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Abstract

Conventional survey tools such as weighting do not address non-ignorable nonresponse that occurs when
nonresponse depends on the variable being measured. This paper describes non-ignorable nonresponse
weighting and imputation models using randomized response instruments, which are variables that affect
response but not the outcome of interest. This paper uses a doubly robust estimator that is valid if one,
but not necessarily both, of the weighting and imputation models is correct. When applied to a national
2019 survey, these tools produce estimates that suggest there was nontrivial non-ignorable nonresponse
related to turnout, and, for subgroups, Trump approval and policy questions. For example, the conventional
MAR-based weighted estimates of Trump support in the Midwest were 10 percentage points lower than the
MNAR-based estimates.
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Making inferences about populations from polls is extremely challenging in the modern polling
environment. Probability-based samples have nonresponse rates that often exceed 90%, making it hard
to justify analyzing them with tools based on random sampling theory. Non-probability samples—a
rapidly increasing share of polls (Kennedy, Popky, and Keeter 2023)—are even harder to connect to
populations given opaque sampling mechanisms.

Most contemporary tools assume that nonresponse is “ignorable” (or, equivalently, “missing at
random” [MAR]). This assumption is that respondents are representative conditional on covariates.
The raw sample may have too many college-educated people, but as long as the college and noncollege
respondents are representative of their subgroups, the data can be re-weighted in a way that will produce
an accurate estimate of the population. Nearest neighbor imputation and multilevel regression with
post-stratification also assume the data are MAR.

It is not clear that survey nonresponse is always ignorable because unobserved attributes such as
social trust could affect response and predict political opinions. It is also possible that the outcome
being measured directly affects response propensity; supporters of former President Donald Trump
may have been less inclined to answer polls in 2016 and 2020, for example. In these cases, survey
nonresponse is non-ignorable and data are “missing not at random” (MNAR). Estimating MNAR
models is challenging. A survey may produce a 40% approval rating when approval is 60% and the
most approving are less inclined to respond or when approval is 20% and the most approving are more
inclined to respond.

© The Author(s), 2025. Published by Cambridge University Press on behalf of The Society for Political Methodology.
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/
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Response instruments are useful to identify MNAR models. They are variables that affect the
propensity to respond but do not directly affect the attribute being measured. Ideally, a response
instrument is randomized, which makes it much easier to defend the claim that it does not directly
affect the outcome being measured and also increases statistical power. Given an assumption that the
effect of the treatment does not interact with the outcome of interest, such instruments can identify
MNAR models (Sun et al. 2018).

There are two modeling strategies when working with a randomized response instrument. First, one
can re-weight observed data based on the propensity of response. Second, one can impute the values
of the outcome variable for non-respondents. The MAR versions of these estimators do not work in
the MNAR context, but following Sun et al. (2018) estimation is feasible with a response instrument.
I focus in this paper on a doubly robust estimator developed by Sun et al. (2018) that combines these
two approaches to produce estimates that are consistent if either (but not necessarily both) of the
specifications of the MNAR weighting and imputation models is correct.

I apply these methods to a 2019 survey of U.S. adults. MNAR estimates using a randomized response
instrument differ from conventionally weighted analyses of the same data. For example, MNAR-based
methods suggest that turnout is exaggerated in the MAR-weighted sample. I also show how MNAR
models produce estimates of Trump support in the Midwest in 2019 that are 10 percentage points higher
than the MAR-weighted model. In addition, the MNAR models estimate less partisan polarization
than MAR-weighted models. For example, MNAR models suggest more racial conservatism among
Democrats and less support for tax cuts among Republicans than suggested by conventional weighting
models.

This paper proceeds as follows. Part 1 explains response instruments in MNAR models. Part 2
discusses MNAR weighting, and Part 3 discusses MNAR imputation. Part 4 explains the doubly robust
methods used here. Part 5 analyzes 2019 survey data.

1. The Vital Role of Response Instruments in MNAR Models

There are two approaches to estimating population values in the face of missing data (Chen, Li, and Wu
2020):

1. Weighting is the most widely used method to deal with nonresponse. “Inverse propensity
weighting” (IPW) weights observations by the inverse of the probability of being observed
conditional on a set of covariates X. Let Ri = 1 if individual i responds to the survey. In a MAR
context, π̂ = Pr(R = 1∣X). An IPW estimate of the population mean is

ŶIPW =∑
i

RiYi

π̂i
.

