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ON APPROXIMATION IN SPACES
OF CONTINUOUS FUNCTIONS

Heinz H. GoNskA

This paper deals with approximation of certain operators defined
on the space C(X) of real-valued continuous functions on an
arbitrary compact metric space (X, d) . In particular the
problem of giving quantitative Korovkin type theorems for
approximation by positive linear operators is solved. This is
achieved by using a smoothing approach and the least concave
majorant of the modulus of continuity of a function f in

C(X) . Several new estimates are given as applications,

including such for Shepard's method of metric interpolation.

1. Introduction

The present note deals with quantitative Korovkin type theorems for
approximation by positive linear operators defined on C(X) . Here

c(x) = Ch((X, d)) denotes the Banach lattice of real-valued continuous

functions defined on the compact metric space (X, d) . No further

assumptions are made on X .

The first such theorem for general positive linear operators and
X = [a, b] equipped with the euclidian distance seems to be due to Mamedov
[74]. For spaces (X, d) being metrically convex in the sense of Menger
[15], Newman and Shapiro [18] proved a theorem similar to that of Mamedov
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(see also Miller and Walk {17, p. 225]). This approach was further
developed in two recent papers of Nishishiraho [19, 20] where additional
references can be found. TFor compact spaces (X, d) having a so-called
coefficient of convex deformation p < ® , Jiménez Pozo [9] published a
generalization of the result of Newman and Shapiro mainly involving the

modulus of continuity of f , given by
w(f, €) := sup{|flx)-Ffy)| : d(z, y) =€} .
See [11, 12] for a discussion of earlier results.

Furthermore, for arbitrary compact (X, d) , Jiménez Pozo [7, 11]

proved a generalization of the following

THEOREM A. Let L : C(X) = C(X) be a positive linear operator.
Then for all f € C(X) , all x € X and all o >0 the following
inequality holds:

IL(f, 2)-f(=)| = w(f, a) « L(1y, =) + [f=)] -+ |L{1y, @)-1]
21£1,

o}

- L{d(*, 2); x)

+

Here HfHX = sup{|flx)| : x € X} and 1, : X3 x> 1¢€R.

A disadvantage of this type of estimate is the fact that the upper
bound is not given in terms of moduli of continuity. The main point of
this paper is thus to show that the assumption of metric convexity or of
existence of a finite coefficient of convex deformation can be completely
dropped when using the least concave majorant of w(f, *) instead of
w(f, *) itself. As will be seen below, our general results imply
estimates similar to (and sometimes even better than) those of Nishishiraho

and Jiménez Pozo if (X, d) satisfies the assumptions made by them.

It was observed by Berens and lorentz [1] among others that the
results on approximation of lattice homomorphisms 4 : C(X) »E , E a
Banach lattice, by positive linear operators are similar to those for
approximation of the injection % : C(X) = B(X) . Here B(X) is the space
of bounded real-valued functions on X . This is our motivation for
proving estimates on approximation of mappings A : C(X) > B(Y) , Y # ¢ ,
given by A(f, y) = wA(y) . f(gA(y)) , where wA is a bounded real-valued

function on Y and gA maps Y into X . TFor the relationship between
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such mappings and lattice homomorphisms see, for example, Wol ff [25].

For the sake of brevity we do not strive for utmost generality in this
paper. For instance, following the approach of Nishishiraho, more general
results can be proved like such involving strictly positive functions g

(instead of 1y )} and operators T, » - See, for example, {201 for
b

details. It is also possible to drop the assumption of positivity of L ,
or to generalize the operators to be approximated. Some recent results in

this direction are due to Jiménez Pozo [8, 10] and to the author [3].

2. Auxiliary results

As mentioned before our results below will be obtained by using a

smoothing approach.

