subsets. Hence, to prove the _eorem 3.7,
once the correct ε0 = ε0(n,C , α,D) is found, it suõces to show that for all y ∈ U ∩
supp(ν), there exists a ball B ⊆ U containing y such that

(5.1) ν(B ∩ f−1(DIε(T))) = ν({x ∈B ∶ f(x) ∈ DIε(T)}) = 0

for all ε < ε0. From our discussion in Section 4,we see that (5.1) is guaranteed as soon
as we can show the existence of some c ∈ (0, 1) that satisûes the following: if a ball B
with center in supp(ν) is contained in B, then

(5.2) there exists s > 0 such that for all t ∈ a+ with ∥t∥ ≥ s, (4.3) holds.

Now we will need the following proposition.
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Proposition 5.1 For any d , n ∈ N and any C , α,D > 0 there exists C̃ = C̃(n,C ,D)
with the following property: let B be a ball centered in supp(ν), let ν be aRadonmeasure
on Fd that is D-Federer on B̃ ∶= 3n+1B and let f ∶ B̃ → Fn be a continuous map so that
(i) any F-linear combination of 1, f1 , . . . , fn is (C , α)-good on B̃ with respect to ν and
(ii) the restrictions of 1, f1 , . . . , fn to B ∩ supp(ν) are linearly independent over F.
_en we can ûnd some s > 0 such that for all t ∈ a+ with ∥t∥ ≥ s and any ε ≤ 1

e , one has

(5.3) ν({x ∈ B ∶ gtτ(f(x)) ∉ Kε}) ≤ C̃εαν(B).

_eorem 3.7 now follows easily from Proposition 5.1. In fact, we ûrst choose 0 <
ε0 ≤ 1

e so that C̃εα0 < 1. Clearly, this ε0 depends only on (n,C , α,D). Let y ∈
U ∩ supp(ν). Choose a ball B such that y ∈ B ⊆ B̃ ∶= 3n+1B ⊆ U . Now pick
any ball B ⊆ B having center in supp(ν) and consider the corresponding B̃. Since
(f , ν) is (C , α)-good and nonplanar, conditions (i) and (ii) of Proposition 5.1 hold
here immediately. Hence, if we set c = C̃εα0 , the assertion (5.2) is immediate from
Proposition 5.1 whenever 0 < ε < ε0. _us, the proof of_eorem 3.7 is complete.

We now need to prove Proposition 5.1. We shall show this as a consequence of a
more general result, namely the “Quantitative Nondivergence_eorem”.

6 Quantitative Nondivergence and the Proof of Proposition 5.1

We ûrst recall the “Quantitative Nondivergence _eorem” in its most general form,
as it is developed in [17, §7]. From this we prove Proposition 5.1.

6.1 Quantitative Nondivergence

We assume in this subsection that D is an integral domain, K is the ûeld of quotients
ofD, and R is a commutative ring containing K as a subring.

Let m ∈ N. If ∆ is a D-submodule of Rm , let us denote by K∆ (resp. R∆) its K-
(resp. R) linear span inside Rm . We use the notation rank(∆) to denote the rank of
∆, which is deûned as

rank(∆) ∶= dimK(K∆).
For example, rank(Dm) = m. If Θ is a D-submodule of Rm and ∆ is a submodule
of Θ, we say that ∆ is primitive in Θ if any submodule of Θ containing ∆ and having
rank equal to rank(∆) is equal to ∆. We see that the set of all nonzero primitive
submodules of a ûxed D-submodule Θ of Rm is a partially ordered set with respect
to set inclusion and its length is equal to rank(Θ). When Θ = Dm , we can even
characterize the primitive submodules ofDm from the following observation:

∆ is primitive ⇐⇒ ∆ = K∆ ∩Dm ⇐⇒ ∆ = R∆ ∩Dm .

_is also shows that for any submodule ∆′ ofDm there exists a unique primitive sub-
module ∆ ⊇ ∆′ such that rank(∆) = rank(∆′), namely ∆ ∶= K∆′ ∩Dm .