2. Imputation estimates the expected value of Y for individuals who did not respond (Vermeulen
and Vansteelandt 2016). There are many possible ways to impute missing outcome data, ranging
from OLS to multilevel regression with post-stratification to nearest neighbor imputation (Chen
et al. 2020). Assuming that Y is dichotomous, we can specify that value of Y for an individual who
did not respond as Ŷ0

i = Pr(Yi = 1∣Xi,Ri = 0). In a MAR context, Pr(Yi = 1∣Xi,Ri = 0) = Pr(Yi =
1∣Xi,Ri = 1). An imputation estimate of the population mean is

ŶImp =
1
N∑i

[RiYi+(1−Ri)Ŷ0
i ].

These approaches are straightforward if the data are MAR. Weights are generated via a model
predicting response as a function of X; imputed values of Y for missing data are generated as the fitted
values of Y based on observed data.
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There are two ways that the MAR assumption may be violated. First, an unmeasured factor may
affect both response propensity and Y even after controlling for observed covariates. For example,
unmeasured social trust may predict response and disapproval of Donald Trump. If true, conventional
weighting will produce a sample less supportive of Trump than the population, even after weighting
on standard demographics (Clinton et al. 2021). Second, Y may directly affect response propensity. It
could be that supporting Trump directly predicts nonresponse even after controlling for the weighting
variables. This paper focuses on models in which Y directly affects R; a model with common unobserved
factors in response and outcome can be subsumed into this model.

If survey data are MNAR, bias can be large. Meng (2018) derives a general equation that characterizes
the sampling error for any sample, be it random or nonrandom:

Yn−YN = ρR,Y
�

data defect correlation

×
√

N −n
n

������������������������������	
data quantity

× σY

data difficulty

. (1)

Equation (1) shows that sampling error is a function of the “data defect correlation” which is the
correlation of R and Y, a data quantity term and a data difficulty term.1 The data defect correlation
characterizes the degree of non-ignorability in the sample. If it is zero, then there is no error. (Since the
correlation is unlikely to be literally zero even for a random sample, there will still be sampling error
in random samples.) The key insight from Meng’s equation is that the non-ignorability term interacts
with a data quantity term that is a function of population size. This comes as a bit of a shock for survey
researchers steeped in random sampling theory, but for nonrandom sampling even a small amount of
non-ignorability (via the ρR,Y term) can induce large sampling errors if the population is large. We have
known that large samples can go awry since the Literary Digest polling fiasco of 1936 (Lusinchi 2012).

Recent advances have expanded our toolkit for dealing with non-ignorable nonresponse. Hartman
and Huang (2023) use sensitivity analysis to assess when non-ignorable nonresponse is a threat. Isakov
and Kuriwaki (2020) and Bradley et al. (2021) combine the Meng equation with known benchmarks
to present evidence that even seemingly small levels of non-ignorability can lead to large biases. Such
sensitivity-based methods do not provide estimates of the influence of non-ignorability based on the
data and models, however.

In this paper, I model nonresponse by allowing the response variable to directly affect the probability
an individual responds. Suppose, for example, that

Pr(R = 1∣X,Y) = g(γ0+γXX+γY Y). (2)

The data generating process is MNAR if γY ≠ 0. We cannot use standard methods of estimating the
probability of response because such a model needs observations for which R = 1 and R = 0 and we will
have missing data for Y for all individuals with R = 0. We also cannot implement MAR-type imputation
because Pr(Yi = 1∣Xi,Ri = 0) ≠ Pr(Yi = 1∣Xi,Ri = 1) when Y and R are jointly determined.

While some believe that MNAR data are inherently beyond the scope of modeling, there is a vast
literature on how to estimate such models. One theme is that these models should incorporate a response
instrument. A response instrument

• influences response, conditional on covariates and
• is not directly related to the outcome of interest in the population, conditional on covariates.
While it is not strictly necessary to have a response instrument (because, e.g., some parametric

models can be estimated without one), the field recognizes the poor performance of MNAR models
when there is no response instrument (see, e.g., Peress 2010).

1This equation does not condition on covariates. Meng (2018) provides a weighted version. One can also condition on
covariates by using this equation for subgroups defined by the covariates.
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While a response instrument can in theory be observational, a response instrument is ideally
based on a randomization treatment that affects response propensity and does not directly affect Y.
Such an instrument can be created by randomly assigning individuals to a treatment protocol that
increases the response probability. For example, New York Times/Sienna pollsters randomly assigned
adults in Wisconsin in 2022 to a treatment in which they received $30 for responding (Cohn 2022).
Randomization makes it easier to accept the condition that the instrument has no direct effect
on Y ; randomization also increases statistical power by reducing dependence of the instrument on
covariates.