For 0 <r =1 let Lip r denote the set of all functions g in
C(X) such that

9] o = s lg(@)-g) |/ d (2, y) <= .
d(x,y)>0
Then Lip r is a dense subspace of C(X) , and |- Lipr is a seminorm on
Lip r . Thus it makes sense to use the K-functional with respect to
(Lip r, I.ILipr) in order to prove quantitative assertions. This

functional is given by

K(t, f5 €(X), Lip r) := inffllf-gl#t-lgl ,  : g €Lip 2},

Lipr
where f € C(X) and t 20 .

As an immediate consequence of the definition, for any A = 0 the

inequality
k(At, f; C(X), Lip r) < max{1, A} - k(¢, £3 C(X), Lip »)
holds.

Another tool for our proofs will be the following lemma of Brudny{.

For a proof see Mitjagin and Semenov [16].
LEMMA 2.1, Every continuous function f on X satisfies
k(e/2, f5 ¢(x), Lip1) =% - &(f, €), 0 =€ < d(X) .

Here @&(f, ) denotes the least concave majorant of w(f, *) given

https://doi.org/10.1017/5S0004972700021134 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021134

414 Heinz H. Gonska

by

sup (e-z)u(foy) +(y=€) U fox) o0 o< < d(x) ,

o=<z=<e<y=<d(X) y-x

a(f, €) =
(f, €) = w(f, dX)) if e >d(x) ,
and d(X) <« is the diameter of the compact space X .

The definition of ®&(f, *) shows that w(f, <) = &(f, *) . However,
an estimate from above by some multiple of w(f, *) is not possible for
all metric spaces (X, d) , as will be seen below. For some further

properties of &(f, *) see, for example, Dzjadyk [Z, p. 153ff].

3. Main theorems

In this section we prove quantitative theorems on approximation of

operators A given by A(f, y) = lPA(y) . f(gA(y)) by means of positive
linear operators L . Here f € C(X) , Y # @ is some set, y €Y , Yy
is a bounded real-valued mapping on Y and g, maps Y into X . The
key result of this section is

THEOREM 3.1. ILet A be given as above and L # 0 be a positive
linear operator both mapping C(X) into B(Y) . Then the following
inequality holds for all f € C(X), y €Y, and € >0 :

lL(fs y)-alss y)| = maXEILII, colal, g,); y):l - @(f, €)
+|2(1y, v)-a(ay, 9} - 1£(g, ()]
Proof. Let 4 be given by A(f, y) = ¥,(y) + flg,(y)) , and let
L : ¢(X) » B(Y) be positive and linear. Then we have
Ay ) = v,() - Flg,() = a1y, ¥) - Flg,(m) -
Thus, for all f € C(X) and all y € Y ,
|25 y)-a(F, »)| = |20, »)-L(1y, ) -Flg, )]
+ 1Ly 9)-a(1y, )| - 1F(g,())] -

The second term on the right hand side is all right.
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Defining Z(f, y) := L(lX, y) . f(gA(y)} , we have to consider
|L(f, ¥)-A(f, ¥)| . Note that L(1,) = 4(1,) .
Let g be arbitrarily given in Lip 1 . Then
lL(F, 9)-A(F, )| = [(T-A)(f-g, »)| + [(Z-A)(g, 9| .

For the first term on the right hand side obviously

(Z-4)(f-g, »)| = |L(f~g, »)| + |A(F-g, ¥)]
2« izl - lif-gll, -

1A

IA

For the second term one gets

[(-2) (g, 9| = |L(g, y)-L(1,, ¥)-g(g, ()]
12{g-g (g ()}, v}

L(lg-glg,()) 1, ¥)

1A

Thus we have for any g in Lip 1 the inequality

=2 el - Nf=gly + 2(d(es g,)s ¥) « gl

2 1zl - {lIglly + 53y - 2@Cs g, 9 -laly ) -

This implies
(£, y)-a(f, 9l

=2 |zl - K(z,l

o ¢ Eldle, g, (0)s ¥, £ c(x), Lip 1] :
Now introducing an arbitrary number O < € =< d(X) we obtain

IL(f, y)-A(f, o)
2 o+ K[dy c 2Cs g,w)s ) - 5 £ o, 1 1]

1A

€

2 - el - max{l, Tl - 2, g,); y)} . K(g, 3 €(X), Lip 1] :

1A

Brudnyl's Lemma 2.1 shows that K(e/e, f; €(X), Lip 1] =%« &(f, €) which
yields

(. -Af, )| = maX{"EII, z - ofa(, 9,(9)}s y)} © B(f, €) .
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If € > d(X) the estimate is also correct since in this case

1, . . L2, dx) .

