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STABILITY AND J-DEPTH OF EXPANSIONS

JEAN-CAMILLE BIRGET

In this paper I prove that if a semigroup S is stable then A^(S) and AJJ(S) (the Rhodes
expansions), and A-|-(S 4̂) (the iteration of those expansions) are also stable. I also prove
that if S is stable and has a J-depth function then these expansions also have a J-depth
functon. More generally, if X —•—• S is a «/*-surmorphism and if S is stable and has
a J-depth function then X has a J-depth function. All these results are needed for the
structure theory of semigroups which are stable and have a J-depth function.

The techniques used were originally developed by the author to prove that A-|-(Sjt)
is finite if S is finite (later Rhodes found a much more direct proof of that result).

1. INTRODUCTION

Stability and J-depth.

DEFINITION: A semigroup 5 is R-ttable if and only if no J-class of S contains
strict iZ-chains (equivalently, if x =j y in S and x ~^R y then a; =R y). In a similar
way one defines L-ttable. A semigroup is stable if it is both R- and L-stable.

DEFINITION: Let s be a element of a semigroup 5 . The J-depth of s is the
length of the longest strictly ascending ./-chain in 5 , starting with s. Equivalently,
J-depth(s) = max{n | 3.5i,... ,$n_i £ S, s <j $n_j • • • <j s j} . The J-depth of s
could be infinite.

A semigroup 5 is said to have a J-depth function if and only if for every s £ 5,
the J-depth of s is finite. (We will also say "the J-depth is defined in S").

For terms not defined in this paper see texts on algebraic semigroup theory, for
example ([8, 15, 10]).

An important propety of stable semigroups is that for them J = D and Rees'
theorem holds for every regular £>-class.
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42 J. Birget [2]

Importance of the notions of stability and J-depth.
Stability is a condition in Rees' theorem. The J-depth is needed for carrying out

decompositions of a semigroup (for example to prove global theorems in the style of
Krohn-Rhodes).

One can also view stability and existence of the J-depth function as a generalisation
of finiteness: many theorems about finite semigroups carry over nicely in this case.

Stability is a generalisation of torsion (every torsion semigroup is stable). Torsion
by itself is not a good enough generalisation of finite, being too much a local property.

Stability is a "locaf property, in the sense that if refers only to each /-class sepa-
rately. On the other hand, existence of the J-depth function is a purely global property
of the J-order (which ignores the inside of the /-classes).

Semigroups that are stable and have a J-depth function arise for example as limits
of finite semigroups (see [12]). This approach might be useful in the study of models
of computation, especially parallel computation.

Structure theorem for semigroups that are stable and have a J-depth func-
tion.

Such semigroups have a structure theorem (generalising the case of finite semi-
groups) which combines Rees' theorem and the Krohn-Rhodes theorem. In the finite
case that theorem was first stated and proved by Rhodes and Allen [14]. I proved a
stronger version, which generalises to semigroups that are stable and have a J-depth
function [3, 4]. The results of the present paper are used in [4].

Expansions.
Simply speaking, an expansion associates with every semigroup 5 a semigroup

Ez(S) such that 5 is a homomorphic image of Ex{S). A more precise definition can
be found in [6] or [1], but will not be needed here.

The Rhodes expansion A L ( S ) and AR(S) of a semigroup 5 are defined as follows
(we will give the definition of Ax,(5); that for AR(S) is similar):

As a set A£,(S) consists of all strict L-chains of elements of 5 (of the form sn <L
sn-i <L • • • <L «i > where n > 0 and sn,..., Si € S). We define the multiplication in
A L ( 5 ) by:

( s n < £ , • • • < £ , S!).(tk <L ik-1 <L •• <L h)

- ied(sntk ^ r , . . . < 3!<f c < x , tk <L < f c_j <L • • <L < I ) -

Here red(... ) is a reduction operation which transforms non-strict L-chains into strict
ones, according to the rules

red(... < L sc < L y <L . . . ) = red(. . . < n ) <L red(y <L . . . ) ,
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[3] Stability in semigroups 43

and
red(. . . < i i = i ! / ^ z < i . . . ) = red(. . . <x, x < L z ^L ... ).

In words: applying red to an ^£,-chain consists in reading the chain from right to left,

and in keeping those elements that appear just before a strict <L symbol. We also

assume that singleton chains are already reduced (that is for a € 5 : red(s) = (s)) .