Sun et al. (2018) explain how to use an instrument to estimate MNAR models. They formulate
their models in terms of the following selection bias function that “quantifies the degree of association
between Y and R given (X, Z) on the log odds scale”:

η(x,y,z) = log[Pr(R = 1∣x,y,z)
Pr(R = 0∣x,y,z)/

Pr(R = 1∣x,Y = 0,z)
Pr(R = 0∣x,Y = 0,z)]. (3)

The Supplementary Material shows that if we use a logit function for the response equation (and
impose the condition described momentarily), then η is simply the coefficient on Y in the response
equation (Equation (2)). I use a logit model in what follows as doing so simplifies presentation and
implementation; the model can be conceptualized and implemented with other specifications.

Sun et al. (2018, 6) derive the conditions under which MNAR models are identified when one has
a correct model for the selection bias and one assumes (as in MAR models) that every (X,Y,Z) has a
nonzero probability of responding.2 The identification conditions can be summarized with reference
to a sufficient condition: the MNAR models discussed below are identified as long as Y and Z do not
interact in the response equation.

To illustrate the identification assumption of an MNAR model as compared to a MAR model,
consider the following model in which response depends on a response instrument Z, covariates X,
the outcome Y, and all linear interactions.

Pr(R = 1∣Z,X,Y) = g(γ0+γZZ+γxX+γY Y +γZXZX+γXY XY +γZY ZY).

• Assumptions in MAR-model: γY = γXY = γZY = 0.
• Assumptions in MNAR-model: γZY = 0.
In a MAR model, Y does not affect response, whether or not this effect interacts with an X variable

that also affects Y or an instrument that only affects R. In other words, MAR models assume that
conditional on covariates, the people who respond do not have systematically different values of Y than
the people who do not respond.

MNAR models allow Y to affect response. The effect of Y can vary depending on X; the effect of Z
can also depend on X. In the data analysis below, I estimate MNAR models by subgroup, which allows
us to measure the effects of Y and Z on response for selected values of X.

The MNAR models do have an important assumption, however: that γZY = 0. This assumption
is violated if the treatment interacts with the Y in affecting response propensity as would happen,
for example, in a survey about support for President Biden if the treatment had a different effect
on those who approved of Biden. In the extreme, a response instrument that pulled in only Biden
supporters could be taken by an MNAR model as indicating that the survey underestimated Biden
support. This could lead to a biased estimate—and potentially a worse estimate than a MAR-based
model.

2Assuming that Z has no direct effect on Y, the necessary and sufficient condition to identify the joint distribution of the
full data is that Pθ1 (R=1∣z,y)

Pθ2 (R=1∣z,y) ≠
Pξ2 (y)
Pξ1 (y) . This means that for any set of parameters θ and ξ that define response and outcome

equations, it is not possible to find another set of parameters that produce the same equality of ratios. In a corollary and
examples, Sun et al. (2018) show that a sufficient (but not necessary) condition for identifiability is that the effects of Z and Y
on R are separable (e.g., Pr(R = 1∣Z,Y) = logit[q(Z)+h(Y)] for unknown functions q() and h()). Conditioning on X does
not change these results.
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A researcher using an MNAR model therefore needs to pay considerable attention to the design and
defense of the instrument. In a political context, the instrument should be depoliticized and reflect the
kinds of steps pollsters generically use to affect response propensity.

Suppose there are two survey protocols A and B, with B having a higher response rate. An MNAR
model will perform well if the underlying response propensity function is the same for both protocols,
with the only difference being the threshold above which people respond is different under treatment. If
protocol B induces a differential response that depends on Y, then this would be problematic for MNAR
models. Note, however, that a survey firm using only protocol B would have non-ignorable nonresponse
and would also have bias. In short, for MAR models, Y cannot affect R; for MNAR models, Y can affect
R but needs to do so in the same way under control and treatment.3

MNAR models cannot be taken as comprehensive tests of non-ignorability. Finding a significant
effect of Y on R in an MNAR model could be due to actual non-ignorability or due to an instrument
that violates the identifying assumption of the model. MNAR models should instead be treated as an
important part of the diagnostic toolkit. If one finds MNAR models diverging from MAR models—
as we do below in turnout and other models, for example—it seems prudent to be transparent about
assumptions underlying each set of estimates. If one believes the response in the overall survey is
ignorable, the weighted estimates are best; if one believes that the effect of the treatment does not depend
on Y, the MNAR estimates are best.

There are many ways to estimate MNAR models. In this paper, I focus on weighting and imputation.
Other options include maximum likelihood (Heckman 1979; Tchetgen and Wirth 2017) and copula
methods (Marra et al. 2017). Bailey (2024) argues that all these methods benefit from randomized
response instruments.

2. MNAR Weighting

MAR-based weighting uses weights based on results from a first-stage model that predicts whether or
not someone responds. If Y directly affects response, however, a conventional MAR-based model would
require information that is unobserved for non-respondents.

