
The Knowledge Engineering Review (2022), 37, e3, pp. 1–27
doi:10.1017/S0269888921000151

RESEARCH ARTICLE

Merging pruning and neuroevolution: towards robust
and efficient controllers for modular soft robots‡

Giorgia Nadizar1,2 , Eric Medvet1 , Ola Huse Ramstad3 , Stefano Nichele2,4 ,
Felice Andrea Pellegrino1 , and Marco Zullich1

1Department of Engineering and Architecture, University of Trieste, Italy
Email: giorgia.nadizar@phd.units.it, emedvet@units.it, fapellegrino@units.it, marco.zullich@phd.units.it
2Department of Computer Science, Artificial Intelligence Lab, Oslo Metropolitan University, Norway
3Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Norway
Email: olahuser@oslomet.no
4Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, Norway
Email: stenic@oslomet.no

Received: 26 August 2021; Revised: 1 December 2021; Accepted: 15 December 2021

Abstract
Artificial neural networks (ANNs) can be employed as controllers for robotic agents. Their structure is often com-
plex, with many neurons and connections, especially when the robots have many sensors and actuators distributed
across their bodies and/or when high expressive power is desirable. Pruning (removing neurons or connections)
reduces the complexity of the ANN, thus increasing its energy efficiency, and has been reported to improve the gen-
eralization capability, in some cases. In addition, it is well-known that pruning in biological neural networks plays a
fundamental role in the development of brains and their ability to learn. In this study, we consider the evolutionary
optimization of neural controllers for the case study of Voxel-based soft robots, a kind of modular, bio-inspired soft
robots, applying pruning during fitness evaluation. For a locomotion task, and for centralized as well as distributed
controllers, we experimentally characterize the effect of different forms of pruning on after-pruning effectiveness,
life-long effectiveness, adaptability to new terrains, and behavior. We find that incorporating some forms of pruning
in neuroevolution leads to almost equally effective controllers as those evolved without pruning, with the benefit of
higher robustness to pruning. We also observe occasional improvements in generalization ability.

1 Introduction
In recent years, artificial neural networks (ANNs) have been employed to face a large variety of prob-
lems in many domains, with remarkable success. As it is well-known, the architecture of the network,
which encompasses the number of neurons and connections (or synapses), and many other significant
hyper-parameters, has to be carefully chosen to achieve sufficient expressivity for the task at hand. The
choice of a large fully-connected ANN may be considered a safe solution when the ideal topology for
the task is not known. Indeed, the availability of computational power and the increasingly sophis-
ticated training algorithms allow to train very large networks (possibly, heavily overparametrized).
However, the current trend of scaling to ever-larger neural networks, such as DALL-E, a 12 billion
parameters version of GPT-3 (Ramesh et al., 2021), or switch transformers, a trillion parameters lan-
guage models (Fedus et al., 2021), has been criticized in terms of carbon footprint and computational
costs (Strubell et al., 2019). The energy consumption and, more generally, the complexity of a network

‡The online version of this article has been updated since its original publication. A notice detailing the changes has been
published at: https://doi.org/10.1017/S0269888922000017

Cite this article: G. Nadizar, E. Medvet, O. Huse Ramstad, S. Nichele, F. A. Pellegrino and M. Zullich. Merging pruning and
neuroevolution: towards robust and efficient controllers for modular soft robots. The Knowledge Engineering Review 37(e3): 1–27.
https://doi.org/10.1017/S0269888921000151
C© The Author(s), 2022. Published by Cambridge University Press

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151
https://orcid.org/0000-0002-3535-9748
https://orcid.org/0000-0001-5652-2113
https://orcid.org/0000-0003-4696-9872
https://orcid.org/0000-0002-4423-1666
https://orcid.org/0000-0002-9920-9095
https://doi.org/10.1017/S0269888922000017
https://doi.org/10.1017/S0269888921000151
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0269888921000151&domain=pdf
https://doi.org/10.1017/S0269888921000151

2 G. Nadizar et al.

become critical when it has to be physically implemented in devices, such as robotic systems, having
limited resources. Pruning of ANNs, that is, removing unnecessary or less important connections, as a
means of reducing complexity and consumption of ANNs, is an active area of research, and has a notable
biological counterpart. Indeed, biological brains undergo a developmental process which initially cre-
ates a very large number of synapses, too many in fact (Raman et al., 2019). While a large number of
synapses is beneficial for faster incremental learning and allows for redundancy, it is not beneficial in
the long term. Therefore, the brain is subsequently optimized through a rather large process of synaptic
pruning.