In addition, let R have a topological ring structure. We consider the topological
group GL(m,R) ofm×m invertiblematrices with entires inR. It is obvious that any
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g ∈ GL(m,R) maps D-submodules of Rm to D-submodules of Rm preserving their
rank and inclusion relation. Let

M(R,D,m) ∶= { g∆ ∶ g ∈ GL(m,R), ∆ is a submodule ofDm} .

We also denote the set of all nonzero primitive submodules of Dm , which is a poset
of length m with respect to inclusion relation, as we have already seen byP(D,m).
For a given function ∥ ⋅ ∥∶M(R,D,m)→ R≥0, one says that ∥ ⋅ ∥ is norm-like if the

following three conditions hold:
(N1) For any ∆, ∆′ ∈ M(R,D,m) with ∆′ ⊆ ∆ and rank(∆′) = rank(∆), we always

have ∥∆′∥ ≥ ∥∆∥.
(N2) there exists C∥ ⋅ ∥ > 0 such that ∥∆ + Dγ∥ ≤ C∥ ⋅ ∥∥∆∥∥Dγ∥ holds for any ∆ ∈

M(R,D,m) and any γ ∉ R∆.
(N3) the function GL(m,R) → R≥0 , g ↦ ∥g∆∥ is continuous for every submodule

∆ ofDm .
With thenotation and terminologydeûned above, it isnow time to state the “Quan-

titative Nondivergence_eorem”.

_eorem 6.1 ([17,_eorem 7.3]) Let B ⊆ X be a ball in a Besicovitch metric space X
and let h∶ B̃ → GL(m,R), where B̃ ∶= 3mB, be a continuous map. Suppose ν is a Radon
measure on X that isD-Federer on B̃. Assume that a norm-like function ∥ ⋅ ∥ is given on
M(R,D,m). Assume further that for some C , α > 0 and ρ ∈ (0, 1/C∥ ⋅ ∥], the following
conditions hold.
(C1) For every ∆ ∈ P(D,m), the function x ↦ ∥h(x)∆∥ is (C , α)-good on B̃ with

respect to ν.
(C2) For every ∆ ∈P(D,m), supx∈B∩supp(ν) ∥h(x)∆∥ ≥ ρ.
(C3) For all x ∈ B̃ ∩ supp(ν), #{∆ ∈P(D,m) ∶ ∥h(x)∆∥ < ρ} <∞.
_en for any positive ε ≤ ρ, one has

ν({x ∈ B ∶ ∥h(x)γ∥ < ε for some γ ∈Dm ∖ {0}}) ≤ mC(NXD2)m( ε
ρ
)
α
ν(B),

where NX is the “Besicovitch constant”.

For the proof, see [17,_eorem 7.3].

6.2 The Proof of Proposition 5.1

From the deûnition of Kε , as in (4.1), it is obvious that for t ∈ a+ and x ∈ B,
gtτ(f(x)) ∉ Kε ⇐⇒ ∥(gtτ(f(x)))v∥ < ε for some v ∈ Λn+1 ∖ {0}.

_is inspires us to use_eorem 6.1 with the following assumptions:
● D = Λ, R = F, X = Fd , m = n + 1;
● ν, B,C , α and D as in Proposition 5.1;
● h(x) = gtτ(f(x))∀x ∈ B̃.
We deûne ∥ ⋅ ∥ as follows: sinceΛ is aPID, any submodule of theΛmoduleΛn+1, being
a submodule of a freemodule of rank n + 1, is free of rank ≤ n + 1. _us, any nonzero
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∆ ∈M(F ,Λ, n+1) has a Λ basis, say {v1 , . . . , v j},where 1 ≤ j ≤ n+1. We consider the
j-vector w ∶= v1 ∧ ⋅ ⋅ ⋅ ∧ v j ∈ ⋀ j(Fn+1). Recall that the j-vectors e i1 ∧ e i2 ∧ ⋅ ⋅ ⋅ ∧ e i j with
integers 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < i j ≤ n + 1 form a basis of ⋀ j(Fn+1), and thus ⋀ j(Fn+1) can
be identiûed with F(