1A

1A

ol + w1, 27 - L@, 9,005 8) - 7o)

[d(’”, £5 C(X), Lip 1]

max{loll, gy - £@Cs 9,00)s W)} - (7, &)
1

max{IlLII ~ L(d(+, g,(); y)} - B(f, €)
Here the last equation follows from the fact that for € > d(X) we have
ve - L{d(*, g,(1))s y) = LIl ana &(f, €) = &(f, d(X)) . Both

¢
observations imply the inequality in Theorem 3.1. O

The following corollary gives an analogue of Theorem 3.1 for a-wider

class of test functions.

COROLLARY 3.2. Let the assumptions of Theorem 3.1 be fulfilled. Let
® be a function on X such that &+, y) € (X)) forall y €X.
Moreover, we assume that for some q = 1 the condition

dzx, y)q < &(x,y) forall xz,y €X

is satisfied. Then

IZ(F> y)-A(f, y)| < maxE|L||, -';L; - clL, @, 4, y):l < B(f, €)

+ oy, v)-a(1, o)1 - If(g,)] .

where
1/p
c(L, &, 4, y) := inf {L(@(’, gA(y)}p/q; y] L(1ys y)' l/p} .
p=1
Proof. It is only necessary to estimate L(d(-, gA(y)); y} in order
to obtain the claim of Corollary 3.2.

For y fixed, the functional L(*, y) is a positive linear form on

C(X) . Thus if ¢ = 1 , HOlder's inequality implies
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1/p
1-1
L(d(+, g,(1);s ¥) = 2|d(-, g,()F; y] T R
If g =21 is fixed and such that

Az, y) = ®(x, y) for all (z, y) € X2 .
we have

]l/P )l—l/p

L{d(-, g4())s ¥) < L[d(’, g5y - Ll y

A

1/p _
L[é’(', g,/ y] P R

Hence

1/p
t{d(-, g,(); y) = inr {L[®(°, gA(y)]p/q; y]
p=1 )

Combining the above inequalities we arrive at

1/p
< maxElLlI, . inr {L[@(~, g, ()P4, y) L1y y)l—l/p}} - 3(f, €
p21

°L (lX; y)l_l/p} .

+ L1y y)-A(1y, ¥)1 - 1Flg, )1,

which is the claim of the corollary. 0

For the special case Y =X , A(f, z) = f(x) , LlX =1y the

inequality in Corollary 3.2 reduces to the one in

COROLLARY 3.3. Under the assumptions just mentioned one has

5£, @)-fla)] < maxf1, £ - o {L(o(-, P95 7] < ats, o)
=

Our next theorem is a generalization of Theorem 3.1. It shows that
this theorem implies a variety of estimates including uniform ones or such

in Ll spaces.

THEOREM 3.4. Let (X, d) be a compact metric space and Y # ¢ be
some set. Let L # 0 be a positive linear operator and A be given by
Af =W, - (o gA) > both mapping C(X) into B(Y) . Moreover, let

M = {u} be a set of positive linear functionals on B(Y) such that
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pM[h] := sup{u(|A]|) : p € M} <= forall h € B(Y), and pM]:ly] >0 .
Then for all f € C(X) and all € > 0 the following inequality
holds:
pM[Lf'Af] = pM[(LlX'Alx.}'(f ° gA)]
1 ~
+ maX{llEII'PM[lY]» = pylLld(s, g,(»); *)]} < B(f, €) .
Here L 1is applied with respect to the variable indicated by "+" , and
U € M 1is applied with respect to "*" .

