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The boundary effect: Perceived post hoc accuracy of prediction

intervals
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Abstract

Predictions of magnitudes (costs, durations, environmental events) are often given as uncertainty intervals (ranges). When

are such forecasts judged to be correct? We report results of four experiments showing that forecasted ranges of expected

natural events (floods and volcanic eruptions) are perceived as accurate when an observed magnitude falls inside or at the

boundary of the range, with little regard to its position relative to the “most likely” (central) estimate. All outcomes that fell

inside a wide interval were perceived as equally well captured by the forecast, whereas identical outcomes falling outside a

narrow range were deemed to be incorrectly predicted, in proportion to the magnitude of deviation. In these studies, ranges

function as categories, with boundaries distinguishing between right or wrong predictions, even for outcome distributions

that are acknowledged as continuous, and for boundaries that are arbitrarily defined (for instance, when the narrow prediction

interval is defined as capturing 50 percent and the wide 90 percent of all potential outcomes). However, the boundary effect

is affected by label. When the upper limit of a range is described as a value that “can” occur (Experiment 5), outcomes both

below and beyond this value were regarded as consistent with the forecast.
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1 Introduction

Most prediction tasks are surrounded by uncertainty. Degree

of uncertainty can be incorporated in forecasts in various

ways: by verbal hedges or phrases conveying likelihood (it is

likely that the sea level will increase by 60 cm), by numerical

probabilities (there is a 70% chance of such an increase), or

by prediction intervals bounded by maximum and minimum

values (the sea level will increase by 50–80 cm). Such ranges

are often combined with probabilities to form, for instance,

95% uncertainty intervals, or can be accompanied by figures

showing the entire distribution (Dieckman, Peters, Gregory

& Tusler, 2012).

A vast research literature in judgmental forecasting has

scrutinized the accuracy of such forecasts, what they are

intended to mean, and how they are perceived by recipi-

ents. For instance, verbal phrases are vague in terms of

the probabilities they convey (Budescu & Wallsten, 1995),

but unequivocal in selectively directing the listener’s atten-

tion towards the occurrence or non-occurrence of the target

event, in other words they are “directional” and can be clas-

sified as either positive or negative (Honda & Yamagishi,

2017; Teigen & Brun, 1995). Numeric probabilities are of-
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ten overestimated (Moore & Healy, 2008; Riege & Teigen,

2017), whereas uncertainty intervals are typically too nar-

row (Moore, Tenney & Haran, 2016; Teigen & Jørgensen,

2005). Much less is known about how forecasts are evalu-

ated after the actual outcomes have occurred. For instance,

a meteorologist says that El Niño has “a 60% chance” of

occurring later in the season. How correct is this forecast if

El Niño actually occurs? Perhaps we feel that the forecaster

was on the right track, by suggesting a chance above even,

but a bit too low. Another forecaster in the same situation

might prefer to say that El Niño has “at least a 50% chance”

of occurring. Even though this is a less precise forecast,

it implies a positive expectation (perhaps suggesting an in-

creasing trend) and could be considered by some listeners as

better than an exact 60% estimate (Hohle & Teigen, 2018).

A third forecaster who says, more cautiously, that El Niño

is “not certain” to occur, may also have a 60% probability

in mind, but appears less accurate than the other two be-

cause of the negative directionality inherent in the phrase

“not certain” (Teigen, 1988).

The research reported in the present paper examines how

people evaluate interval (range) predictions, and specifically

the role of the lower and upper bounds of such intervals for

post hoc accuracy judgments. We assume that an interval

forecast of tomorrow’s temperature of 11–15 ◦C will be re-

garded as more accurate if the temperature reaches 14 or 15
◦C than if it climbs to 17 or 19 ◦C. Does it become even

more accurate if the temperature stays closer to the center of

the uncertainty interval? Is, for instance, a temperature of

13 or 14 ◦C more accurately predicted by the interval than
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one of 15 ◦C? Will all deviations from the expected, “most

likely” estimate be considered wrong in proportion to the

magnitude of this deviation, or are deviations falling outside

of the interval judged as qualitatively different from devia-

tions falling inside he interval? If such is the case (as we

think it is), will a forecaster be perceived as more correct by

simply widening the prediction interval to 8–17 ◦C?

Wide range estimates might be less informative (Yaniv &

Foster, 1995) and reveal more uncertainty (Løhre & Teigen,

2017) than narrow ranges at the time when they are issued,

but may in retrospect appear as better forecasts, by their abil-

ity to account for a large variety of outcomes. All values

inside an uncertainty interval are in a sense anticipated, by

belonging to the set of predicted outcomes. Dieckman, Pe-

ters and Gregory (2015) found that some people regard all al-

ternatives inside an uncertainty interval as equally probable.

This would reinforce a tendency to think that even outcomes

near the interval bounds have been “accurately” predicted,

on par with other outcomes in the distribution. But, even

without assumptions of a flat distribution, we suspect that

outcomes within the uncertainty intervals (including those at

the upper and lower interval bounds) will be viewed as ac-

curately predicted, in contrast to outcomes falling above the

upper limit or below the lower limit of an estimated range.

We explore in the present studies the nature and extent of

this boundary effect in range forecasts. The studies were

designed to test the following hypotheses:

1. Outcomes inside a specified uncertainty interval will be

regarded as having been accurately predicted, whereas

outcomes outside this interval indicate that the predic-

tions were wrong, even in the case of probabilistic dis-

tributions where outside outcomes are expected with a

predefined frequency. We do not assume that all “cor-

rect” predictions are perceived as equally accurate, or

that those outside the range are equally wrong, but we

expect a distinct drop in accuracy ratings for outcomes

exceeding the range boundaries.

2. The perceived accuracy of interval estimates differs

from the accuracy of point estimates (not surrounded

by an interval), by providing different referents for an

obtained outcome. Point estimates of most likely value

are judged as accurate or inaccurate simply by their

closeness or distance to the actual outcome, whereas

interval estimates are judged by the position of the ac-

tual outcome relative to the interval bounds (with less

regard to its distance from the most likely value).

It follows from these hypotheses that interval width and

specifically the placement of upper and lower bound esti-

mates are crucial in post hoc assessment of range forecasts.