n+1
j ). _erefore one can naturally talk about the supremum norm

on⋀ j(Fn+1) using this identiûcation. We deûne ∥∆∥ to be the supremumnormofw.
It is a routine veriûcation that this deûnition does not depend on the choice of the

ordered basis of ∆. If ∆ = {0}, we deûne ∥∆∥ = 1. In order to prove that the just
deûned ∥ ⋅ ∥ is indeed norm-like, we need to verify conditions (N1)–(N3). (N1) and
(N3) follow easily from the basic properties of exterior product, while (N2) can be
proved by a verbatim repetition of the proof of [15, Lemma 5.1] as follows.

We claim that C∥ ⋅ ∥ can be taken as 1. If ∆ = {0}, then it is immediate. Otherwise,
let {v1 , . . . , v j} be a basis of ∆. Clearly, {v1 , . . . , v j , γ} is a basis of ∆+Λγ. Nowwriting

v1 ∧ ⋅ ⋅ ⋅ ∧ v j = ∑
I⊆{1,2, . . . ,n+1},

#I= j

wIeI and γ =
n+1

∑
i=1

w i e i

(in the usual notations) and using the ultrametric property, we see that

∥∆ + Λγ∥ = ∥ ∑
I⊆{1,2, . . . ,n+1},

#I= j

wIeI ∧
n+1

∑
i=1

w i e i∥ ≤ max
1≤i≤n+1

∥ ∑
I⊆{1,2, . . . ,n+1},

#I= j

wIw i(eI ∧ e i)∥

≤ max
1≤i≤n+1

max
I⊆{1,2, . . . ,n+1},

#I= j

∣wIw i ∣ ≤ max
I⊆{1,2, . . . ,n+1},

#I= j

∣wI ∣ max
1≤i≤n+1

∣w i ∣ = ∥∆∥∥Λγ∥.

Now we have to check conditions (C1), (C2), and (C3) of _eorem 6.1. From the
discreteness of⋀ j(Λn+1) in⋀ j(Fn+1) for all j = 1, 2, . . . , n + 1, (C3) is immediate. To
investigate the validity of the others, we have to do the explicit computation exactly
as in [18, §3.3].
●Checking (C1): Here, for the sake of convenience in computation, it is customary

to bring a few minor changes in some of the notation we have been using so far. For
the rest of this section, we write {e0 , e1 , . . . , en}, the standard basis of Fn+1, and for

(6.1) I = {i1 , . . . , i j} ⊆ {0, . . . , n}, where i i < i2 < ⋅ ⋅ ⋅ < i j ,

we let eI denote ei1 ∧ ⋅ ⋅ ⋅ ∧ ei j . Similarly, it will be convenient to put any t ∈ a+ as

t = (t0 , t1 , . . . , tn), where t0 =
n

∑
i=1

t i .

Let us observe that for any y ∈ Fn , τ(y) ûxes e0 and sends any other ei to ei + y ie0.
_us, for any I as in (6.1), we have

(6.2) τ(y)eI =
⎧⎪⎪⎨⎪⎪⎩

eI if 0 ∈ I,
eI +∑i∈I ±y ieI∪{0}∖{i} otherwise.

Likewise, we can also see that for any I as in (6.1),

(6.3) gteI =
⎧⎪⎪⎨⎪⎪⎩

T t0−∑i∈I∖{0} t i eI if 0 ∈ I,
T−∑i∈I t i eI otherwise.
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Suppose ∆ ∈P(Λ, n + 1) and {v1 , . . . , v j} is a basis of ∆ and let

w ∶= v1 ∧ ⋅ ⋅ ⋅ ∧ v j = ∑
I⊆{0, . . . ,n},

#I= j

wIeI ;wI ∈ Λ.