MNAR-based weighting models proceed differently: they leverage the orthogonality condition
implied by randomized response instruments to generate weights in which Y does affect response.

Consider the following MNAR model for response:

π = Pr(R = 1∣Z,X,Y) = logit(γ0+γZZ+γXX+γY Y), (4)

where Z is a randomized response instrument and X is a vector of covariates that affect response and
outcome.

There are two key parameters in this model. The coefficient on Z (γZ) reflects the effect of the response
instrument on response. This parameter needs to be nonzero for the MNAR models discussed here to be
identified. The coefficient on Y in the response equation (γY ) reflects the effect of Y on response. If this
parameter is nonzero, then Y directly affects response, which indicates a non-ignorable/MNAR data
generating process. If γY = 0, conventional weighting is better on efficiency grounds as I demonstrate in
the Supplementary Material (see also Bailey 2024).

The theory of Sun et al. (2018) allows for semi- and non-parametric estimation of these values. In this
paper, I use a logit link function that is of the form above. In the simulations, there are no interactions;
in the application, I allow for Y and Z to interact with X by looking at subgroups based on X.

3Coppock et al. (2017) propose selecting a random set of non-respondents and doing whatever it takes to get them to
respond. Doing so is appealing for several reasons, including that one could test whether Y had differential effects under
control and treatment. The challenge with their approach is feasibility: even academic surveys in the field for months struggle
to get 40% response rates. To the extent that the extra effort individuals respond at a higher—but not perfect—rate, we would
have a randomized response instrument such as described here, with all its benefits and limitations.
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An MNAR-IPW estimator is in the form

Ŷ =∑
i

RiYi

π̂

=∑
i

RiYi

logit(γ0+γZZi+γXXi+γY Yi)
. (5)

As noted above, we cannot use the conventional weighting approach of estimating the response
equation first because Y is missing for all R = 0 observations. We therefore estimate the model
with estimating equations. These are similar to methods of moment estimators in which “population
parameters be estimated by sample statistics which have the same property in the sample as the
parameters do in the population” (Cameron and Trivedi 2005, 135).

The estimating equations impose the following properties on the model: the weights sum to the
sample size, the IPW weighted sums of the Z and X covariates are the same as the sums in the population
and, critically, that Z conditional on X is orthogonal to the weighted Y which is the estimated Y in the
full population. Given Equation (4), the estimating equations are

h[1] ∶ ∑
i

Ri

π̂i
=N,

h[2] ∶ ∑
i

Ri

π̂i
Zi =∑Zi,

h[3] ∶ ∑
i

Ri

π̂i
Xi =∑Xi,

h[4] ∶ ∑
i

RiYi

π̂i
(Zi− Ẑi) = 0,

where Ẑi is the expected value of Z given X, which for randomized Z should be close to the proportion
of people assigned to the treatment condition.

The estimation process finds the γ values that satisfy the estimating equation conditions. The third
equation (h[3]) corresponds to a sample weighting condition as the weighted distribution of X will
reflect the (known) population distribution of X. The fourth equation imposes the orthogonality of
weighted Y and Z minus Ẑ. Standard errors are calculated based on a sandwich estimator as described
in the Supplementary Material of Sun et al. (2018).

Digging into the estimation helps us appreciate how estimating equations produce a coefficient on
Y in the response equation even though Y is missing for R = 0 individuals. Suppose that γY > 0. This
will produce more R = 1 observations among the Y = 1, Z = 1 group than the Y = 0, Z = 1 group. In the
unweighted data, Y and Z will be correlated. The orthogonality condition in the estimating equation
requires that Y and Z are conditionally uncorrelated in the full sample, which is achieved with a γ̂Y >
0 which produces a smaller weight on the Y = 1, Z = 1 observations compared to the Y = 0, Z = 1
observations. If γY were zero, we would not systematically observe more R = 1 observations among the
Y = 1, Z = 1 group than the Y = 0, Z = 1 group and Y and Z can be orthogonal in the population without
down-weighting the Y = 1 observations. Section 4 of the Supplementary Material provides more detail
on the intuition behind estimating equations in this context by providing a numerical example.

3. MNAR Imputation

MNAR imputation models require a model that predicts Y ∣X for R = 0 individuals. In MAR models, Y ∣X
is the same by assumption among respondents and non-respondents. This is not the case for MNAR
models. Hence, we need to formulate a model of Y ∣X for unobserved individuals as a function of the
Y ∣X for the observed individuals. Tchetgen-Tchetgen, Robins, and Rotnitzky (2010) formulate the joint
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density of (y,r) as a function of the selection bias function (see also Burger and McLaren 2017; Little
and Rubin 2020, 353):

f (y,r) ∝ exp[(r−1)η]f (y∣R = 1,x,z)Pr(R = 1∣Y = 0,x,z).

