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A FORMULA FOR EIGENPAIRS OF CERTAIN
SYMMETRIC TRIDIAGONAL MATRICES

BYEONG CHUN SHIN

A closed form expression is given for the eigenvalues and eigenvectors of a sym-
metric tridiagonal matrix of odd order whose diagonal elements are all equal and
whose superdiagonal elements alternate between the values c and d. An implicit
formula is given for the even order case.

1. INTRODUCTION

Let A = {(iij) be a symmetric tridiagonal matrix of order 2M or 2M + 1 where,
for all i,

(1.1) dij = b, O.2i-12i — C, O2i2i+1 = d

with cd ̂  0. When c — d, the matrix A is exactly a tridiagonal Toeplitz matrix whose
eigenvalues and eigenvectors are well known. Furthermore the eigenvalues for a general
Toeplitz matrix have been investigated widely. (For example, see [1, 2, 4, 5].) In this
paper we derive a relation for the eigenpairs of the matrix A defined in (1.1). Such a
matrix A occurs in a cubic collocation method designed for the numerical solution of a
partial differential equation (see [3]). For the case of order 1M + 1, we give an explicit
formula using a Fibonacci-type sequence. In the case of order 1M, we give an implicit
formula for the eigenpairs.

2. EIGENPAIRS

In this section using a Fibonacci-type sequence we present formulae for the eigen-
values and eigenvectors for the matrix A defined in (1.1). For convenience, define
T : C x C x N - > C b y

(2.1) T(a,(3,n) = an + an-10+-+al3n-1+Pn for a,0 £ C and n G N,
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where C is the set of all complex numbers and N is the set of all natural numbers.
Multiplying both sides in (2.1) by (a — /3), we have

(2.2) (a-/3)T(a,/3,n) = a"+1-^+1.

LEMMA 1 . Let a and f3 be nonzero complex numbers. Then the Fibonacci-type

sequence {an}%Li defined by

(2.3) a n + 2 - ( a + / ? ) a n + 1 + a0an = 0,

can be represented in terms of oi and a2 by

(2.4) an = T ( a , / ? , n - 2 ) a 2 - a/3T(a,/3,n -

PROOF: From (2.3), we have, for n = 1,2, • • • ,

fln+2 - aon+i = 0{an+i - «On), an+2 - /fon+i = "(fln+i — /3an).

Hence, inductively,

(2.5) an+1 - aan =/3"~1(a2 - aa^, a n + 1 - /3an = an~1(a2 - /?ai).

If a = /3, (2.5) yields for n = 1,2, • • • ,

(2.6) an = (n- l)an~2a2 - (n - 2)an-1a1 = T(a,/3,n - 2)a2 - a(3T(a,/3,n - 3)ai.

If a ^ 0, from (2.5) we have

Hence for n — 1,2, • • • , we have

(2.7) an=r(a,/3,n-2)a2-a/?T(a,/?,n-3)ai. []

We now give the result for the odd order case. In this case we have an explicit
formula for the eigenpairs for the matrix A defined in (1.1).

THEOREM 1 . For the matrix A of order 2M + 1 defined in (1.1), the eigenvalues

A are given by

(2.8a) A = 6,

(2.8b) A = b ± J c 2 + d2 + 2cd cos ( j j p ~ A , k = l , 2 , - - , M
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and the corresponding eigenvectors x = (xi , • • • , 12M+1) of A are given by

( 2 . 9 ) z 2 n - i = (-^Y . n = l , 2 , - - , M + 1 , x 2 n = 0 , n = l , 2 , - - , M

a n d

(2.10a) *2n-! = ~c sin ( ^ j ^ ) + sin (jj^) , » = 1,2,- ,M +1,

(2.10b) s2 n = ^ 1 s i n

respectiveiy.

PROOF: Let A be an eigenvalue of A and let x = (xi,X2,--- ,a52M+i) be the
corresponding eigenvector of A. Then we have

(2.11a) bxi + cxi = \xi,

(2.11b) dx2M + bx2M+i = ^2M+i,

(2.11c) cx2n-i + bx2n + dx2n+i - \x2n,

(2.lid) dx2n + bx2n+i + cx2n+2 = Aa;2n+i.

First, by taking A = b in (2.11), we see that 6 is an eigenvalue of A and the corre-

sponding eigenvector x is given by

/ c \ n

x2n+i = ^ - j j , n = 0 , l , - - - , M and x2n - 0, n = 1,2,-• • , M .

Hence we have (2.8a) and (2.9).