It is easy to check that with this multiplication Ax,(5) is a semigroup. Moreover

the map (sn <L • • •) £ AL(S) *-* sn £ S is a homomorphism.

The Rhodes expansion AR(S) is denned similarly (replacing <£ by ~^R ; it is

convenient to write iZ-chains in the descending direction si >R • • • >R sn).

For more information on the Rhodes expansion and its usefulness see [9, vol. B],
[17, 11 , 1, 6].

If 5 is generated by a set ACS then one can consider the subsemigroup AL(SA)

of Ax,(5) generated by the set of singleton L-chains {(a) | a £ A}. Usually AL(SA) is
smaller that Ai(S), but in any case 5 is a homomorphic image of /\L(SA) (since A

generates all of 5 ) . The semigroup Ax,(5'>i) is called "cutdown to generators". Both
A£,(5) and AL(SA) were introduced by Rhodes.

One can apply Ai and AH repeatedly to a semigroup, producing An A^ (5) ,
Af, AL ( 5 ) , AR AL AR(S) etcetera. It is especially useful to keep always the same set
of generators A of 5 and always to cut down to those. Then, one has:

THEOREM 1. (Tilson, see [1]). For every semigroup 5 (generated by A C 5^:

AL AL {SA) ~ AL(SA)

(where ~ denotes isomorphism).

THEOREM 2. (Birget [1]). If S is a finite semigroup (generated by A C S) then

there exists n such that

n+l times n times

AH AL ARAL ... (SA) = ARALARAL... (SA)

that is applying more than n expansions to S (always cutting down to A) does not

produce different semigroups.

The semigroup
n times

AH AtAfiAj,..

(for that n) is denoted A+(SA).

Even if S is infinite one can define A+(Syi) as a projective limit of all the iterated

expansions At, AH • • • (cut down to a set A of generators of 5) .

One has:
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44 J. Birget [4]

THEOREM 3. (Birget [1]).- AL A+ (SA) ~ A+(SA) ~ AR A+ (SA).

The expansions AL(SA), ^R(SA), ^+(SA) and their homomorpliisms onto S have

interesting special properties. See [1, 11] for a more complete presentation; here we list

only what we need.

THEOREM 4. (Rhodes, see [1, 15]). Tiie map AL(SA) ->—> S (defined earlier) is

an R* -morphism.

By definition a surmorphism h: S —»—• T is R* if and only if for every regular

element t of T we have: h~1(t) is entirely included in one regular i?-class of 5 . (This
implies that the inverse image of a regular i2-class of T is equal to one regular i?-class
of 5.)

Similarly, one can define L* and J* morpliisms. The definition of J*-morphisms
is more complicated (since a /-class may contain regular and non-regular elements
simultaneously), h: S —>—> T is J* if and only if for every regular element t of
T, h~1(t) consists of regular elements only and is entirely contained in one J-class.
The map AR(SA) —>—* 5 is I* . Every L* - (or R* -) morphism is also J* and the
composition of J*-morphisms (respectively L* or R* ) is again J* (respectively L* or
R* ). So the map A+(SA) —>—* S is J*. See [1] and [15] for proofs and details. In this
paper J*-morphisms will be very important.

The main goal of this paper is to prove that: (1) If 5 is stable then the expanded
semigroups AL(SA), AR(SA), A+(SA) are also stable. (2) If 5 is stable and has a
J-depth function then Ai,(SA), AR(SA), A+(SA) also have J-depth functions. More
generally, if h: X —>—> 5 is a •/"-surmorphism and 5 is stable and has a J-depth
function, then X also has a J-depth function.

Remark. Recently Rhodes [13] found a much simpler proof of Theorem 2 above (by
observing that Brown's Lemma [7] can be applied to the morphism A+(SA) —•—» S

when S and A are finite).

2. STABILITY OF EXPANSIONS

THEOREM. If S is stable then the expanded semigroups AL(SA), AR(SA) and

A+(SA) are aiso stable (where A is a set of generators of S ).