Here, we study the pruning of ANNs optimized with neuroevolution to control Voxel-based soft
robots (VSRs). VSRs are a class of modular robots made of connected soft components (voxels), that
resemble biological soft tissues. Since in VSRs each voxel may contain sensing elements, actuators, as
well as the neural controller itself (Medvet et al., 2020), unnecessary neural network wiring is not desir-
able: thus the idea to resort to pruning. In addition, despite VSRs simplicity, their unique features make
them a particularly suited case study for experimentally characterizing the effects of real-life phenomena
on artificial agents, for example, morphological development (Kriegman et al., 2018; Kriegman, Cheney,
Corucci and Bongard, 2018) or environmental influence on the agents features (Bongard, 2011; Cheney
et al., 2015). Moreover, the embodied cognition paradigm is best expressed in robots like VSRs, where
the global behavior derives from the conjunction of possibly simpler behaviors (Pfeifer and Bongard,
2006): as a consequence, VSRs are extremely suitable for investigating body–brain interactions (Lipson
et al., 2016) in artificial agents. Therefore, VSRs are ideal candidates for addressing the overall research
question of whether the pruning of synapses may result in an optimized controller by eliminating network
connections with negligible contributions and/or redundant. For answering this question, we consider
different methods for identifying the synapses to be pruned and we experimentally measure the impact
of these methods on the overall effectiveness and adaptability of the ANNs optimized by means of
neuroevolution for controlling VSRs in the task of locomotion.

This work is an extended version of Nadizar et al. (2021); the novel contributions can be summarized
as follows. First, in addition to centralized controllers, we consider two kinds of distributed controllers,
namely the homo-distributed and the hetero-distributed controllers, described in Section 3.2.2: the three
variants differ in their physical feasibility, expressiveness, and size of the corresponding search space,
when optimized. Second, we deepen the analysis by considering a different goal for the optimization.
Specifically, in addition to maximizing the locomotion effectiveness, that is, the velocity of the robot,
after the pruning, we also consider the velocity of the robot before and after the pruning, that is, the
life-long locomotion effectiveness. Finally, we widen the analysis and systematically characterize the
behavior of the evolved robots, taking into account some behavioral features introduced in Medvet
et al. (2021).

Our experimental results show that the application of a proper pruning strategy during the evolution
can result in controllers that are as effective as the ones obtained without pruning, as well as more robust
to pruning than the latter ones, both in terms of effectiveness and in terms of behavior. In addition, we
show that individuals who evolved with pruning do not appear significantly less adaptable to different
tasks, that is, locomotion on unseen terrains, than those who evolved without pruning.

2 Related work
Our work is related to several topics and lines of research, that are briefly recalled in the next sections.
In particular, Section 2.1 shows the connections with biological pruning, which occurs during the life of
individuals and inspires the adopted pruning scheme. Section 2.2 is dedicated to the pruning of ANNs
and the various techniques (most of them iterative) that have been recently proposed, especially in the
deep learning literature. Section 2.3 deals with pruning in the context of neuroevolution and, finally,
Section 2.4 briefly recalls the pruning of spiking networks, which resemble more closely the biological
networks, but are not employed here.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 3

2.1 Synaptic pruning in the nervous system
Biological neural networks are not engineered but self-organized, and they are able to adapt to form
efficient computational structures (Johnson, 2001; Power and Schlaggar, 2017; Yuste, 2015). Much
of their developmental growth and adaptation depends upon pruning, where an initial overgrowth
of neurons, axons, and synapses is followed by removal of inactive or inefficient components of the
network (Low and Cheng, 2006; Riccomagno and Kolodkin, 2015; Sakai, 2020). In humans, this
process begins shortly after birth; the neonatal brain contains approximately 10 × 1010 neurons, which
are pruned to 8.6 × 1010 in the adult, a reduction of almost 15%. Similarly, the synaptic density between
the neurons decreases by nearly 50% in the adult brain compared to that of a 1- to 2-year-old, following
an initial growth after birth (Herculano-Houzel, 2012; Sakai, 2020).

The cellular and molecular mechanisms underlying this pruning are numerous and highly complex,
but at an abstract level they are hypothesized to be guided by certain constraints, namely metabolic
energy and robustness to perturbation (Laughlin et al., 1998; Herculano-Houzel, 2012; Riccomagno
and Kolodkin, 2015; Aerts et al., 2016). Biological neural networks need to perform their computations
with limited local and global pools of metabolic energy, which drive the networks to develop towards
more efficient network topologies—that can be analyzed by means of computational tools and properties
(Heiney et al., 2021)—and modes of computation and prune connections that do not contribute enough
given their metabolic cost. Inversely, these networks also need to be robust against perturbations such as
injury or degeneration, creating a need for redundancy and adaptability (Denève et al., 2017). These two
constraints, working both in opposition and collectively, drive pruning in biological neural networks to
network topologies that are highly efficient computational structures, such as small-world, hierarchical,
and modular networks (Bassett & Sporns, 2017; Sporns, 2013).