Upper and lower bound estimates are at the same time more

elastic than the “expected” (central) value in a hypothetical

or observed distribution of outcomes. Upper bounds can be

arbitrarily defined as p = .85, p = .95, or p = .99 in a cumu-

lative distribution, with lower bounds correspondingly at p

= .15, p = .05, or p = .01, depending on model preference.

However, the (arbitrary) choice of bounds may have impor-

tant consequences for whether a forecast will be perceived

as adequate (a hit) or inadequate (a miss).

The present studies were not designed to examine peo-

ple’s understandings or misunderstandings of the nature of

confidence intervals (CI), as this would require multiple ob-

servations or assumptions about a whole distribution of out-

comes, and assessments and/or interpretations of the proba-

bilities associated with quantiles within such intervals. Sev-

eral studies have shown that misinterpretations of CIs are

common (Kalinowski, Lai & Cumming, 2018). We ask a

simpler question, namely whether range forecasts are per-

ceived as accurate or not in retrospect, depending on the

outcome of a single event. This question does not have a

normative answer. However, we can compare participants’

answers in different conditions to uncover determinants of

their evaluations and whether their answers are consistent or

not.

In the following, we report five experiments where we

asked people to rate the perceived accuracy of forecasts with

wide vs. narrow uncertainty intervals for various natural

events (volcanic eruptions and floods). In Experiment 1,

the probabilities defining the prediction intervals were not

specified, in Experiment 2 the “narrow” interval was defined

as covering 50% of the distribution, whereas the “wide”

interval was said to include 90%, thus both intervals were

compatible with the same basic distribution of outcomes. In

Experiment 1 and 2 the narrow and the wide intervals were

centred around identical midpoints, whereas in Experiment

3 the distributions were centred around different expected

values. In this case, the expected value of the narrow in-

terval came closer to the actual outcome, which at the same

time exceeded this interval’s boundary values. This allowed

us to ask what is more important for accuracy judgments:

deviance of outcome from expected value or its position in-

side vs. outside the boundaries of the uncertainty interval.

In Experiment 4 we compared point and interval estimates

for the whole range of outcomes, including more and less

central values. Participants in this experiment also assessed

expertise and trust in the forecasters, in addition to accuracy

judgments. Finally, Experiment 5 examined the effects of

asking participants to name an outcome that “can” (could)

occur. Can has been identified as commonly used to denote

the top value in a distribution (Teigen & Filkuková, 2013;

Teigen, Filkuková & Hohle, 2018). At the same time, can is a

phrase without boundary connotations, which (unlike “max-

imum”) does not exclude even higher values. This could

lead to an attenuation of the boundary effect.
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2 Experiment 1

We asked in this study how people judge predictions of out-

comes that fall inside or outside of a prediction interval.

We hypothesized that judged prediction accuracy depends

on how the actual outcome is placed relative to the inter-

val bound, rather than to its distance from the most expected

(most likely) point estimate. Thus, a wide and a narrow inter-

val with the same midpoint might lead to different accuracy

assessment. A peripheral outcome might be considered cor-

rectly predicted by the wide interval, but incorrect if falling

outside of the narrow interval. Narrow prediction intervals

are on the other hand considered more informative than wide

intervals and are often regarded as a sign of certainty and ex-

pertise (Løhre & Teigen, 2017). By explicitly providing most

likely estimates (interval midpoints), the difference between

wide and narrow intervals might be reduced.

2.1 Method

Participants were 251 US residents recruited from Ama-

zon’s Mechanical Turk (Mturk), of which one was excluded

after failing the attention check (115 females, 133 males, 2

others). The mean age was 36.1 (SD = 19.7), and 80.8% re-

ported to have at least some college education. Participants

were assigned to one of six conditions, in a 2 x 3 design,

the factors being predicted interval midpoint (specified vs.

unspecified) and actual extent of lava flow (45 vs. 55 vs. 65

km). They received the geological predictions question after

an unrelated judgment task.

Material. All participants read a scenario about a geo-

logical prediction, adapted from Jenkins, Harris, and Lark

(2018). Two experts, Geologist A and B, had predicted the

extent of lava flow following a volcanic eruption. Geologist

A provided a narrow prediction interval, while B gave a wide

interval. In the midpoint condition, the text read:

A volcanic mountain, Mount Ablon, has a history

of explosive eruptions forming large lava flows.

An eruption within the next few months has been

predicted. Two geologists, A and B, have been

called upon to predict the extension of the lava

flows for this eruption, given the volcano’s situa-

tion and recent scientific observations. Geologist

A predicts that the lava flow will most likely extend

30 km, with a minimum of 25 km to a maximum

of 35 km. Geologist B predicts that the lava flow

will most likely extend 30 km, with a minimum of

5 km to a maximum of 55 km.

In the no midpoint condition the most likely estimate (30 km)

was not specified. Participants received two questions about

their views on the reliability of narrow vs. wide forecasts:

• Which geologist conveys more certainty in his predic-

tion, A or B?
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Figure 1: Mean correctness ratings (1–7) of predictions from

experts with narrow (A: 25–35 km) vs. wide (B: 15–55 km)

uncertainty intervals, Experiment 1. (Error bars represent ±1

SEM.)

• Which geologist do you think makes use of the most

advanced prediction models, A or B?

Post hoc accuracy. On a new page, participants read:

“Three months later, an eruption took place. It turns out that

the lava flow actually extended [45 km] [55 km] [65 km].

How correct were the geologists?” The three distances were

chosen to be outside of the interval (above the max value)

predicted by Geologist A, and, in three different conditions,

lower than the max value, at the max value, and above the

max value predicted by Geologist B. The participants rated

the predictions of both geologists on a scale ranging from 1

(completely wrong) to 7 (completely correct).

2.2 Results

A large majority found Geologist A, giving a narrow inter-

val, more certain (88.0%) and making use of more advanced

prediction models (87.2%) than Geologist B. Providing an

interval midpoint did not affect these judgments. Partici-

pants with midpoints judged A as more certain (87.3%) and

more advanced (84.9%) than B; corresponding percentages

were 88.7% and 89.5% for A in the conditions without mid-

points. Thus, a general preference for narrow intervals was

confirmed, and specifying midpoints did not make a differ-

ence.