Proof. If g € Lip 1 1is arbitrarily given, then the proof of Theorem
3.1 shows that for all y € Y we have

l(z-a) (£, )| = HZ-2) [y, w) | - [f(g ()]
+2 - Ll < gl + 2(d(ss g4())s ) - lglyy, -

Applying U € M to this inequality means

u(lL-afD)
w(lz1-a1le1f 0 gyl) + 2« 2l - lf=glly » u(Ly)

+ulz(d(s, gy(0)s ) - l9lLip

1A

IA

by LEra1) - (7 o g)]

+

2~ |iLh - pM[l_Y]{”f_g"X + 2.”L”£;9M lY] * pM[L(d(‘: gA(*))" *)]"g|Lipl} .
Thus
u(zr-afl) = p L(z1,-a1 )« (F 0 g,)]

+2 « L] - PMﬁY]K[-Q—"—"—l—[—]’ . PM[L(d(" QA(*)); #)], f; ¢(X), Lip l] .

Y L opM lY
Proceeding exactly as in the proof of Theorem 3.1 yields
w(lzf-4r1) = p, [(L1,-41,)+ (F o g,)]
+ max{”L”'PMEly]s _]E._ * pM[L(d(‘a gA(*)}’ *)]} * (T)(f, E) .

Passing to the supremum in M now gives the estimate in Theorem 3.h. 0

COROLLARY 3.5. If the assumptions of Theorem 3.4 are fulfilled, and
if & <is given as in Corollary 3.2, then
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pylLf-A51 = py[(E1,~a1 )« (F o g,)]
v max{Elop, [, 2 - o, £, 6 m)) - G €

where
. l/p
1-
c(M, L, &, A) = inf {[pM[L[@(', gA(*))p/q; *H] oy (1, #)1) l/p} .
p=1 - -
Proof. The assertion in Corollary 3.5 results from an estimate of

pM[L(d(-, gA(*)); *)] in Theorem 3.4. For any p = 1 we have

1/
pylZ(d(+s g,(#))s #)] = pME:(@(., gA(*))P/q; *] P,L(lx; *}1—1/;7:[

Applying HOlder's inequality again, we conclude as in the proof of Theorem

3.4 that
1/p _
oulefote ago1?1 ] s ]

= (le:L(q’(" gA(*))p/q; *H]l/p ) (PM[L(l)ﬁ *)])l_l/p :
Passing to the inf over all p =1 implies
pyl(d(s, g (»)); )]
< sor o, oo 0,075 )77 - B M
pzl
This yields the claim of Corollary 3.5. 0
If in Theorem 3.4 or Corollary 3.5, M = {ey} for some point evaluation
functional Ey » Y €Y , then the estimates given reduce to the ones in
Theorem 3.1 and Corollary 3.2, respectively.

REMARK 3.6. The estimates given in Theorems 3.1 and 3.4 are best

possible in a certain sense. To show this, let Y = {xo} 5
A(f, zo) = f(xo) , and L(lx, xo) =1 for some fixed point z, in X .

In this case the inequality in Theorem 3.1 (or the one in Theorem 3.4t for

M= {e_} ) reduces to
€z,
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|L(f, zg)-flzg)| = max{l, R CICRER R xo)} - 3(F, €) -
For L(d(-, xo); xo) =0 we have |L(f, xo]-f(xo)| < @(f, €) for all
€ >0 and thus
12(r, z)-Fl=p}| = (s, £(a(-s =p)s =) -
e Ld(-, =,); 2} >0 , then choose € = L(d(+, z,); z,) . and this gives
the same inequality.