Moreover: If S is a regular semigroup then S is stable if and only if A^(SA) is stable

(and the same is true with Ai(SA) replaced by AR(SA) or A + ( 5 A ) )•

There exist (non-regular) semigroups 5 for which AjJ(SA) or A^(5^) or A+(5,i)
is stable (and has a J-depth function), although 5 itselt is not stable. (An example is
given.)

Let us now prove the theorem.
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[5] Stability in semigroups 45

FACT 1. If S is L-stable (that is 3 <£, t and s =j t implies s =L t) then AL(SA)

is also L-stable.

PROOF: Let s, t e AL(SA) be such that s =j t and a <£, t. Then t is of

the form t — {tk </, tk-i <L • • • <L ti) • K we had ^ <£, t then ^ would be of the

form s — {sn <t, ••• <L sk <£, tk-i <L • • • <L t\) with ^k =L <fc (by definition of the

L-order). Hence sn <L tk.

Also, (by applying the morphism AL(SA) —>—* S to s = j < ): sn =J tk • But if 5

is L-stable we cannot have sn <i tk and sn = j i* . |

In a similar way one proves that AR(SA) is ^-stable.

The proof of the instability of /\L(SA) (if S is stable) is a little harder.

FACT 2. Let X be any semigroup. Then: X is R-stable if and only if for all

x, y € X: (x < H V &nd X^LV implies x ~R y).

That is in the definition of jR-stability " ="j can be replaced by " ̂ "L .

PROOF: Clearly, the left side of the "if and only if" implies the right side (since

* ^fi V a n d x ^L V implies x =j y).

Conversely, if 5 ^ ^ t and 3 =j t, then t — asb (for some a, b £ S U {1}), so

s ^ R t ^R as <£ s. Hence s ^R as, and s ^-i as. Therefore (since we assume the

right side of the "if and only if") s =R as . This implies (since s ^R t ^R as ): s =R t.

So X is .R-stable. |

FACT 3. If S is R-stable then AL(SA) is R-stable.

PROOF: By Fact 2 we only have to show that for all s_, t £ AL(SA): S_ 4:R t and

•L^L t implies s_ =R t.

If s_ ̂ R t we have s = t.u (for some it G AL(SA) U {1} )• Multiplying s > L t on

the right by u yields s_.u ~^i, i-u(= s), therefore (by induction) we have:

For all n ^ 0: s.un ^L s.

Let s — (s <L s»_i <L • • • <L si), u = (u <L Uk-i <L • • • <L « i ) • Then a.u"

= r e d ( s . t i n < £ , Si_!Un ^L . . . < L ^ u " ^ i u n . . . ^L u2 ^L u <L uk_x <L ••• <L « i )

^ L {s < L •S i—i < L • • • <L 3i) • This implies that the strict L-chain

red(un <jr, w"-1 <£, . . .<£, u2 <£, u) has length at most |^| (=length of the L-chain

s_), which is a number depending only on £ (not on n). Indeed a general property of

the i-order of AL(SA) is that x >/, y implies |xj ̂  | j / | .

It follows that in the L-chain u ^L «2 ^ L . . . $^L u"~1 ^L un ^L ... the ^L-

orders eventually all become =L . Precisely, there exists m (depending only on s ) such

that for all n > 0: u m + n =L um. Also, of course um ~^R um+n. Thus (by ^-stability

of 5) : um =H um+n . So we have:
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46 J. Birget [6]

There exists m > 0 such that for all n > 0: um+n belongs to a fixed /f-class of

5 .

The element v = um satisfies v =H V2 . It follows that the .ff-class of um — v

is a group. Therefore, since the map Ai(5>i) —»—» 5 is an i£*-morphism (that is the

inverse image of a regular i2-class of 5 is a regular /?-class of AL(SA)) we obtain:

There exists ro > 0 such that for all n > 0: « m + n belongs to a fixed il-class of

Let v = wm. Then y_ =R y_2, so for some y 6 AL(SA) U {1}: v = v?-y. Also

S. <^L l-lLm(= ±-v) i by what was proved earlier.

Finally we can show that t ^R S . Since £ ^i .s <£, s^.v. we have: t — x_-s.-v. (for

some x_ € ^L{SA) U {1} )• So t — x_.s_.v? .y -(since v_— v 2 y ) , hence t = x^.s_.v_.y_.y = t.y_.y

(since t = x..£.v.)- Now (since v^ = um = u.um~1 ) we obtain:

1 = t-y.-lLm~1y = l-2Lm~1y_ (since <.« = ±), which means: t ^ R ^. (Remark: if
m = 1 we simply drop um~1 ). |

Similarly one proves that AR(SA) is £-stable if 5 is £-stable.