Post hoc accuracy ratings for the geologists’ predictions

are displayed in Figure 1. As there were no significant

effects of midpoint, data from the midpoint and no midpoint

conditions were pooled. It appears that perceived correctness
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depended on whether the actual value exceeded the predicted

maximum or not. Geologist A with the narrow uncertainty

interval, who had in all conditions underestimated the extent

of lava flow, was clearly judged more wrong than Geologist

B.

Moreover, the correctness of Geologist A’s predictions

depended on outcome, as expected, F(2, 247) = 11.42, p

< .001. Bonferroni post hoc analyses indicated that A’s

predictions of lava flow were more wrong in the 55 km and

65 km conditions than in the 45 km, whereas the 55 km and

65 km conditions did not differ from each other.

The judgments of Geologist B’s predictions were also

affected by outcome. A Welch ANOVA1 yielded a significant

effect of outcome on judged correctness, F(2, 153.16) =

25.79, p < .001. This geologist’s predictions were deemed

to be more correct for predictions inside than outside of his

uncertainty interval. Bonferroni post hoc tests revealed that

both inside predictions were significantly more correct than

the prediction of a lava flow of 65 km (ps < .001), but not

significantly different from each other.

2.3 Discussion

Both experts in the volcano vignette predicted a lava flow

of 30 km as the most likely (middle) value, whereas the

actual extent turned out to be much higher. This favored

the geologist with a wide uncertainty interval, whose pre-

dictions were judged to be quite correct, as long as they did

not exceed his maximum estimate. Interestingly, they were

equally (or more) correct for a flow at the maximum value

as for one closer to the center of the interval. Correctness

ratings appeared to be based mainly on the relationship be-

tween outcome and maximum predictions. Predictions were

correct when the outcome fell within the interval, regard-

less of the interval size, and wrong when they exceeded the

upper limit. Interestingly, outcome magnitude seemed only

to affect correctness judgments for outcomes outside of the

confidence interval.

The vignette in Experiment 1 did not explain why one

expert had produced a smaller uncertainty interval than the

other. Participants seemed to believe that the expert with

narrow interval was more certain and had more advanced

prediction models to his disposal. It could, however, be the

case that this expert simply did not try to capture all possible

values and had produced for instance a 50% interval rather

than a 90% interval. In this case there did not have to be a

conflict between the two experts. Would outcomes falling

outside the 50% interval (but inside a 90% interval) still be

regarded as more correctly predicted by an expert with wide

intervals? This issue was explored in Experiment 2.

1Levene’s test was significant, F(2,247) = 3.22, p < .041

3 Experiment 2

Wide prediction intervals allow a forecaster to be more cer-

tain about having captured all possible outcomes in a given

prediction task. But people often think otherwise. Løhre and

Teigen (2017) found that a large proportion of respondents

believed that wide intervals were associated with low cer-

tainty, and vice versa, that low-probability prediction inter-

vals would be wider than high-probability intervals. In these

studies, participants received specific intervals and filled in

an appropriate probability value, or they received specific

probabilities and indicated a corresponding prediction inter-

val.

Participants in Experiment 2 received wide and narrow

interval forecasts, as in Experiment 1, but the forecasts were

this time accompanied by numerical probabilities (confi-

dence levels) showing that the narrow interval was held with

low confidence (p = 50%) whereas the wide interval was

associated with high confidence (p = 90%). This was ex-

pected to make the narrow interval forecasts less certain,

and perhaps also less reliable than in Experiment 1, as cer-

tainty can now be inferred from the probability estimates

rather than from interval ranges. Note that this makes the

two forecasts compatible, since a narrow 50% interval can be

converted into a 90% interval by moving the interval bound-

aries outwards. However, if correctness is determined by

interval bounds, we expect that expert A with a narrow inter-

val will be perceived as more mistaken (albeit less certain)

than expert B with a wide interval, if the actual outcome falls

outside of A’s, but inside of B’s interval boundaries. We fur-

ther expect that all outcomes inside the uncertainty interval

would be judged as correct, but that outcomes outside the

uncertainty interval might differ in correctness depending

upon their distance to the interval boundaries. To include

both tails of the distribution, this study included outcomes

falling below the lower interval bound in addition to those

that exceeded the upper bound.

3.1 Method

Participants were US residents recruited from Mturk. After

excluding six respondents who failed an attention check or

spent less than 90 seconds on the full survey, 248 participants

(120 female, 128 male) remained for analysis. The mean age

was 25.3 years (SD = 9.8) and the majority (81.6%) of the

participants reported having at least some college education.

Participants were assigned to one of four conditions and

received the flood predictions question after an unrelated

judgment task.

All participants read the following vignette about a flood

prediction, borrowed from Jenkins, Harris and Lark (2018).

The Wayston flood plain has a history of flooding

due to its flat terrain and proximity to the east side

of the river Wayston. A flood within the next few
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Figure 2: Mean correctness ratings (1–7) of predictions from

experts with narrow vs. wide uncertainty intervals, Experi-

ment 2. (Error bars represent ±1 SEM.)

months has been predicted. Two geologists, A and

B have been called upon to predict the distance

extended by floodwater for this flood, given the

river’s situation and recent scientific observations.

Geologist A predicts with 50% probability that the

floodwater will extend a distance of 4–7 km from

the present east side of the river Wayston.

Geologist B predicts with 90% probability that the

floodwater will extend a distance of 2–9 km from

the present east side of the river Wayston.

• Which geologist conveys more certainty in

his prediction?

• Which geologist do you think makes use of

the most advanced prediction models?

Three months later a flood took place. It turned out

that the floodwater actually extended [Condition 1:

8 km] [Condition 2: 9 km] [Condition 3: 3 km]

[Condition 4: 2 km].

Participants then rated the predictions of both geologists on

a scale ranging from 1: completely wrong, to 7: completely

correct, as in Experiment 1.

Thus, in the High conditions (1 and 2), the extent of flood-

water was higher than the midpoints of expected distribu-

tions, and in the two Low conditions (3 and 4) it was lower.