Now take f(*) = d(-, a:o) . Hence
(3.1) |r(d(-, xo); xo)—d(xo, :z:oﬂ
=r(d(-, xo); :co) = o(d(-, xo), L{d(-, xo); a:o)]
If for instance X = [a, b] and d(z, y) = |y-z| , then

w(|--xo| , k) = min{n, max.{b—xo, xo—a}}

for each h € [0, b-a] . Thus w( '—xol, h} is a concave function and

G)(I-—a:0|, h) = w(|'-x0|, n) .
Hence inequality (3.1) becomes an equality, which shows that the constant
1l in
205, 2 )-£ )| =1 - 8(5, L, 5 )5 2,))

cannot be improved in general. o

We shall now look at spaces (X, d) with the following property:
there exists a constant 1N > 0 such that for all &, € >0 and all
f € €(X) , the inequality

(3.2) w(f, &-€) = (1+&) - w(f, €)
holds.

Examples of such spaces are, for example, compact metric spaces being
convex in the sense of Menger [151, or compact convex subsets (X, d) of a
metric linear space (Y, d) with translation invariant metric and star-
shaped d(+, 0) (see Nishishiraho [20]). In both cases the above
inequality holds for n =1 . Other examples are given by spaces (X, d)
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having a coefficient of convex deformation p = p(X) . In this case the

above inequality holds for n = p (see Jiménez Pozo [?, Théoréme 2]).

In these cases &(f, *) and w(f, *) are related in the following

way.

LEMMA 3.7. IFf (X, d) <is a compact metric space such that (3.2)
holds, then for f € C(X) there holds

w(f, e} =(f, ) =(1+n) - w(f,e), €=20.

Proof. As mentioned earlier,

a(f, €) = sup (e—x)w(f,y) +(y-€)w(f,x)
O=x=<e<y<d(X) y-x

Putting, for example, x = € shows that w(f, €) < &(f, €) .

For the proof of the second inequality let 0 = xi< e <y . Write
w(e) = w(f, €) for the sake of brevity. Then

y-x y-x

w(e)
Y-

(14n) - w(e) .

E2Z . w(y) + Iy:% - w(z) s =£ (n-y+e)s-l - w(e) + ;'_'Lz . w(e)

1A

(y-z+n(y-x))

This yields the estimate from above for 0 = € = d(X) . Note that it is
also true for € > d(X) . O

REMARK 3.8. The second inequality in Lemma 3.7 does not hold for an
arbitrary compact metric space. This can be seen from the following simple

example.

Let X =1[0, 5] v[%, 1] and d(x, y) = |z=-y| for z,y € X . The
function f given by

1 for 0sx=<%,
flz) =
2 for 3 sx<1,
1s continuous on X . Its modulus of continuity is
0 for 0se<k,
w(f, €) =

1 for 5<eg=<1.

https://doi.org/10.1017/5S0004972700021134 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700021134

422 Heinz H. Gonska

Thus the least concave majorant &(f, «) 1is the function

G(f, €) = min{2e, 1} . Hence &(f, €) = ¢ + w(f, €) cannot hold for any
¢ >0 and all € 20 . In fact, it is easily verified that there is no
n > 0 such that for al1 &, € > 0 we have

w(f, g€) = (1+nf) « o(f, €) . o

Using Lemma 3.7 it is now easy to give estimates involving w(f, €)
itself. We restrict ourselves to quote the following consequence of

Theorem 3.4.

THEOREM 3.9. Let (X, d) be a compact metric space satisfying (3.2)
and let the assumptions of Theorem 3.4 be satisfied.

If the function f € C(X) has a concave modulus of continuity, then

+ max{”L I .pM[lY] ,

m |

. PM[L(d(-, gA(*)); *TJ} « w(f, €)
Otherwise we have

pylLf-Ar] = p,[(E1,-41,) - (f © g,)]
¢ Q) - max{||L||-pM[‘_1Y], Lop, Bl g0 W1} - uis, @

REMARK 3.10. (i) 1In order to compare the result in Theorem 3.9 to
one obhtained by Nishishiraho [19], we consider the following situation:

Y=X, M= {E:L‘} for some fixed point evaluation functional Ex s

A(f, x) = flz) , le =1y, . Then for an f ¢ C(X) having a concave

modulus of continuity the above inequality yields, for any € > 0 ,

|Z(f, x)-Fflx)| = max{l %' L(d(- )s x‘} « w(f, €)