The marginal distribution of y is

f (y∣r,x,z) = P(y,r∣z,x)
∫ P(y,r∣z,x)dμ(y)

= exp[(r−1)η]f (y∣R = 1,x,z)
E[exp[(r−1)η]∣R = 1,x,z] ,

which implies that the distribution of y when R = 0 can be written as a function of y∣R = 1:

f (y∣R = 0,x,z) = exp[−η]f (y∣R = 1,x,z)
E[exp[−η]∣R = 1,x,z)] . (6)

To estimate γY for the MNAR imputation model, first estimate f (y∣R = 1,x,z). Note that the
distribution of Y given that R= 1 is a function of X and Z. Even though Z is assumed not to affect Y in the
full population, it can affect the expected value of Y in the observed sample via the effects of non-random
selection. This equation can be, for example, a saturated model such as Y = λ0+λZZ+λXX+λZXZX for
a simple model with only Z and a single X. With this model in hand, one can calculate Ŷ0

i , the expected
value of Y for R = 0 observations given the density in Equation (6), which is a function of the selection
bias function (η) and the distribution of Y ∣X,Z,R = 1.

The expected value of Yi for each i is RiYi+(1−Ri)Ŷ0
i . To satisfy the estimating equation condition

that Y and Z are independent in the full population, we find the value of γY that solves

∑
i
(Zi− Ẑi){RiYi+(1−Ri)Ŷ0

i } = 0. (7)

The MNAR imputation estimate uses the estimates of η and γY from the above process to estimate a
population average

Ŷ = 1
N∑i

[RiYi+(1−Ri)Ŷ0
i ]. (8)

4. Doubly Robust Estimation in MNAR Context

A doubly robust estimator is consistent if one or both of the weighting and imputation models is correct
(Scharfstein, Rotnitzky, and Robins 1999; Vermeulen and Vansteelandt 2016).

A doubly robust estimator for the population average is

Ŷ = 1
N∑[

RiYi

π̂i
− Ri− π̂i

π̂i
Ŷ0

i ] (9)

= 1
N∑[

Ri

π̂i
(Yi− Ŷ0

i )+ Ŷ0
i ]. (10)

If the propensity model is correct, Equation (9) converges to the (correctly) weighted observed data
because the average of Ri− π̂ converges to zero for a correctly specified propensity model. Equation (10)
is mathematically identical. In a MAR context, if the imputation is correct, the observed difference of
Y and Ŷ0

i will converge to zero and the doubly robust estimate will converge to the correctly specified
(by assumption) value of Y. In an MNAR context, this convergence depends on knowing the η function
(Equation (3)); see the proof of Proposition 3 in the Supplementary Material of Sun et al. (2018).

Figure 1 illustrates how doubly robust estimation works. These simulations highlight (1) the
well-known result that MAR models (even doubly robust ones) are biased when nonresponse is
non-ignorable and (2) that even when one is very wrong with one or the other propensity or
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Figure 1. Simulation results for MNAR data.

imputation models, the doubly robust MNAR estimator can produce unbiased results. With better
propensity or imputation models, the differences between those models and the doubly robust model
would be less stark. Suppose that the true models are

Pr(R = 1∣X,Y,Z) = logit(γ0+γZZ+γX1X1+γX2X2+γY Y),
Pr(Y = 1∣X,Y,Z) = logit(β0+βX1X1+βX2X2),

where γZ > 0 and γY > 0. I estimate the true specifications and also two misspecified models

Pr(R = 1∣X,Y,Z) = logit(γ0),
Pr(Y = 1∣X,Y,Z) = logit(β0).

The misspecified response equation assumes everyone (whatever their X values) has the same
probability of responding. The misspecified outcome equation assumes everyone (whatever their X
values) has the same probability of having Y = 1. The point is not that these are good models; rather, the
point is that the doubly robust approach can overcome weaknesses in one (but not necessarily both) of
the propensity and imputation models.

The upper left of Figure 1 shows the observed mean in the data and the population estimates for
the IPW, imputation and doubly robust estimators assuming MAR and MNAR, respectively, given
that the correct specifications are used. The bars indicate the 5th and 95th percentile results from
200 simulations. The MAR models do poorly because they do not capture the effect of Y on R. All
the MNAR models do well, which is unsurprising because the weighting and imputation models are
correctly specified.