Moreover, the deviation from expected level was either small

or large, forming a 2 x 2 design with direction and magnitude

of deviation as the two factors. The distances were chosen

to be outside of the interval (above the maximum or below

the minimum value) predicted by Geologist A, and inside

the interval or at the interval bounds predicted by Geologist

B.

3.2 Results

A large majority of participants (86.6%) found Geologist

B with the wide interval to be more certain, as this expert

reported a much higher confidence in his interval than did

Geologist A. They were less in agreement about who used

the most advanced prediction model, but a majority (58.3%)

favored B in this respect, as well.

The wide predictions of Geologist B were judged to be

quite correct in all conditions (overall M = 6.06), regardless

of direction and magnitude of deviation, as shown in Figure

2. In contrast, the narrow forecasts of Geologist A were gen-

erally considered wrong (overall M = 3.17). A 2 x 2 ANOVA

of Geologist A’s ratings revealed no effect of direction (low,

high), F(1, 244) = 2.18, p = .14, but a significant effect of

magnitude of deviation F(1, 244) = 22.54, p < .001, indi-

cating that small misses are judged less harshly than large

misses for outcomes outside of the uncertainty interval.

3.3 Discussion

The results replicated findings from Experiment 1, showing

that outcomes inside a wide uncertainty interval are judged

to be correct regardless of how much they deviate from the

central and presumably most likely value, whereas outcomes

above or below the interval bounds are viewed as incorrect,

even in the case of a 50% uncertainty interval that does

not claim to capture more than the middle two quartiles of

the distribution. In the present experiment, the narrow in-

terval was accordingly compatible with the wide interval,

which was intended to capture 90% of the outcome dis-

tribution. This information was not simply neglected, as

it determined the participants’ views about who was more

certain, which changed from the narrow forecaster in Ex-

periment 1 to the wide but high probability forecaster in

the present vignette. Explicit information about probability

(confidence level) might have helped participants to under-

stand the arbitrary nature of upper and lower bounds, which

can be placed far apart or closely together depending upon

the chosen level. Yet their ratings of correctness seemed

to depend exclusively on outcomes falling inside or outside

arbitrarily selected interval bounds, demonstrating a strong

boundary effect.

4 Experiment 3

The wide and narrow uncertainty intervals used in the pre-

ceding studies were centered around the same midpoint,
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which was assumed to be both forecasters’ most likely es-

timate. (In Experiment 1 this was stated explicitly in two

conditions.) The results indicated that interval bounds were

crucial for perceived correctness of the forecasts, imply-

ing that distance to most likely estimate is less important.

However, a test of this assumption requires a comparison

of forecasts with different midpoints. Experiment 3 was

undertaken to compare a wide range forecast that captures

the target outcome, with a narrower forecast that misses the

outcome value, but is better centered. In addition, wide

and narrow forecasts were given to different participants in

a between-subjects design (as opposed to the two previous

studies which allowed participants to directly compare wide

and narrow forecasts in a within-subjects design). We also

included in this study a test of numeracy and a cognitive

reflection test to test the possibility of superficial responses

from participants who did not heed or did not understand the

probabilistic information.

4.1 Method

Participants were 170 first-year psychology students at two

different Norwegian universities, 74.1% female, mean age

22.9 years (SD = 8.1), who participated on a voluntary ba-

sis or in exchange for course credits. They performed the

correctness judgments as the first of two judgmental tasks

in an online questionnaire (powered by Qualtrics). The

third part of the questionnaire contained a test of numer-

acy (Cokely, Galesic, Schulz, Ghazal & Garcia-Retomero,

2012; Schwartz, Woloshin, Black & Welch, 1997) and the

Cognitive Reflection Test (Frederick, 2005). This part was

completed by only 130 participants.

Participants were randomly assigned to four conditions,

according to a 2 x 2 design, with width of interval (wide vs.

narrow) and confidence level (specified vs. unspecified) as

the two between-subjects factors. The true outcome value

was captured by the wide intervals, but not by the narrow

intervals. In addition, all intervals contained an expected

(most likely) point prediction, which came closer to the true

outcome in the narrow than in the wide interval. All partic-

ipants received both the Flooding and the Volcano scenario,

presented in randomized order.

1. Flooding Scenario, as in Experiment 2

(a) Wide interval condition: A geologist predicts

flood water from the river Wayston extending min-

imum 2 km and maximum 8 km, with 5 km as the

most likely value.

(b) Narrow interval condition: A geologist predicts

flood water extending minimum 5 km and maxi-

mum 7 km, with 6 km as the most likely value.

For half of the participants, levels of confidence were

not specified. For the other half the wide interval was

Flooding Volcano

Narrow, 70% confidence

Narrow, unspecified confidence

Wide, 90% confidence

Wide, unspecified confidence
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Figure 3: Mean correctness ratings (1-7) of predictions from

experts with narrow vs. wide uncertainty intervals for two sce-

narios, Experiment 3. (Error bars represent ±1 SEM.)

described as 90% likely and the narrow interval as 70%

likely. All participants were told that two months later,

a flood took place. It turned out that the flood water

actually extended 8 km. How correct was the geologist?

(1-7)

2. Volcano Scenario, as in Experiment 1.

(a) Wide interval condition: A geologist predicts a

volcanic eruption with the lava flow extending

minimum 10 km and maximum 50 km, with 25

km as the most likely value.

(a) Narrow interval condition: A geologist predicts

a volcanic eruption with the lava flow extending

minimum 20 km and maximum 40 km, with 35

km as the most likely value.

Again, for half the participants, levels of confidence

were not specified, as above. For the other half the wide

interval was described as 90% likely and the narrow

interval as 70% likely. All participants were told that

three months later, a volcanic eruption took place. It

turned out that the lava flow actually extended 45 km.