If in Lemma 4 of [19] we take g = and &(x, y) = d{x, y) , then the

1x
lemma implies

|Z(f, x)-f(x)] = |:1+%-n'L(d(-, ;x):l w(f, €)

Thus, for n = 1 (which is the case for every coefficient of convex
deformation) and for functions f with the property mentioned above our

theorem gives better constants in front of w(f, €)
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(ii) A statement akin to (i) holds with respect to Theorem U4 in

Jiménez Pozo's paper [111.
As a further consequence of Theorem 3.1 we mention

THEOREM 3.11 (ef. Nishishiraho [20, Theorem 41). Let X be a
compact subset of a real pre-Hilbert space with inner product (-, *) .
Let € >0 .

If L : C(X) ~ C(X) is a positive linear operator, then for all
f e€c(X) and x € X there holds

|L(fs 2)-flz)| = |fa)] « |2(1y, =)-1]

[

+ max{ 2], £+ L(d(-, 975 D %Ly, x)’f} - 3(f, €) .

Here d{z, y) = (z-y, x—y)% . If L(1,, x) =1, then

|L(F, z)-flz)| < max{nLu, % . n(d(-, )%, x]%} < B, €) .

X’

Proof. Use Corollary 3.2 with &(x, y) = d(z, y) and p =2 . u

Under the assumptions of Theorem 3.11 it is also possible to give

estimates similar to those in Theorem 3.4 or Corollary 3.5.

4, Applications
As illustrations of our general results we consider three examples.
4.1 A MODIFICATION OF LEHNHOFF'S TIMAN TYPE THEOREM

Recently in a very interesting paper Lehnhoff [13] investigated the

sequence of positive linear polynomial operators on C[-1, 1] given by

U
B (f, ) = % f—“ f(cos(arcecos = + v)) - Ky o(v)dv

with kernel

10 (sin(nv/z)]6 _

kK, . (v) = -
n-3 n(llnh+5n2+h) sin(v/2) )

He showed that for all f its image an is a polynomial of degree

3n - 3 satisfying
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2
2
2 <30 |Vi-x z|
Hn[(el'“’] ’ “’] RSN R

From Theorem 3.1l we see that for f € ¢[-1, 1], Jz| =1, and € >0

one has
|8,(f, 2)-Az)| < maxi1, L/ 2. L1z J—i L B(f, e)

A proper choice of € then implies

F_ u

|2, (f, x)-flz)| <1.66 « &|f, ——

However, the question for the best possible constant in a Timan type

estimate in terms of &(f, *) still remains open. a

4.2 APPROXIMATION BY BIVARIATE BERNSTEIN-STANCU OPERATORS

In his paper [23], Stancu investigated a generalization of the bi-

variate Bernstein operator, given by
(@,8) <s> i g
(Lm’n f] ..2_:0 Jzo 9 ( ) f m n ?

where

pzk-1 p-1
oM = @ [TT [ (e =TT o]y TT e
‘p, v=0 =0

Fec(o,11®, (z,y) €x=100,1°, n,m21, a, B20.

(a ,B?

Obviously L is a positive linear operator and hence Theorem
. . {a,B) .
3.11 is applicable. Note that Lm M reprocudes lX . Using the
2

euclidian metric d on X we have to consider

Al CICRE R} N ER)

L ) <s> )2 )2
w o .(x) . (y) ( - —} + ( - 1}
i=0 j=o ™* [m m Y

%152) y(y)

"
™
™

3
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Here some known facts about univariate Bernstein-Stancu operators were used

(see, for example, [4]). Theorem 3.1l implies

-~ 1+om _l+pn
< m(f, ‘/m(1+a x{1-x) + 7148 y(1- y)J

|(L‘°"B’f](x, y)-flz, y)

m,n

For & = B =0 this reduces to an inequality for bivariate Bernstein

operators on X , namely

(Bm,nf)(x, y)-flz, y)| = E)[f, \/i(_lr.nﬂ + H(_l-}i_l] .