From (6.2) and (6.3), it follows that for any x ∈ B̃, one has
h(x)w = ∑

I⊆{0, . . . ,n},
#I= j

hI(x)eI ,

where

(6.4) hI(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

T−∑i∈I t iwI if 0 ∉ I,
T∑i∉I t i (wI +∑i∉I ±wI∪{i}∖{0} f i(x)) otherwise.

In particular, the coordinate maps hI of the map x ↦ h(x)w, x ∈ B̃ are
F-linear combinations of 1, f1 , . . . , fn and hence, by Proposition 5.1(i), all of them are
(C , α)-good on B̃ with respect to ν. _erefore, from Lemma 3.4(iii), it follows that
the function

x ↦ ∥h(x)∆∥ = ∥h(x)w∥ = max
I

∣hI(x)∣

is (C , α)-good on B̃ with respect to ν. _us, (C1) is established.

● Checking (C2): Let ∆ ∈P(Λ, n + 1), {v1 , . . . , v j} be a basis of ∆ and let

w ∶= v1 ∧ ⋅ ⋅ ⋅ ∧ v j = ∑
I⊆{0, . . . ,n},

#I= j

wIeI ;wI ∈ Λ.

Case 1: Assume wI = 0 whenever 0 ∉ I. _en there must be some J ⊆ {0, . . . , n}
containing 0 such that wJ /= 0, as all wI cannot be zero. Pick any t ∈ a+. Now from
(6.4), we see that

∣hJ(x)∣ = ∣T∑i∉J t iwJ ∣ ≥ 1 for any x ∈ B̃.
_erefore in this case, for all t ∈ a+, we have

sup
x∈B∩supp(ν)

∥h(x)∆∥ = sup
x∈B∩supp(ν)

∥h(x)w∥ = sup
x∈B∩supp(ν)

max
I

∣hI(x)∣

≥ sup
x∈B∩supp(ν)

∣hJ(x)∣ ≥ 1.

(6.5)

Case 2: Suppose wI /= 0 for some I ⊆ {1, . . . , n}. Choose l ∈ {1, . . . , n} such that
t l = max1≤i≤n t i . If l ∈ I, set J = I ∪ {0} ∖ {l}. Clearly, J contains 0 but does not
contain l . In view of (6.4), the coeõcient of f l in the expression of hJ is easily seen to
be ±T∑i∉J t iwI , and its absolute value is

(6.6) ∣T∑i∉J t iwI ∣ ≥ e∑i∉J t i ≥ e t l ≥ e t0/n = e∥t∥/n .
If l ∉ I, choose any i ∈ I and let J = I ∪ {0} ∖ {i}. As before, ±T∑i∉J t iwI turns out as
the coeõcient of f i in hJ so that we obviously get the analogue of (6.6). _us, in this
case, there always exists J such that

(6.7) at least one of the coeõcients of f1 , f2 , . . . , fn in hJhas absolute value ≥ e∥t∥/n .
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Now, from Proposition 5.1(ii), it follows that there exists δ > 0 such that

sup
x∈B∩supp(ν)

∣c0 + c1 f1(x) + ⋅ ⋅ ⋅ + cn fn(x)∣ ≥ δ

for any c0 , c1 , . . . , cn ∈ F with max0≤i≤n ∣c i ∣ ≥ 1. We choose M ∈ N such that δeM ≥ 1.
Let ∥t∥ ≥ nM. _en, because of (6.7), surely at least one of the coeõcients of

f1 , f2 , . . . , fn in 1
TM hJ has absolute value at least 1, and thus

sup
x∩supp(ν)

∣ 1
TM hJ(x)∣ ≥ δ.

_is gives
sup

x∩supp(ν)
∣hJ(x)∣ ≥ δeM ≥ 1.