From Facts 1 and 3 we obtain our theorem: if 5 is stable then AL(SA) is stable

(and similarly for /\R(SA) )•

Let us finally prove that A+(SA) is stable if 5 is stable. We will use the following
two properties (see [1]):

(1) A+(SA) is a finitary projective limit (of the semigroups A^ARAL .. .(SA))-

(2) If < denotes any Green relation (</, or <f l etcetra) then we have:

(•sn)ngM ^ (^n)ngN between elements in a finitary projective limit if and only if for all
n € N: sn < tn in 5 .

n times

Notice that for all n: AL AR AL • •• (SA) is stable if 5 is stable (by applying our
theorem for Ai and AR inductively). Now the stability of A+(SA) (if S is stable)
follows from the following fact:

FACT 4. A Unitary projective limit of stable semigroups is a stable semigroup.

PROOF: (for L-stability, for example). If ( s n ) n g N <£, (<n)neN and (sn)n€N = j
(<n)ng(»j in the projective limit then (by the property of the Green relations in finitary

projective limits, stated above): sn ^L tn and sn =j tn for all n 6 N. By the stability
of 5 this implies: sn =L tn for all n € N. Thus (again by the property of the Green
relations of finitary projective limits) we have (5n)neM =L Cn)a6M in the projective
limit. |

Let us now deal with the case of regular semigroups, where the converse of our
theorem is true:
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[7] Stability in semigroups 47

FACT 5. If S is a regular semigroup and AL(SA) (or AR(SA) or AL(SA)) is
stable, then S is stable.

PROOF: (assuming stability of A+(SA), for example). Suppose s,t £ 5 are such
that s =j t and s <£ t. Then there exists s, t € A+(SA) such that s (respectively <) is
the image of s_ (respectively t_) under A+(SA) —>—* S, and ± <£, t. Moreover since the
map A+(SA) —>—* ^ is J* and s and t are regular we also have ± =j t . If A+(SA)

is stable then this implies s =L t, hence (applying the morphism A+(SA) —•—• 5) :

£=£,£ . I

The same proof yields the slightly more general results:

PROPOSITION. If S is unstable with respect to regular elements (that is there exist

regular elements s, t 6 5 with s =j t, and s <L t or s <R t) then AL(SA), AR(SA)

and A+(SA) are unstable.

For example, if S contains the bicyclic semigroup then AL(SA), AR(SA) and
A+(SA) are unstable, and actually also contain the bicyclic semigroup, because the
morphism A+(5^) —>—• 5 is in fact D". See [1].

Examples of semigroups 5 which are unstable but for which A+(SA) is sta-
ble.

(By the above proposition these semigroups must be stable with respect to their
regular elements.)

Examples are found among the idempotent-free semigroups, for which the following
theorem holds:

THEOREM. (Rhodes and Birget, [11, 1]). 5 is idempotent-free if and only if
AL AR AL(SA) and AR AL AR(SA) are isomorphic to the free semigroup A+ .

The Baer-Levi semigroup (other examples can be found in [8, vol. 2]) is idempotent-
free and unstable, but its A+-expansion is the free semigroup, hence stable.

I suspect that if 5 is stable with respect to its regular elements then A+(SA) will
"usually" be stable. "Usually" means here that some additional natural condition on
5 will suffice. For example I would guess that if 5 is stable with respect to its regular
elements and 5 has the J-depth function then A+(SA) is stable (for a proof attempt
use the null-regular layers, and the Falling Lemma, etcetera of the next two sections.)
Notice that in Af, AR (SA) and AR AL (SA) the Falling Lemma holds, no matter what
S is; this is proved in [1].

Since we will not need these results at this point we leave the question here.

3. J-DEPTH FUNCTION OF EXPANSIONS

In this section we will prove:
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48 J. Birget [8]

MAIN THEOREM. If h: X —»—* S is a J*-surmorphism, and if S is stable and has

a J-depth function, then X has a J-depth function.

COROLLARY. If S is stable and has a J-depth function then the expansions

and A+(5^) also have J-depth functions.