n
4.3 SHEPHARD'S "METRIC INTERPOLATION'

While the last two examples were mainly given in order to illustrate
the magnitude of the constants in our general theorems, we now turn to an

example that lives in metric spaces (X, d)
Let f be a real-valued function defined on X , and let Ly oees Ty

be a finite collection of distinct points in X . We assume further that

for each N-tuple (x 5 eees ah) we are given a finite sequence
(ul, vees uN) of real numbers 1 >0 . Then Shephard's method of "metric

interpolation" is described by the operators SN given by

Sf, x) =8 (f, x)

N xl,. .,xN z
[N N My
T sl < | TT. dbe, =) ](z TT  de, =) ]
i=1 J=1,J#L 1=1 k=1 ,k#1 )

= 9 for x t {xl, ey xN} ,

f(x.) otherwvise.
Ve

An alternative representation of the sum is
U, N -u
Z f(.'x: . (d(x, z.) 1']/( Yy d(z, z,) Z]]
=1 v 1=1 t J

It is immediately clear that SN is a positive linear operator on C(X)
say, and that S”(f, xi) = foi] for all x. . Moreover, SN(lX’ z) =1

for all x € X . The S;'s were introduced by Shepard [21]; for further
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information see, for example, Gordon and Wixom [5].

In the sequel we restrict ourselves to the case where

1 =yu-= ul = ... = UIV . For the estimates given below we shall make use of

the conventions 1/® =0, 1/0=® , and g +o =o for a >0 .

THEOREM 4.1. If w =1, then the Shepard operator S}; satisfies

for f € (X)) and =z € X the inequalities

(i) sk, x)—f(m)l <

1SH

(f, TN(x)) , where

TN(x)

W _ +l‘ N _
Y dlz, xt) M J /aD) d(:r:, xz) H »
=1

and
(5) [shtr, 2)-fle)| = Bl Y] | where e i e
harmonic mean of dlzx, xl)u, eer, dz, :cN)u , that is
N \'1
XN(:x:) =N+ Y 1dz, xi)u .
i=1 J

Proof. The proof of (7Z) is an immediate consequence of the second

representation of SIV given above, of Theorem 3.1 and the fact that

SNlX= lX .

Proof of (ZZ). Corellary 3.2 gives

< max{l, % C(S;, $, Id, x]} < ®(f, ),

|shs, =)-1t2)
where

c{sl‘;, ®, 14, x] = inf {S};(@(-, 2)P/4, x)l/p} ,
p=1

and ¢ is a function on X2 , such that for some ¢ =21 and x,y € X

inequality d(=z, y)q < &(x, y} holds. Choose g =1 and
&(x, y) = dlx, y) . Thus
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1/u
ofeh @ 10, <) < tor febtac, % D7) = [, % ]
pz1

8]

N it is immediately seen that

Using the second representation of S

s};(d(-, )Y ) = xy(a) .

Hence the above estimate reads

= max{l l’ * XN(x)l/u} M (T)(fs 8) >

€

Sy(fs 2)=fl)
and a proper choice of € for &x # xk yields the above estimate. Due to

the interpolation properties of S;f it remains true if & is one of the
interpolation points. O

REMARK 4.2, (i) 1In the example to follow we shall apply the first
assertion of Theorem L.1. Although the second one is often useful for

proving non-quantitative convergence theorems, the evaluation of TN
rather than of XN is of advantage for quantitative purposes. This
observation corresponds to the well known fact that, when investigating the

quantitative behavior of a sequence of positive linear operators Ln , the

Cauchy-Schwarz inequality should only be used if Ln[d(-, z); x} and
2 5 .
Ln(d(-, x)°, x) vanish of the same order.

(ii) Since the harmonic mean X and the geometric mean T of N
N N

positive numbers are related by XN = FN , the second estimate in Theorem

< a\f, g IfI d(x, xl)}

v
N

4.1 implies

Sy(fs 2)-fla)

Although the right hand side still shows that S, is an interpolation

operator, it seems to be hardly of advantage to use geometric means (see
also Remark L.l).