So, even here, we can see that for all ∥t∥ ≥ nM,
sup

x∈B∩supp(ν)
∥h(x)∆∥ = sup

x∈B∩supp(ν)
∥h(x)w∥ = sup

x∈B∩supp(ν)
max

I
∣hI(x)∣

≥ sup
x∈B∩supp(ν)

∣hJ(x)∣ ≥ 1.

(6.8)

Letting ρ = 1, (C2) is thus immediate from (6.5) and (6.8) whenever ∥t∥ ≥ nM.
Finally, C̃ and s are taken as (n+ 1)CD2(n+1) and nM respectively, and one applies

_eorem 6.1 to show (5.3).

7 Explicit Constants: an Example

In this section, we talk about a simple application of_eorem 3.7 to a concrete exam-
ple, with special attention to the explicit constant ε0. Here d = 1, n = 2, and ν is the
unique Haar measure on F that satisûes ν(B[0; 1]) = 1. It is not diõcult to show that
ν is e2-Federer. Let

f ∶B(0, 1)Ð→ F2 , x z→ (x , x2).
We claim that f is (2, 1/2)-good; in fact, so is any ϕ ∈ F[x] having degree ≤ 2. To see
this, we shall apply the same technique that used in the proof of [15, proposition 3.2].

Let ε > 0 andB ⊆ B(0; 1). We have to show

(7.1) ν({x ∈B ∶ ∣ϕ(x)∣ < ε}) ≤ 2( ε
∥ϕ∥B

)
1/2

ν(B).

For convenience, put S ∶= {x ∈ B ∶ ∣ϕ(x)∣ < ε}. If ν(S) (i.e., the LHS of (7.1)) is 0,
then there is nothing to prove. Otherwise, we will show that

m ≤ 2( ε
∥ϕ∥B

)
1/2

ν(B),

or equivalently,

(7.2) ∣ϕ(x)∣ ≤ ε( ν(B)
m/2 )

2
for all x ∈B

whenever 0 < m < ν(S).
From the continuity of ϕ, we see that for each x ∈ S, there is a ball Bx with center

at x and radius < m
2 such that Bx ⊆ S. Now from the Besicovitch nature of F, one can
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extract a countable subcover {B1 , B2 , . . .} consisting of mutually disjoint open balls
from the cover {Bx ∶ x ∈ S} of S. Clearly, ν(B i) ≤ m

2 for each i. _us, in view of their
size, it follows that the subcover has at least three balls. Let us denote their centers as
x1, x2, and x3. _en the centers x i are in S, and they must satisfy

(7.3) ∣x i − x j ∣ ≥
m
2
for all i , j = 1, 2, 3; i /= j.

We now employ Lagrange’s interpolation formula to complete the proof. Using this
formula, we can write ϕ as

(7.4) ϕ(x) = ϕ(x1)
(x − x2)(x − x3)
(x1 − x2)(x1 − x3)

+ ϕ(x2)
(x − x1)(x − x3)
(x2 − x1)(x2 − x3)

+ ϕ(x3)
(x − x1)(x − x2)
(x3 − x1)(x3 − x2)

.

As B is a ball, certainly there exist a and m ∈ N such that B = B[a; 1
em ]. _erefore,

diameter(B) = 1
em = ν(B). In view of this, (7.3), and (7.4), it follows at once that

∣ϕ(x)∣ ≤ ε (diameter(B))2

m2/4 = ε( ν(B)
m/2 )

2
for all x ∈B,

and that shows (7.2).
_us, all the conditions of the hypothesis of_eorem 3.7 hold here, and the exis-

tence of the desired ε0 > 0 is conûrmed. We are interested in computing it. In the
proof of_eorem 3.7, we have also observed that our ε0 can be taken as any positive
quantity that is < 1

C̃ 1/α , where C̃ was set, as we did in the proof of Proposition 5.1, as
(n + 1)CD2(n+1). _erefore in our example, we obtain that

ε0 <
1
C̃2

= 1
(3 × 2 × (e2)2×3)2 = 1

36e24
.
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