We will give examples showing that if 5 is not stable or does not have a J-depth

function then AL(SA) (or AR(SA) or A + ( 5 A ) ) does not necessarily have a J-depth

function.

Recall that h: X —>—» 5 is a J* -morphism if and only if for every regular element

i £ 5 the set h~1(t) consists only of regular elements of X , and is entirely contained

in one J-class of X.

In order to prove this theorem I will use a technique that I introduced in [1]; part of

that technique will have to be generalised a little to work here. The technique consists

of (1) the Falling Lemma, (2) the Null-Regular Layers of a semigroup.

The Falling Lemma.
The following property (introduced in [1]) is very useful and holds in many semi-

groups:

DEFINITION: A semigroup S has the falling property if and only if for all x, y € S

with y < j x we have:

if y and x are both non-regular, and there is no regular element J-inbetween y

and x (that is no regular element r of S satisfies y < j r < j x), then xy <L y and
y% <R V (that is the products xy and yx fall below y).

In [1] I proved:

FACT 1. The following semigroups have the falling property:

(1) all finite semigroups;

(2) all semigroups that are finite-J-above (that is which satisfy: for all s £ S ,

the set {x G S | x > j s} is finite);

(3) all torsion semigroups;

(Remark: (l) is of course a special case of (2) and of (3))

(4) all semigroups of the form Ax, AR (5^) or A# A ,̂ ( 5 ^ ) , wiiere S is any

semigroup (that is for any semigroup whatsoever, appJving two Rhodes

expansions Ar.Ap or AgAr, yields a semigroup which has the falling

property).

Here we will generalise this result a little. The falling property is useful because it
gives important information about the non-regular elements of a semigroup.
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[9] Stability in semigroups 49

DEFINITION: Let 5 be an element of 5 . The left-stabiliser of 3, denoted 5 , , is
the subsemigroup {x 6 S | xs — 3}. The right-stabiliser of s is 3S = {x G S | sx = 3}.

DEFINITION: A semigroup X is torsion modulo regular if and only if every element
x of X has a power xn (for some n > 0 ) which is regular.

LEMMA 2. Suppose S is such that the left-stabiliser and the right-stabiliser of
every non-regular element is torsion modulo regular. Then S has the falling property.

PROOF: Suppose y, x € 5 with y ^ j x and no regular element if 5 is J-inbetween
y and x. Let us prove that xy <i y (the proof that yx < R y is similiar).

Assume on the contrary that xy =1 y. So for some u £ S U {1}: uxy — y, hence
ux belongs to the left-stabiliser of y. Then, by assumption, some power (ux)n is
regular. Now however y — (ux)ny < (ux)n ^ x which means that the regular element
(use)" is J-inbetween y and x. |

From tliis lemma we derive a more interesting fact:

FACT 3. If S is stable and has a J-depth function then S has the falhng property.

PROOF: Let us show that the left-stabiliser of any non-regular element of S is
torsion modulo regular (the proof for right-stabihsers is similar).

Let s be non-regular and suppose that xs = s. We must show that xn is regular,
for some n > 0. In 5 we have the J-chain x ~^j x2 ^ j . . . ^j-xk ^j ... ~^j xs = s.

Since 5 has a J-depth function we have: there exists m such that for all n > 0: xm =j

xm+n (otherwise there would be no bound on the length of ./-chains ascending from
s).

Next, by stability we have: there exists m such that for all n > 0: xm =H x m + n .
Let v = xm . Then v =H V2 . This implies that the .ff-class of zm = v is regular (indeed
if v =H v2 then v = av2 — v2b for some a, 6 € 5 U {1}, hence v2 = v • v = v2bav2 , so
v2 is regular). ' |

Remark. Examples of semigroups that do not have the falling property are the Baer-
Levi semigroup (see [8, vol. 2] for a definition), or the extension of the semigroup
{x, x2 = 0} by the natural integers.

Null and Regular Layers of a semigroup.

Let 5 be a semigroup that is stable and has a J-depth function. 5 can be parti-

tioned into null (=non-regular) and regular layers as follows (see [1] for more details):

The first regular layer is

Regl = {3 € 5 I 3 is regular, and x >j s =$> x is regular }.