In order to illustrate our general estimates for Shepard operators, we
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again consider a univariate case, namely X = {0, 1] , d(z, y) = |z-y| ,

x. =1/n for 0=71 =<n ,and 1 <pu<=<2. The cases u > 2 were
7

investigated by Somorjai {Z22] (see also Szabados (24] for p =4 ). For
X =[-1, 1] and z = cos ((2k-1)/2n)w , 1 =k =n , see Hermann and

Vértesi [6].

THEOREM 4.3. Let X = [0, 1], d(z, y) = |z-y| , and s: be the
Shepard operator based on the points z, = i/m , 0= =n, and exponent

U with 1= p=2. Then forall f € clo, 1) and all n =1 we have

(<) sif‘-f = "ni - &(f, L/in(2n+2)) ,
X
(i%) S:f—f' < % - 3(f, l/(n+l)u-l} for 1<u<2,
X
(iii) |s2r-f] =19 - afr, i)
n x { > ondl

Proof. (Z) The second estimate in Theorem 4.1 shows that for all
x € [0, 1] we have

[s2r, -1t < alr, =)

A
o,
A

=

where )(N(:L') is the harmonic mean of the numbers |z-(Z/n)| , ©
that is,
-1
n
N |y 1/|x-(i/n)] , where N =n+1 .

=0
Here we may assume that & 1is none of the interpolation points since in
this case the above estimate holds anyway. In order to determine how fast
this expression tends to zero we have to find out how fast

= 1/ |z-(i/n)]

Lo

z

tends to infinity. Let i, be defined by io/n <z < [io+l)/n . Then
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7

n n
FREDNEVIERCRON I S I M VA CICE EC IR M VA (2N
i=0 i=0 i=i 4
i0+2 n—i0+l
=" . f L+ L g
n+l 1 x N x
n . .
= 1n((10+2]-(n—zo+l))
n
> o » 1n(2n+2) ,

which in turn shows that XN(x) < (n+l)/n * 1/1n(2n+2) . This gives (7).

(Z2) and (Z7Z1). For the case W > 1 we use the first inequality in

Theorem 4.1 and thus have to estimate the quantity

& -
Y |x—xZ| ] for x f{z., ..., xn}
1=0

T eyl | [le-s; 17

1=0

Let ZO be defined by |:c~-:x:Z | = min{|x—le : 0 =1 =<n} . Then the last
0

sum is less than or equal to

n
IR N b

L i=0
H
S£+[;—] D) lx—x.ll-u-!» Y |:z:—.vc.|l-u
o i<l ‘ > ’
20-1 n-ZO-l
< %-+ % T Rt ¥ (y+k)+7H
k=0 k=0

where either of the sums may be empty. For O = ZO =n the quantity in

accolades is less than or equal to

2-u
n/2} w1l ., 1, [nn1
2 - IR T R G- = 2 for 1 <y<2z,
k=0 2 + 1n(n+l) for p=2 .
This implies estimates (%) and (Zi%Z) of Theorem L.3. 0

REMARK 4.4. We follow up Remark 4.2 (ii). If in Theorem 4.3, with

U =1 for example , we would have used geometric means instead of harmonic
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ones, the parameter in the modulus of continuity would have become
1/N

, and, for an arbitrary choice of N =n + 1 points

n A
TT|e-2
1=0

1/N

.’Bo,

n
.» @, in the interval [0, 1] , [T lx—xl| respectively. The
1=0
quantity under the root is the modulus of a polynomial of degree =n + 1
with leading coefficient equal to one. As is well known, the sup norm of

such a polynomial cannot become arbitrarily small. For instance, on

(-1, 1] it is minimal for the CebysSev polynomials 1h+1 where
n n
| (m—xz) > 1/2" for all possible choices of Lys -ees &, even
1=0
[-l al]
” 1/N
in R . This means that l ( lx—xll cannot become arbitrarily small
1=0

uniformly in [0, 1] .
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