How correct was the geologist? (1–7)

4.2 Results

Replicating the results from the previous experiments, par-

ticipants consistently found the wide interval predictions to

be more correct than the narrow interval predictions. Mean

accuracy ratings for both scenarios are displayed in Figure
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3. The wide interval estimates, whose upper bounds were

equal to (Volcano) or slightly higher than (Flooding) the ac-

tual outcome, were considered to be more right than wrong,

with scores above the scale midpoint, whereas narrow in-

tervals were considered rather inaccurate, even though the

most likely values in the narrow ranges were closer to the

actual outcome values. Specifying the confidence levels did

not appear to make a difference. A 2 x 2 x 2 ANOVA

with interval width (wide vs. narrow) and confidence levels

(specified vs. unspecified) as between-subjects factors, and

scenario (flooding vs. volcano) as a within-subjects factor

showed only a significant effect of interval width, F(1,166)

= 49.186, p < .001, η2
p

= .229, all other F’s < 2.1.

Numeracy and CRT scores from the third part of the

questionnaire were available for 130 of the 170 participants

(40 participants did not complete this part due to time con-

straints).2 These two measures were positively correlated,

r = .454. Numeracy did not appear to reduce the boundary

effect.3 Significant positive correlations between accuracy

ratings and numeracy were obtained in the condition for

wide intervals without confidence level (r = .53 and r = .47

for flooding and volcano, respectively). Similar correlations

were obtained between accuracy and CRT in this condition

(r = .55 and r = .48), suggesting that numerate participants

and participants with a more analytical approach were es-

pecially willing to accept interval predictions that captured

true outcome values as correct (irrespective of their distance

from the most likely estimate).

5 Experiment 4

The actual outcomes given to participants in the three first

experiments were rather close to the endpoints of the range

(below, above, or equal to the endpoint). However, we can-

not claim that all outcomes within a range will be regarded

as equally successful “hits”, as we have not sampled out-

comes covering the full range, including outcomes closer to

the midpoint of the range. Experiment 4 investigated the

perceived accuracy of range estimates for central and pe-

ripheral outcomes, compared to the perceived accuracy of

“most likely” point estimates. We expected range estimates

to be less sensitive than point estimates to variations in actual

outcomes inside the intervals. We also included ratings of

perceived expertise, as the correctness of a single forecast

may not be predictive of how likely one is to consult with an

expert in the future.

2Analyses of accuracy judgments based on the 130 participants who

completed all parts of the questionnaire yield the same pattern of results as

those based on the total sample.

3Participants with high numeracy (according to a median split) distin-

guished even more sharply between narrow and wide intervals. A 2 x 2

x 2 ANOVA for flooding yielded a significant interaction effect between

numeracy (high vs. low) and interval, F(1, 130) = 5.91, p = .016, η2
p = .043;

a similar analysis for accuracy ratings for the volcano scenario yielded an

even stronger effect, F(1, 130) = 13.36, p < .001, η2
p = .093.
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Figure 4: Correctness ratings (1-7) of experts predicting a

40 cm increase or 20–60 cm increase in water level, Experi-

ment 4. (Error bars represent ±1 SEM.)

5.1 Method

Participants were 180 first-year psychology students at a

university in Southern Norway, 72.8% female, median age

22 years, who participated in exchange for course credits.

They performed the correctness judgments as the second of

three judgmental tasks in an online questionnaire (Qualtrics).

They also answered a test of numeracy, as in Experiment 3.

The participants were randomly assigned to four different

conditions by receiving different variants of the question-

naires.

All questionnaires contained a vignette presenting fore-

casts of an expected flood caused by heavy rain and melting

of snow in Northern Norway. Heidi Knutsen, hydrologist

at NVE (The Norwegian Water Resources and Energy Di-

rectorate) said to a local newspaper that the water level in

a specific lake, Altevatn, “will most likely increase by 40

cm” during the weekend to come. Tom Djupvik, another hy-

drologist from the same institute, said to another newspaper

that the water level in Altevatn “will most likely increase by

20–60 cm”.

1. Which hydrologist appears more certain in their

prognoses? (Heidi Knutsen / Tom Djupvik / Both

appear equally certain.)

Participants in four different outcome conditions

were then informed that the actual rise in water

level was later measured to be [40 cm] [50 cm] [60

cm] [70 cm].

2. How accurate were the forecasts of the two hy-

drologists? (Rated on a scale from 1: Completely
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Figure 5: Mean expertise/trust ratings (1–7) of two experts

predicting 40 cm or 20–60 cm increase in water level, Exper-

iment 4. (Error bars represent ±1 SEM.)

wrong to 7: Completely right.)

3. How do you rate the two hydrologists in terms

of apparent expertise (1–7)?

4. How much would you trust the two hydrologists

in their future forecasts about flood (1–7)?

Ratings on Scale 3 and 4 were highly correlated (r = .80

and r = .72 for Heidi Knutsen and Tom Djupvik, respec-

tively), so the ratings were averaged to form a Quality of

Expert score.

5.2 Results

Overall, Heidi Knutsen (henceforth Expert A), who gave a

most likely point estimate, was considered more certain by

107 (59.4%) participants, against 36 (20.0%) selecting Tom

Djupvik (henceforth Expert B), who gave a most likely range,

and 37 (20.6%), who said they were equally certain (after all,

they both used the same expression, “most likely” to qualify

their estimates). This is in line with the results of Experiment

1, where a wide range indicated higher uncertainty.

Correctness ratings for the two experts are displayed in

Figure 4. Expert A is, as predicted, more correct than Ex-

pert B when she is spot on, whereas B is seen as more correct

at all other outcome values. An overall ANOVA with expert

and outcome as the two factors, revealed a main effect of

expert, F(1, 176) = 42.14, p < .001, η2
p

= .193, and of out-

come, F(3, 176) = 53.67, p < .001, η2
p

= .478, and more

importantly, an interaction, F(3, 176) = 20.91, p < .001, η2
p

= .263, confirming that the accuracy profiles of A and B

were different from each other. Expert B was considered

quite correct in all conditions where his range estimate cap-

tured the outcome value. In fact, the ratings in the three

first conditions were very similar. Post hoc Bonferroni tests

revealed that none of these were significantly different from

each other, whereas all were different from mean score in the

last condition (all ps < .001). For Expert A, Bonferroni post

hoc tests showed significant differences between all adjacent

outcome conditions. Her point forecasts were, as expected,

poorer the more they differed from the actual outcomes.