The upper right of Figure 1 shows estimates when the response equation is misspecified. The MAR
models do poorly. The IPW weighted model here is not an MNAR model because it does not include a
γY term; it too does poorly. The MNAR imputation model is fine and—importantly—the MNAR doubly
robust model overcomes the poor properties of the misspecified propensity model.

The lower left panel shows what happens when the response model is correct and the imputation
model is incorrect. The MAR models do poorly. MNAR weights produce good estimates, while the
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MNAR imputation model does poorly; critically, the MNAR doubly robust overcomes the weakness of
the imputation model.

The lower right panel shows that the doubly robust estimator can be off if both specifications are
incorrect. This is an illustrative example; it is possible to create simulations in which one or both of the
MNAR IPW and MNAR imputation methods are less poorly specified and the MNAR doubly robust
estimates do better than in Figure 1. In Section 3 of the Supplementary Material, I show simulations in
which the MNAR estimators become less precise when the instrument has a weaker effect on response.

5. Survey Example

This section analyzes a March 2019 Ipsos Knowledge Panel survey that included a randomized treatment
that discouraged response. This approach is only one of many possible instruments (see, e.g., Cohn
2022). Generally, what is needed is for a survey firm to implement two protocols: one standard protocol
and one that increases or decreases response rates.

Figure 2 shows the structure of the data. To be concrete, the figure shows sample sizes for the turnout
question; there are slight differences in nonresponse patterns for other dependent variables. The original
pool of 3,573 people is drawn from Ipsos’s online panel that was recruited using an address-based
probability sample. These individuals are randomly assigned to control and treatment. For the contacted
people who logged in, people in the control condition were asked political questions in a standard way.
Of the 1,805 people assigned to control, 693 did not respond to Ipsos at all, 4 responded to Ipsos but
did not answer the turnout question, and 1,108 responded to the turnout question. The response rate
for those randomly assigned to control was 61%.

People in the treatment group who logged in were given a chance to opt out of the survey by asking
them if they would like to discuss politics, sports, movies, or health. Of the 1,768 people assigned to

Respondents (1,501)

Control (1,805)
Not given choice to discuss poli�cs

Control (1,108) Treated and chose 
poli�cs (393)

Survey contact list (3,573)

Treatment (1,768)
Given choice to discuss poli�cs

Non-respondents (1,375)
No recorded response (662) 
or chose non-poli�cs (711)
or choose poli�cs but did  

not answer turnout (2)

Non-respondents (2,072)

Non-Respondents (697)
No recorded response (693) 

or did not answer turnout (4)

Figure 2. Survey design for turnout analysis.
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treatment, 662 did not respond to Ipsos at all (and therefore presumably did not see the treatment), 711
selected a topic other than politics, 393 chose politics and answered the turnout question, and 2 people
chose politics but did not answer the turnout question. Those who chose politics are respondents, and
the others are non-respondents. The response rate for those assigned treatment was 22%, indicating that
the treatment reduced response rates by 39 percentage points. The resulting data have 1,501 respondents
and 2,072 non-respondents. Bailey (2024) analyzes these data with other MNAR protocols, all producing
the same general conclusions as described below; I leave modeling differences across the types of
nonresponse for future work. Table A16 in the Supplementary Material provides descriptive statistics
for the survey.

5.1. Turnout
Surveys of voting typically overestimate turnout, likely in part due to non-ignorable nonresponse
(Jackman and Spahn 2019). Therefore, assessing the performance of the models on turnout questions
provides a good starting point for assessing how the models work.

Figure 4 shows results for responses to the question “How likely is it you will vote in the elections
in November?” Response options were on a five-point scale ranging from will not vote to absolutely
certain. To keep the analysis consistent with the presentation here that is based on a dichotomous Y, I
have coded “absolutely certain” as Turnout = 1 and all other answers as 0.

The figure shows estimates based on the observed sample, conventional MAR-based weighting and
the MNAR models. The conventional MAR-based weights are provided by Ipsos; the results are similar
if I use MAR-based IPW weights based on gender, race, education, and age.

The MNAR weighting model is estimated analogously to Equation (5). In the MNAR imputation
model, I estimate E[Y ∣Z,X,R = 0] as a function of all covariates and Z in the observed data using
Equation (6). This equation includes Z even though Z does not directly affect Y in the full population;
the point is that conditional on response, the value of Y for R = 0 individuals can depend on Z. I include
Z and all X as well as all interactions of Z with the X variables.

The MNAR models include age and dichotomous variables for the response instrument, female,
Black, Hispanic, and education categories. Supplementary Table A2 provides full results.