The first null layer is

Nulll = {3 e S - Regl I 3 is null, and Va; 6 5 - Regl: x > j 3 = > x is null}.
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50 J. Birget [10]

More generally: Regfc = {s G S - Ui<fcNullt - Ui<fcRegt | a is regular, and Vr G

S — Ui<fcNulli — U«fcRegi: x >j s = > x is regular }.

NullJb = {s € 5 - Ui<fcNullz - Ui^fcRegi | s is null, and Vz G 5 - UfotNullt -

Ui^fcRegi: x>js = > x is null } .

It is clear that if 5 is stable and has a J-depth function then every element of S

belongs to one and only one Null or Regular layer.

Proof of the Main Theorem.

Let us restate the theorem in a slightly stronger form.

THEOREM. If h: X —*—> S is a J*-surmorphism and if S is stable and has a
J-depth function, then there exists an increasing function / : N — {0} —> N such that

for all x £ X :

J-depth(x) in X ^ /(J-depth(fc(sc)) in 5).

(That is, the J-depth of x is bounded by a function which depends only on h(x).)

This theorem is a generalisation of Proposition 4.7 of [1], which said: If h: X —>—>

5 is a J*-surmorphism and if 5 is finite, then X has a J-depth function; moreover

the Jrdepth function of X is bounded by a number depending only on the maximal

J-depth in 5 .

The proof of the generalised theorem is similiar to the proof of the old Proposition

4.7 (of [1]), and goes by induction on the null-regular layers.

Although we yet have to prove that (under the conditions of the theorem) X has

a J-depth function it is clear from the definition of J*-morphisms that the definitions

of Null and Regular layers make sense for X, and that the fc-th Null (respectively

Regular) layer of X equals h~1 of the fc-th Null (respectively Regular) layer of S. See

also Section 2.7 of [1]. More precisely we have the following two facts:

FACT. If h: X —•—> 5 is a J* -surmorphism and if S is stable then every J-class

of X consists either only of regular elements or only of non-regular elements.

PROOF: Suppose x, y G X are such that x =j y and suppose (by contradiction)
that x is regular and y is non-regular. Since ft. is a J*-surmorphism h(x) must be
regular and h(y) must be non-regular, but also h(x) =j h(y) in S. This is however
impossible in a stable semigroup. ^

FACT. If h: X —»—» 5 is a J*-surmorpiiism and if S is stable and iia.s a J-depth
function, then X has well-defined Null and Regular layers, that is, every element of X
belongs to one and only one Null or Regular layer. Moreover:

(1) Reg^fc = fc-^Reggfc), Regsfc - h{Re&xk), and
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(2) NuUA-fc = /i~1(NuUsifc)) Nulls*: = /i(Nulbfife).

(where Reg^A: denotes the k-th regular layer of X , etc.)

PROOF: The proof of Proposition 2.18 (of [1]) goes through without any
changes. |

Let us now go to the actual proof that X has a J-depth function. The proof uses
induction on null-regular layers (of S or X ).

For an element x of Regl of X we have J-depth^-(x) — J-depths(/i(x)), because
Regl of X and Regl of 5 have isomorphic J-orders (since ft is J*). So all ele-
ments of Regl of X have a well defined J-depth, and J-depth^(x) depends only on
J-deptli5(/i(x)). The function / of the theorem is the identity function for x € Reg^-1-

Assume now inductively that J-depth^ is defined on ReglU- • -UNull(t — l)L)Regt
of X and that in addition J-depthjY(x) is bounded by a function of J-depth5(/i(x)) on
these layers. More precisely, an increasing f: N — {0} —> N has been found such that
for all a; 6 Regl U • •• U Null(t - 1) U Regi of X: J-depthA-(sc) ^ /(J-depths(/i(x))).
We must prove that this inductive hypothesis can be extended to Nullt.

Let x £ Nullt of X and consider a <j-chain x <j xn_i < j • • • <j xo <J UP <J
••• <j Vi > where xn_i , . . .,x0 € Null^t and yp,...,yt 6 ReglU- • -UNull(t — l)URegi
of X. We will prove that the numbers p and n are bounded by a number depending
only on J-depths(/i(x)).