This pattern is confirmed by the results of expertise/trust

ratings, as displayed in Figure 5. An overall ANOVA with

expert and outcome as the two factors showed a strong effect

of outcome, F(3, 175) = 33.79, p < .001, η2
p

= .367, none

of expert, F(1, 175) = 0.44, but again an interaction, F(3,

175) = 18.76, p < .001, η2
p

= .243. In this case B’s exper-

tise appears to be the same regardless of outcome, as long

as it falls inside his range (Bonferroni post hoc tests show

no significant differences between the first three conditions,

whereas the 70 cm condition is different from all of them,

all ps < .001).

6 Experiment 5

In the previous experiments, the prediction intervals were

probabilistically defined, numerically (50%, 70%, or 90%)

or verbally (“most likely”), indicating that outcomes out-

side of the intervals could not be ruled out. Nevertheless,

the forecasts were considered accurate mainly for outcomes

falling at or inside the interval bounds and less accurate oth-

erwise. Accuracy judgments inside the range were little (or

not at all) affected by magnitude of outcome. It did not seem

to matter whether the upper and lower limit were labelled

maximum and minimum (as in Experiment 1 and 3), or not

given any label (as in Experiment 2 and 4). Experiment

3 showed, in addition, that the position of the most likely

value in the prediction interval, was considered relatively

unimportant. In contrast, the most likely value became im-

portant when announced without a prediction interval, as

shown in Experiment 4.

It is not obvious whether the forecasts in these experiments

should be viewed as being in agreement or disagreement with

each other. For instance, the two hydrologists in Experiment

4 came from the same research institute, and the interval

forecast of Expert B was centred around the value stated to

be “most likely” by Expert A, indicating compatibility. How-

ever, we do not know whether Expert A on her part would

endorse the range announced by Expert B. In Experiment 5

we introduced a common range but let the two experts differ

in the way they chose to phrase their forecast. While one of

them suggested the “most likely” outcome, the other chose

an outcome that “can” (could) happen.

https://doi.org/10.1017/S1930297500009190 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500009190


Judgment and Decision Making, Vol. 13, No. 4, July 2018 Perceived accuracy of prediction intervals 317

We expected the “most likely” forecast would be a fore-

cast in the middle of the range, so if the experts agree upon a

20–60 cm water level increase in Altevatn, most participants

would think that Expert A has 40 cm as her “most likely”

outcome. In line with the results from Experiment 4, we ex-

pected accuracy ratings of this forecast to reflect the distance

between this value and the actual outcome.

Outcomes that “can” (could) happen are, in principle, all

outcomes with a non-zero probability of occurrence, in other

words all outcomes within the predicted range. However, in

practice, it appears that people use this verb in a more specific

sense, selecting an extreme value, typically the top outcome

in a distribution of outcomes (Teigen & Filkuková, 2013).

We accordingly expected that Expert B would chose 60 cm

as a water level rise that “can” occur.

Yet can is an elastic term that does not have the same sharp

boundary connotations as the maximum. People who were

asked to specify a global temperature increase that can occur,

chose the highest value from a family of future projections.

Another group in the same study selected the same value

as their “maximum” (Teigen, Filkuková & Hohle, 2018).

Yet the probability judgments of these two overlapping val-

ues were not the same. What can happen was perceived as

more likely than a numerically equal outcome termed the

maximum. Can (and its cognates, like could and may) is

an uncertainty term with positive directionality, in the sense

that it directs the listener’s attention towards the occurrence

of the target event rather than its non-occurrence (Honda &

Yamagishi, 2017; Teigen & Brun, 1995). We accordingly

expected that forecasts with can would not be regarded as

completely wrong even when the actual outcome value ex-

ceeds the forecasted value.

The present experiment investigated these conjectures by

presenting people with a prediction interval, asking them

what they thought an expert would say would be the most

likely (expected) level to occur and what they thought another

expert would suggest as a level that could occur. We expected

them to answer the first question with a middle value and the

second with a high one. Second, they were informed about

outcomes inside and outside of the implied range and rated

the accuracy of the forecasts. We expected can-statements

to be regarded as correct even for outcomes that exceeded

the range.

6.1 Method

Questionnaires with valid answers were obtained from 195

students (57 male, 128 female,10 unreported; median age

20 years) attending a lecture in introductory psychology at a

university in northern Norway (12 questionnaires were dis-

carded by not conforming to instructions about responding

with a single number or entering “wild” responses). The par-

ticipants were randomly assigned to four different conditions

by receiving different variants of the questionnaires.
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Figure 6: Accuracy judgments (1–7) of expert statements

about “most likely” (40 cm) rise in water level and a rise that

“can” (60 cm) occur, conditioned upon magnitude of actual

outcome. (Error bars represent ±1 SEM.)

All questionnaires contained a vignette similar to the one

used in Experiment 4. Experts from NVE (The Norwegian

Water Resources and Energy Directorate) have estimated that

the water level in lake Altevatn will increase by 20–60 cm

during the weekend to come, due to heavy rain and melting

of snow in northern Norway. On this basis, two hydrologists

at NVE make the following predictions (fill in a number that

seems appropriate):

Heidi Knutsen (A): “The water level in Altevatn

will most likely increase by . . . cm”

Tom Djupvik (B): “The water level in Altevatn can

increase by . . . cm”.

Participants in four different conditions were subsequently

told that the actual rise in water level was later measured

to be [40 cm] [50 cm] [60 cm] [70 cm]. They then rated

the accuracy of the two hydrologists’ forecasts on two seven-

point scales, from 1: Completely wrong, to 7: Completely

right.

6.2 Results

Modal estimate of A’s “most likely” forecast was 40 cm

(50.3% of all answers), as expected. Mean estimate was

lower (M = 34.5 cm), as participants considered increases of

20 and 30 cm to be more likely than values in the upper part

of the predicted range.

Modal estimate of B’s forecast of what “can” happen was

60 cm (79.0% of all answers), mean estimate = 55.6 cm.
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Numbers in the lower part of the distribution were rarely

mentioned (< 10%). This is in line with the extremity effect

of can (Teigen & Filkuková, 2013; Teigen, Filkuková &

Hohle, 2018), which predicts that can is typically used to

designate the topmost value in a distribution.