Figure 3. Analysis of turnout question.
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The left panel of Figure 3 shows that the MNAR estimates of γY are far from zero. The lines
around the point estimates span 95% confidence intervals. These results suggest that people who are
likely to turn out are also likely to respond, consistent with the selection bias suspected of existing
on turnout questions. The right panel of Figure 3 shows the estimated mean of the turnout variable.
Because responses to this question are on a five-point scale, I cannot directly map answers onto actual
turnout (which was months away, as well). We can, however, note the pattern in turnout sentiment
as measured across multiple models. In the observed sample, 77% said they were “absolutely certain”
to vote. Conventional MAR-based weighting lowered this modestly to 75%. All of the MNAR models
produced lower estimates of around 57%, which is closer to the typical turnout in midterms. Full results
are available in Supplementary Table A2; I also discuss similar results that emerge with a different coding
of the dependent variable.

The confidence intervals on the estimated mean turnout are larger with MNAR models—and this is
with an observed sample of over 1,500 people and a strong first-stage response instrument. With a weak
instrument and/or smaller sample size, the confidence intervals will get even larger.

5.2. Trump Approval
Polling related to Donald Trump has challenged pollsters since 2016. In 2016, the national polls were
roughly correct but polls in key states, especially in the Midwest, tended to understate support for
Trump. In 2020, all polls tended to understate Trump support (Clinton et al. 2021).

This survey asked respondents whether they approved of how Trump was handling his job as
president, with response categories ranging from strongly disapprove to strongly approve plus a not
sure category. I coded strongly and somewhat approve answers as approving Trump and coded not sure
answers as missing.

The left panel of Figure 4 displays the estimated MNAR doubly robust γY coefficient for Trump
approval for two estimates. The lines indicate 95% confidence intervals. The right panel of the figure
shows three different estimates of average support for Trump. The lightest shade for each population
group displays the observed approval and the middle bar for each group displays the estimated
approval for the group as estimated by a conventional MAR-type weighting. The darker bar for each
group displays Trump approval as estimated by the doubly robust MNAR model. Full results are in
Supplementary Tables A3 and A4.

The left panel of Figure 4 shows that γY is close to zero when we use all observations, suggesting that
there was no non-ignorable nonresponse. The weighting and doubly robust population estimates in the
right panel are therefore similar to each other.

As noted earlier, the nature of non-ignorability may vary by subgroups. A direct way to assess such
heterogeneity is to subset the data. Figure 4 also displays results for white people in the Midwest.4 Many
assessments of the 2016 and 2020 polling errors noted that polling in the Midwest seemed particularly
difficult with Trump on the ballot. In Wisconsin in 2020, for example, Biden only beat Trump by 0.6 %
even though most polls suggested Biden would win easily. One late October Washington Post poll even
showed Biden up 17% after weighting.

The estimate of γY for the Midwest is −1.34 with a confidence interval that does not include zero.
A negative γY coefficient is consistent with non-ignorable nonresponse: people who disliked Trump
were more eager to respond and therefore the observed sample was skewed against Trump, even when
weighted with conventional weights.

The effect of non-ignorable nonresponse was substantial. The right panel of Figure 4 shows that
for white Midwesterners, Trump support was 45% in the observed sample and 43% in the con-

4Parameters in these models cannot be estimated if they perfectly predict the outcome (something that is familiar for those
who work with discrete choice maximum likelihood models). Hence, I omit groups who are perfectly predictable; for example,
the models for the Midwest do not include African Americans because all 18 of the African American Midwesterners who
responded did not approve of Trump.
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Figure 4. Analysis of Trump approval.

Figure 5. Analysis of Trump approval by party.

ventionally MAR-weighted sample. In the doubly robust MNAR estimate, Trump support among
white Midwesterners was 58%. In other words, the analysis suggests that Trump approval among
white Midwesterners was more than 10 percentage points higher when accounting for non-ignorable
nonresponse. Differences of such magnitudes were not evident in other regions.

The effects of non-ignorable nonresponse went in different directions for the two parties. Figure 5
shows results for white Democrats and Republicans. The top line in the panel on the left shows that
among Democrats there was little evidence of non-ignorable nonresponse with respect to Trump
approval. Only 7% of Democrats in the raw data approved of Trump, however, meaning that the
statistical power was quite low (as is typical for low probability outcomes). I also present a model labeled
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“not strong approve” which is 0 for Democrats who strongly disapprove of Trump and 1 for all other
Democrats who answered the question (which includes those who disapproved, but not strongly). For
this model, the γY is negative (with a confidence interval that does not include zero) and the estimated
proportions are different. In the observed data (weighted or not), 13% of Democrats did not strongly
disapprove of Trump, while this number rose 35% in the doubly robust MNAR estimate.