Proof for p: since yp £ Nullt, p is bounded by /(J-depths(/i(j/p))), by induction.
Moreover, J-depths(ft(t/p)) < J-depths(h(x)), and / is an increasing function, hence
p ^ /(J-depth5(/i(x))). This holds, independently of the element yp, as long as we
keep x fixed. Notice that we have not assumed that x G X has finite J-depth, but
only that h(x) £ S has finite J-depth.

Proof that n (= length of any ^j-chain in X ascending from x, and entirely
situated in Nullt of A") is bounded by a function of J-depths(/i(x)):

For the chain x <j x n _ i <j ••• <j XJ+1 <j Xj <j •• • <j x0 we m a y have

h(xj+1) <j h{xj) in S or h{xj+i) =j h{xj) in 5 . Certainly the case "h(xj+i) <j
h(xj)" cannot occur more than J-depth. s(h(x)) times, so to bound n we still have to
bound the length of chains in Nullt of 5 of the form xm <j xm-i <j • • • <j xo with
h(xm) =j /i(xm_i) =j • • • =j /i(x0) in 5 .

For each such x̂  <j Xk-i with h(xk) =j h(xk-i) w^ have Xfc = aifXk-ibk for
some a/fe, 6/t £ X U {1} , and we can write either:

(1) Zfc <L z*-i (here bk - 1), or
(2) xfc <R xfc_i (here ak = 1), or
(3) Xfc < R ttfc <t Xfc_i (where uk — akxk-i), or
(4) Xfc <z, ttfc <R Xfc_i (where ttfc = Xfc_i6fc).
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The cases Xk <L «fc =fl £fc-i and Xk <R Uk =L £fc-i can be ignored; if they occur we
simply replace xjt-i by uj. as representative of that J-class.

In any case we obtain the following L-chain and i2-chain:

«m«m-l • • • «1 ^Z, "ra-1 . . . «i < i ^ i O] ill 1 ,

b\ > « bxb2 ~^R > H h • • -bm-i ^R bi .. . 6 m _ i6 m in X.

Also Xfc = a j . . . .aiXo&i • • -bk for fc = 1 , . . . ,m.

CLAIM 1.

length of(xm <j ••• <jxi <j x 0 )

^ 1 + length of redi,(amam_! . . . aj ^L ^Lfl i)

+ length of redfl(&i ^ R > H &i .. .bm-\bm)

(where red^,, respectively redjj, denote tiien reductions as defined for the Rliodes

expansions A^(5) respectiveiy AR(S)).

PROOF OF CLAIM 1: We show that if xj, <i Xk-i or Xk ^R Uk <L Xk-i then

Ofcflfc-1 • • • o-i <L «fc-i • • • o-i • Indeed, suppose a.k<ik-\ • • • «i =L a*-i •• -ai • Multiply-

ing this L-equivalence on the right by Xqbi ... bk-i yields a,ka.k-i • • • a^x^bi ... &*_] =L

ak-i • • • aixobi ... bk-i • Therefore, if 6* = 1 (so Xk — Uk <L %k-i) we get Xk =L Xfc_i

(a contradiction), and otherwise (when x* < R Ufc <i Xk-i) we get Uk =L x t - i (again

a contradiction).

In a similiar way one proves that if xk <R x/t_i or Xk ^L uk <R ^fe-i then

6i . . . bk-i >R by ... bk-ibk •

The claim follows immediately from that. |

CLAIM 2. If h(xm) =j ••• =j h(xi) = j h(x0) belongs to NvilK of S then

{afc.. .ai | k = l , . . . , m } and {6i...6fc | k = l , . . . , m } belong to higher layers of

X (that is Regl U • • • U Null(t - 1) U Regi of X , excluding Nulli itself).

PROOF OF CLAIM 2: We will use the fact that 5 has the Falling Property. Sup-
pose, by contradiction, that ak-.-ii £ Nulljrt, hence (since h is J*) h(ak--.ai) 6
Nulls*'. Also h(xk) =j h(xobi .. .bk) ~j h(xe) belong to Null si • Now, since
/i(ofc . . . ai) and h(xobi ... bk) belong to Nullst there is no regular element ./-between
them, hence (Falling Property of 5 , by Fact 3): h(cik • • • a^) • h(xobi .. .bk) <j

h(xf,bi ... bk) = j /I(XQ). But this means h(xk) <j h(x0), contradicting our assumption
that /j(xfc) =j h(xo) for k ~ 1,... ,ni. P|