Both forecasts are compatible with the agency’s range es-

timate of 20–60 cm, and it is reasonable to believe that the

respondents assumed that the two experts, coming from this

agency, also agreed with each other. They might accord-

ingly be viewed as equally accurate. However, they were

rated equal only in the 50 cm condition. With a lower out-

come (40 cm) Expert A was seen be more accurate, and for

higher outcomes (60 and 70 cm), B’s estimates were judged

as more correct. Figure 6 shows mean accuracy judgments

for participants who estimated A’s most likely-forecast to be

40 cm and B’s can-forecast to be 60 cm. The figure also

shows that A’s forecast became progressively less correct

with increasing outcomes, whereas B’s forecast was con-

sidered correct not just for outcomes inside the prediction

interval, but even for an outcome (70 cm) that exceeded the

upper bound.4

6.3 Discussion

A forecast of a 20–60 cm rise in water level can be described

as an increase of most likely 40 cm, or as an increase of 60 cm

that can occur, but the perceived accuracy of these statements

is not the same. The first statement will be regarded as

correct with medium outcomes (close to 40 cm) and the

second as more correct with higher outcomes (closer to 60

cm). The correctness of these statements seems to be judged

simply by the distance between the numeric estimate and the

actual outcome, even in a context where these estimates had

been suggested by the participants themselves as different

ways of characterizing the same range of outcomes. The

previous studies showed that people regard outcomes beyond

the “maximum” level to be inaccurately predicted. In the

present study, they use can to describe the maximum level,

but evidently in a less categorical way, as in this case a 70

cm outcome, falling outside of the range, is judged to be

reasonably well predicted. Thus, can is used to describe a

top value without ruling out outcomes that are even more

extreme.

4An analysis including all estimates (not limited to participants that

suggested 40 cm for most likely and 60 cm for can) yielded similar profiles

to those displayed in Figure 6. A mixed ANOVA gave a significant main

effect of Expert, F(3, 191) = 56.251, p < .001, η2
p = 0.122, indicating

that can is generally more accurate than most likely, and more important, a

significant interaction between Expert and Condition, F(3,191) = 19.01, p

< .001, η2
p = 0.233, confirming the difference in profiles of the two experts.

7 General discussion

A large amount of research on “credible intervals” and con-

fidence in interval estimates has measured the accuracy of

such estimates by comparing assigned or reported confidence

levels to the percentage of actual outcomes falling inside the

interval bounds. As a result, forecasters who claim to be 80%

sure about their intervals, but capture only 36% of actual

values, are held to be miscalibrated (Ben-David, Graham,

Campbell & Harvey, 2013), and more specifically: overcon-

fident (Soll & Klayman, 2004), or over-precise (Moore &

Healy, 2008). This model for assessing calibration rests on

the presupposition that all outcomes falling inside the pre-

diction interval can be considered hits, whereas all outcomes

outside the interval borders belong to the category of misses,

in other words: a binary (dichotomous) concept of what is

a correct and what is an incorrect judgment. The present

research questions the general acceptability of this classifi-

cation by asking participants a graded rather than a binary

question, namely how correct or how wrong is a prediction,

as judgments on a rating scale. For point predictions, we

find (as we might expect) that people think of accuracy as

a graded concept, depending on the forecast’s closeness or

distance from the actual outcome, as indicated by the eval-

uations of Expert A’s predictions in Figure 4 and 6. For

interval predictions, the situation is more complicated, as

evaluators have a choice between several reference values,

including the most likely estimate and the upper and lower

interval bounds. Experiments 1–4 show that the introduction

of interval bounds contributes strongly to transforming the

question of graded accuracy into a binary question about hits

and misses. Outcomes inside a prediction interval are con-

sidered hits, even when peripheral or equal to the boundary

values, whereas outcomes outside of these boundaries (even

when close to them) are considered misses. Figure 1 and 2

indicate, however, that such misses can be graded depending

on their closeness to the bounds, whereas outcomes inside

the interval are counted as more equally correct.

Such judgments should not come as a surprise, as they

may simply indicate that lay people think of hits and misses

in a categorical fashion in much the same way as researchers

do. (Alternatively, this could be reframed as criticism of

research practice in the field, by our pointing out that re-

searchers think much in the same categorical fashion as lay

people.) Participants in the present studies tended to stick to

the categorical approach even when it was made clear that

the upper and lower bounds are not absolute, but rather corre-

sponding to arbitrary points of a distribution (corresponding

to 50%, 70%, or 90% intervals).

It is debatable whether, or when, one should regard such

effects of categorization as normative or not. It could be

claimed that technically, all outcomes that fall inside of the

predicted range (regardless of how central they are) should

be regarded as “hits” and accordingly as being correct to
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the same degree, whereas outcomes outside of this range are

clearly incorrect, as they were not predicted to occur. On the

other hand, it seems equally (or perhaps more) sensible to

assess accuracy as a function of the distance between most

likely and obtained outcome, even in the case of ranges.

Yaniv and Foster (1995) have argued that, when people

receive wide and narrow interval estimates, they are some-

times more concerned about informativeness than accuracy.

Hence, when informed that the actual air distance between

Chicago and New York is 713 miles, 90% of their partic-

ipants preferred the incorrect, but informative estimate of

730-780 miles over the technically correct, but uninforma-

tive estimate of 700-1500 miles. This suggests that under

some circumstances people will prefer narrow range esti-

mates to wide range estimates, even in retrospect. A similar

finding was reported by McKenzie and Amin (2002), who

showed that people can be sensitive to the “boldness” of a

prediction. Participants were told that two students made

different predictions about the height of the next person who

would come in to the room, with one student predicting a

person over 6 feet 8 inches and another predicting a person

under 6 feet 8 inches. When informed that the next person

was in fact 6 feet 7 inches tall, most people preferred the bold

(over 6 feet 8 inches), but incorrect prediction. In both these

cases, the technically incorrect, but narrow (or bold) ranges

barely missed the correct value, whereas the wide interval

barely included it. Observe that participants in these studies

were asked about preference, not accuracy, and that the non-

preferred intervals were not just wide, but quite misleading.