Now suppose that A ̂  b. From (2.11c, d), we have

(2.12)

f^X-bf-c2-^

and

(2.13)

j I x2n+i +x2n-i -0, n = 1,2,-•• ,M - 1
cd I

x2n+2 - I —j I x2n + x2n-2 =0, n = 3,4, • • • , M - 1.
V cd I

Choose a and f3 such that

(2.14) a + / ? = ( A 6 ) c ' * and o/3 = 1.
ca
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Then (2.14) implies

(2.15) A = b ± Vc 2 + d2 + cd (a + 3).

By (2.11a) we have

(2-16) 32= I l l i l Xl.

By (2.11c), (2.14) and (2.16) we have

(2.17) xs =

Now, from (2.11d), (2.13), (2.16) and (2.17) we have

pus) .. . [(»-»»« + /»>] „ .

By applying Lemma 1 to (2.12) and (2.13) respectively and using that a/3 = 1, we have

(2.19) x2n_1=T(a,P,n-2)x3-T(a,p,n-3)x1, n = 1,2, • • • ,M + 1

and

(2.20) x2n = T(a,/3,n-2)xA-T(a,f3,n-Z)x2, n = 1,2, • • • ,M.

Then by substituting (2.16)-(2.18) into (2.19) and (2.20), we have

(2.21) x2n^ = pT(a , / 3 ,n -2 ) + T(a,/3,n-l)|a! l , n = 1,2, • • • ,M + 1

and

(2.22) x2n = ^—T{a,p,n
c

By applying (2.21) and (2.22) to (2.11b), we have T(a,P,M) = 0 . If a = 8, then we
have

T{a,/3, M) = T(a, a,M) = (M + l)aM = 0,

which leads to a contradiction. Therefore a ^ 3. Hence on multipling both sides in
T(a,/3,M) = 0 by ( a - / 3 ) , we have

(2.23) a M + 1 - / ? M + 1 = (a - P)T(a, 8,M) = 0,
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so that a M + 1 = / 3 M + 1 . This implies

(2-24) \a\ = \/3\.

Since a/3 = 1 and a ^ /?, we can choose

(2.25) a = eiB, ^ = e~ie, 0 < 6 < n.

Then, from (2.23) and (2.25), we have

(2.26) a + /3 = 2cos6 and sin (M + 1)9 = 0.

The second equation in (2.26) yields

(2.27) 0 = ^ — J , 1 < fc ^ M.

Therefore, by substituting (2.25)-(2.27) in (2.15), (2.21) and (2.22), we have the con-

clusions (2.8b) and (2.10). D

By applying the ideas employed in Theorem 1, we can get an implicit formula for
the eigenpairs of a matrix A of order 2M.

THEOREM 2 . For the matrix A of order 2M defined in (1.1), the eigenvalues A
are given by

(2.28) \ = b± </(? +d* + {a + a-1) cd,

and the corresponding eigenvectors x = (xj, • • • ,Z2Af) of A are given by

(2.29a)

x2n-i = - T(a,a-1 ,n -2) +T(a,a~1 ,n ~ 1), n = l,2,-- , M ,
c

(2.29b)

x2n = T(a,a"1,n - l), n = 1,2,- • • ,M,

where a satisfies the equation:

(2.30) c T(a, a'1, M) + d T(a, a'1, M - l) = 0.

PROOF: Let A be an eigenvalue of A and let x = (3:1,2:2, • • • ,2:2/11)* be the corre-
sponding eigenvector of A. Then we have

(2.31a) fexi +ca;2 = Xxi,

(2.31b) dx2M-i + bx2M =

(2.31c) cx2n-i + bi2n + dx2n+i =

(2.31d) dx2n + bx2n+i + cx2n+2 =
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First, if we take A = 6 in (2.31), then we can easily check that xn = 0 for n =

1,2, ••• ,2M. Therefore there is no eigenvector for A, and hence A ̂  b.

Now suppose that A ̂  b. Similarly as in Theorem 1, we have the eigenvalues A

such that

(2.32) {\-bf =c2+d? + (a + <x-1)cd

and the corresponding eigenvectors x = (xi, • • • , X2M)* are given by

(2.33) « 2 n _ 1 = F T ( a J o - 1
> n - 2 ) + T ( o , o - 1

> n - l ) | * ! , n = 1,2,-•- ,Jlf

and

(2.34) z2n = ̂ -T(a,a-1,n-l)xu n = 1,2,-• • ,M.

Now applying (2.33) and (2.34) to (2.31b), we have

(2.35) cT(a,a-\M) + dT(a,a~1,M-l) =0.

Therefore (2.33) and (2.34) with (2.35) complete (2.29) and (2.30). D
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