The opposite pattern occurred for Republicans. The estimate of γY was not statistically significant
when distinguishing between approval and disapproval. However, the estimate of γY was positive and
significant in a model in which Republicans who strongly approved of Trump were coded as 1 and all
other Republicans who answered the question were coded as 0 (which includes those who approved,
but not strongly in addition to those who disapproved). For strong approval, the observed and weighted
estimates indicated that about 49% of Republicans strongly approved of Trump, while the MNAR doubly
robust estimate was that 34% of Republicans strongly approved of Trump. Full results are available in
Supplementary Tables A5–A8.

This analysis prompts the question as to how best to identify subgroups. In principle, one could
break the sample into cells (as in cell weighting) and estimate separate models for each cell, after which
one could patch together a population estimate based on population proportions across the cells. There
would likely be statistical power issues, however. My approach was to assess substantively important
subgroups with a two-step process. In an earlier survey, I explored subgroups based on party and region
in light of the evaluations of recent polling lapses. I found variation by region and party. The second
step was to assess these subgroups in the subsequent survey reported here.

In general, the IPW, imputation and doubly robust estimates were similar. For Midwesterners, for
example, the γY estimates for the IPW, imputation and doubly robust estimators were −1.46, −1.41, and
−1.34, respectively.

5.3. Trump Tax Cuts
The non-ignorable nonresponse tends to vary by party on policy questions. Republicans who were eager
to respond tended to be more conservative on policy questions than Republicans who were less eager to
respond; Democrats who were eager to respond tended to be more liberal than other Democrats. Here,
I illustrate the phenomenon for a question about support for the “Republican tax cut of 2017.”

Figure 6. Analysis of tax cuts question.
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Figure 7. Analysis of race question (high values are more conservative).

Figure 6 shows the results for the whole sample and by party. Nonresponse in the whole sample
modestly skews the sample toward those who favored the cuts. The party-specific results suggest that
this pattern is driven by Republicans. For Democrats, γY is close to zero and the estimated averages of
support for the tax cuts are similar for conventionally weighted and MNAR-based doubly robust models.
Only 11% of Democrats supported the tax cuts, however, meaning that the analysis was low-powered.
Table A11 in the Supplementary Material shows that the γY parameter was statistically significant when
the dependent variable was 1 for the 38% of Democrats who did not oppose the tax (which includes
those who “neither approved nor disapproved”).

For Republicans, the estimate of γY was positive and statistically significant. While the weighted
estimate of Republican support for the tax cuts is 64%, the doubly robust estimate for support for the
tax cuts among Republicans is 48%. A similar pattern occurred in a question about tariffs (which I omit
for reasons of space). Full results are available in Supplementary Tables A9–A12.

5.4. Racial Conservatism
On questions related to race, some people may avoid expressing conservative views that they consider to
be socially undesirable (Berinksy 1999). The survey asked a battery of race-related questions and here we
illustrate how the models described perform on race using a question asking whether the respondents
agreed with the statement that “Black athletes should not take a knee during the national anthem.”
Support for the conservative position is coded as 1 and support for the liberal position is coded as 0.

Figure 7 shows there is little sign of non-ignorable nonresponse and the full population. For
Democrats, however, there is strong evidence of non-ignorable nonresponse. The estimated means for
Democrats differ substantially: conventional weighting suggests 20% of Democrats opposed kneeling
during the national anthem while doubly robust estimation suggests 36% of Democrats supported the
racially conservative position. For Republicans, conventional weighting suggests 79% of Republicans
supported the racially conservative position while doubly robust estimation suggests 71% of Repub-
licans supported the racially conservative position. Full results are available in Supplementary Tables
A13–A15.
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6. Conclusion

Survey research faces huge challenges in the modern polling environment. While MAR-based
approaches such as weighting are widely used and understood, less is known about models that allow
for non-ignorable nonresponse.

The purpose of this paper is to introduce methods from other literatures that also grapple with non-
ignorable nonresponse. In doing so, I show how the orthogonality of randomized response instruments
enables the estimation of weighting and imputation models that are infeasible with the MAR-type
approaches. The MNAR models do require assumptions, including an assumption that the randomized
treatment does not interact with Y. Future work can extend the analysis to more general assumptions in
the spirit of Levis, Kennedy, and Keele (2024).

I apply these tools to political examples, highlighting two important findings. First, the MNAR
models produce results that accord with expectations even as they differ from MAR-based models.
Second, the MNAR models produce interesting substantive findings. Based on these models, support
for Donald Trump among white Midwesterners was higher than indicated by conventional weighting.
In addition, the MNAR results suggested that surveys may exaggerate partisan differences, a point
consistent with Cavari and Freedman (2023).
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