The results suggested, in Yaniv and Foster’s terminology,

a “trade-off between informativeness and accuracy”, rather

than a general dominance of either of these factors. Their

findings are accordingly compatible with our results. In a

similar vein, we found in Experiment 5 that out-of-range out-

comes were considered fairly accurately predicted by state-

ments about outcomes that “can” occur, as such statements

draw attention to (are informative about) high values even

when falling short of predicting an actual, out-of-range out-

come.

The results fit well with other findings from the research

literature on categorization within other domains, including

accentuation theory in social cognition (Eiser & Stroebe,

1972). This theory proposes that when a continuous vari-

able is split into categories, the perception of stimuli within

these categories change. The differences between items

below and items above a category boundary are typically

accentuated, whereas members of the same category are

judged to be more similar to each other (Tajfel & Wilkes,

1963). The phenomena of within-group homogeneity (as-

similation) and between-group accentuation (contrast) have

been demonstrated in several areas, both with natural and

arbitrary category boundaries, for a variety of tasks, span-

ning from estimated temperatures in different months of the

year (Krueger & Clement, 1994) to estimated similarities

between politicians coming from different fractions of the

left-right scale (Rothbart, Davis-Stitt & Hill, 1997).

The present studies show assimilation and contrast ef-

fects of categories within a new domain, namely in accu-

racy judgments of range forecasts of environmental risks.

Such judgments differ from those studied in the social cog-

nition literature by being more explicit about the homogene-

ity/heterogeneity of members within a predicted category.

Thus, a range prediction about a flood extending 2–8 km in-

dicates that this “category” includes floods of very different

magnitudes. Moreover, it is obvious that flood extension is

by nature a continuous rather than a discontinuous variable,

and that the prediction boundaries are created spontaneously

in response to a prediction question, defining an ad hoc cate-

gory (Barsalou, 1983). An individual forecaster defines the

category according to his discretion, and might have placed

them differently under different instructions. The boundaries

might have been closer together if the forecaster had been

asked to be as informative as possible (Yaniv & Foster, 1995),

and perhaps wider apart if the forecaster had been required

to be 100% certain (although assigned degree of confidence

appears to have very little effect on interval width, see Lang-

nickel & Zeisberger, 2016; Teigen & Jørgensen, 2005). De-

spite the arbitrary placement of interval bounds, the present

experiments show that they play a decisive role in perceiving

forecasts to be right or wrong. Outcomes within the range

are seen to be successfully predicted even when lying at the

border, demonstrating an assimilation (homogeneity) effect

in the realm of forecast evaluations. Outcomes outside of

this interval were judged to be wrong. Interestingly in this

case we did not observe a homogeneity effect, as they were

judged as more inaccurate the more the outcome deviated

from the limits of the uncertainty interval.

The effects of categorization can be further strengthened

by introducing category labels (Foroni & Rothbart, 2012;

Pohl, 2017), which may also serve to make numerical out-

comes more “evaluable” (Hsee & Zhang, 2010; Zhang,

2015). Such labels provide linguistic cues that may serve

to increase homogeneity within the category and accentuate

the difference between category and non-category members

(Hunt & Agnoli, 1991; Walton & Banaji, 2004). For range

predictions categorization effects might be accentuated by

describing the interval forecast in terms of “expected” (or

likely) versus “unexpected” (or unlikely) outcomes. Conven-

tional ways of expressing ranges may by themselves provide

a strong categorization cue by highlighting the endpoints. A

forecasted flood extending “4–7 km” may appear as form-

ing a more definite interval than a list of “4, 5, 6, or 7 km”

as likely or potential values. In Experiment 1 and 3 the

boundary values were explicitly labeled minimum and max-

imum values. With other, more fuzzy and relative terms

(like “high” vs. “low” or “optimistic” vs. “pessimistic” esti-

mates) one might expect less of a contrast between accuracy

judgments for outcomes falling outside or between the stated
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values. The present findings are especially relevant for esti-

mation practices in domains that explicitly define maximum

and minimum boundaries probabilistically (e.g., in terms

of 95% or 80% confidence intervals), as is widely done in

project management (Jørgensen, Teigen & Moløkken, 2004;

Moder, Phillips & Davis, 1995).

The present studies were exclusively concerned with pre-

dictions of a single outcome. Uncertainty intervals for fore-

casts addressing multiple or repeated outcomes may be easier

to understand, especially if presented in a graphical format.

Joslyn, Nemec and Savelli (2012) gave participants interval

forecasts graphics about temperatures and found that non-

experts were able to draw reasonable inferences about varia-

tions in future weather. They also found that 80% predictive

intervals increased trust in forecaster.

In more informal contexts, forecasts are often made as

single-limit intervals, which only specifies the upper or the

lower bound, but not both. A geologist may say that the flood

will most likely extend “at least 4 km”, without mentioning

the upper limit, and an open access journal may assure its

authors that it takes (normally) “less than two months” to

have their papers published. Again, we may expect that

outcomes below the lower limit or above the upper limit will

make an observer feel that the predictions were wrong, but

not much is known about how forecasts are evaluated when

outcomes are close to, or further away from the predicted

bound. Will for instance a flood extending 5 km be judged as

more, or less correct than a much larger flood, extending 8 km

or more? Upper and lower bounds can further be described

by inclusive terms (e.g., “minimum”, “at most”), where the

interval bounds explicitly form parts of the interval, or by

exclusive terms (e.g., “more than”, “below”), which strictly

defined do not belong to it. Such choices of term may

affect subsequent judgments of accuracy (Teigen, Halberg &

Fostervold, 2007). As single-bound estimates are a common,

but understudied way of expressing uncertain forecasts, we

think that such a line of research would be worth pursuing.

7.1 Conclusion

Range predictions carry several messages, not all of them

intended by the forecasters. In contrast to point predictions,

ranges communicate a degree of uncertainty, or vagueness.

But ranges have boundaries, which taken literally may be

read as demarcation points. The present studies give ev-

idence for a weaker and a stronger version of a boundary

effect: (a) boundaries create a dividing line between ac-

curate and inaccurate predictions, even for ranges that are

probabilistically defined; (b) boundaries can make all pre-

dictions within the range appear equally correct. Yet, as our

final study showed, people can be sensitive to labels chosen

by the forecaster. Top values described as outcomes that

“can” occur evoke no boundary effect.
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