Since (by Claim 2) am ... ^ and 6i . . .6 m belong to Regl U • • • U Null(i - 1) U
Regt of X they have a well defined finite J-depth in X (by induction hypoth-
esis), and, moreover J-depth^-(am . . .aj) and J-depth^(b\ .. .bm) are bounded by
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/(J-depths(/ i(am . . . a i ) ) ) and /(J-depths(/i(6i .. .6m))) respectively. Since / is in-
creasing and since xm < j o m . . . aj and xm < j 6j . . . bm we have: J -depthx(am . . . a^
and J-depthY(&i ••-&m) are bounded by / (J-depths( / i (xm))) .

Let us now again consider an arbitrary < /-chain in Nullx i ascending from x : x <j

£n-i < / • • • < / *o • The number of places xi+i <j x{ in the chain where h(xi+i) <j

h(xi) is bounded by J-depths(ft.(x)), as remarked earlier. Also we proved that every
subchain of the form xm <J ••• <J xi with h(xm) =j ••• =j h(xi) in S has length
bounded by (in the notation of Claim 1 ) 1 + J-depth^(am . . . Oi) + J-depthjY(&i • • • f>m)

which is in turn bounded (as observed above) by 1 + /(J-depths(ft(a:m)))
+ / (J -depth s / i (z m )) . Since of course x ^j xm the length of the chain xm <j • • • <j £;
is bounded by 1 + 2 • f(3-depths(h(x))), which depends only on h(x). So, fi-
nally n + 1 (=length of chain x <j xn-\ <j ••• <j xo in NulK) is bounded by
J-depths/i(x) • (1 + 2 • /(J-depth5/i(a;))). This enables us then to extend / to NulH of
X.

Finally, to complete the inductive proof, assume that J-depth^ is defined on
Regl U • • • U Regt U Nullt, (and also that / is defined up to Nullt of X), and let
us show that J-depth^ is also defined on Reg(i + 1) on X (that is, extend / to the
next regular layer).

Again consider x £ Reg(i + 1) of X and a chain x <j xn_i <j ••• <j XQ <J

yp <J •• • <J yi, where x, a;n_i , . . . ,x0 £ ^gx(i + 1) and yP,... ,j/i £ Regl U • • • U
RegiUNulli of X . By the same reasoning as before p is bounded by f(J-depthsh(x)).

Bounding n here is easy: it follows immediately from the fact that h is J* and the
fact that x, x n _ i , . . . ,xo are regular (so the chain h(x) <j h{xn-i) <j ••• <j h(xo)

in 5 is also strict), hence n < J-depth. s(h(x)). |

Counterexamples .

The following examples show that the assumptions on S (namely that 5 is stable

and that it has a J-depth function) are not redundant.

Example of a semigroup 5 which has a J-depth function but is not stable and for

which /\L(SA) does not have a J-depth function.

Let 5 be an extension of a regular stable simple semigroup D by a Baer-Levi

semigroup B (see [8, vol. 2] for the definition of Baer-Levi semigroups); let B act as

the identity on D (that is, if s £ B and t £ D then st = ts = t). Then clearly S is

not stable but has a J-depth function.
Then /\L(SA) will be an extension of a regular stable simple semigroup D' by the

free semigroup f\LBAnB, since Rhodes proved [11] that ALBAHB is free. (Here A is
any set of generators of 5 , and An B is a set of generators of B .) Recall that in the
map AI(SA) —*—* S the inverse image of a regular J-class D is one regular J-class
D', and the null-regular layer is preserved. Clearly now the elements of D' C Ax,(Syi)
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have infinite J-depth.

The same reasoning works for A+(SA)-

Example of a semigroup 5 which is stable but does not have a J-depth function,

and for which AL(SA), AR(SA) and A+(5yi) do not have a J-depth function.

Let 5 be the extension of a regular stable simple semigroup D by a free semigroup

F, with identity action. Clearly 5 is stable but elements in D have infinite J-depth.

Then AL(SA) is again the extension of a regular simple semigroup D' by a free

semigroup F (since in the map AL(SA) —>—» S the inverse image of a regular J-class is

one regular J-class). But again, in AL(SA) the elements of D' have infinite J-depth.

The same reasoning works for AR(SA) and A+(5x).
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