Moreover, these constraints differ across the brain’s many regions, which in turn drives develop-
ment, including pruning, to form specialized network topologies (Sporns et al., 2004). As different
regions perform different computational tasks, the pruning mechanisms reflect this disparity by ensur-
ing networks in, for example, sensory cortices are shaped with different inputs than those for executive or
motor function. The network requirements for these computational tasks differ in terms of redundancy,
parallelization, recurrency, and interregional signaling, therefore requiring different pruning targets and
timescales (Meunier et al., 2010; Schuldiner and Yaron, 2015; Bordier et al., 2017; Liao et al., 2017;
Vézquez-Rodríguez et al., 2020). Importantly, this form of task-directed pruning stems from the same
pruning mechanisms across the different regions. In general, neurons are pruned in an activity-dependent
manner: low-activity neurons or synapses are marked for removal either by themselves or by microglia
(glial immune cells) (Riccomagno and Kolodkin, 2015; Schuldiner and Yaron, 2015; Arcuri et al.,
2017). Since the input to each region drives and shapes the activity of every neuron, the neurons and
synapses which contribute to the output more often avoid pruning, allowing the region to both adapt to
the input and retain the most efficient components of the network. By initially growing a large network,
before pruning it down to fit the computational task, the human nervous system can adapt to multiple
environments more easily than constructed or engineered networks.

Such biological findings raise questions in regards to ANN controllers for artificial agents, and in
particular the identification of suitable network sizes and number of parameters needed to learn a given
task. The possibility of optimizing the networks in regards to learning, robustness to noise, and other
factors such as energetic cost remains still an open area of research. In the following sections, several
pruning strategies for ANNs are reviewed.

2.2 Pruning in ANNs
The name ‘pruning’ is not specific to ANNs, being adapted from the decision trees, where it has been
in use as early as 1984 (Breiman et al., 1984) to indicate methods of structural simplification, that
is, branches pruning, of large trees having a tendency to overfit or badly generalize to unseen data.
Generally, since its inception, pruning, or the top-down removal of excess pieces of architecture from

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

4 G. Nadizar et al.

a Machine Learning model, has been motivated as an aim towards simplicity, drawing parallels with
Occam’s razor (Thodberg, 1991; Zhang and Mühlenbein, 1993).

Pruning in the context of ANNs is a procedure encompassing many different techniques whose com-
mon goal is the sparsification of the network, that is, the removal of connections (synapses) between
neurons, leading to a thinner subnetwork of the original model. The need for this removal can be driven
by different factors: for instance, some pruning techniques have been shown to have a chance at decreas-
ing the error committed by the model (LeCun et al., 1989; Han et al., 2015). It may also be of interest to
shed off unnecessary structure from the ANN in order to reduce training and inference time. Additional
drivers may include a better generalization capability (Bartoldson et al., 2019) or an increased robust-
ness (Ye et al., 2019). Finally, it could be of interest to operate pruning in order to analyze symmetries
between artificial and biological sparsification processes, the latter explained in Section 2.1.

ANN pruning can be subdivided in two major categories, structured or unstructured, depending upon
which group(s) of connection(s) are targeted for the removal (Anwar et al., 2017). Structuredpruning
targets well-defined formations of synapses: for example, all the connections entering one specific neu-
ron, or, in the case of convolutional neural networks, one or more specific channels. This has immediate
computational advantages as the removal of neurons or filters imply smaller parameters tensors, thus
faster calculations. Conversely, unstructured pruning techniques remove connections without concern
for the geometry of the deleted synapses. This leads to an irregular form of sparsity which does not
directly impact the way the parameters tensors are stored in memory; thus, in order to take advantage
of the smaller number of connections, specific software—like CUSPARSE (Naumov et al., 2010)—or
hardware—like Graphics Processing Units with dedicated sparsity support—are required (Liu et al.,
2019). Despite this, unstructured techniques usually lead to models performing better than the original
ANN, even at high pruning rates (Frankle & Carbin, 2019; Renda et al., 2020), this being the reason
why they can also be seen as powerful regularizers (Laurenti et al., 2019). In opposition to this, models
pruned with structured techniques usually struggle to keep up with the performance of the unpruned
network, although recent developments (Cai et al., 2021) seem to have overcome this hurdle. It is to
be noted, though, that even structured pruning techniques can be used as regularizers (Prakash et al.,
2019), without necessarily removing the pruned parameters from the structure.

An additional categorization of pruning techniques for ANNs takes into consideration the heuristics
used for the removal of connections. Hoefler et al. (2021) distinguish between (a) data-free heuristics,
which prune synapses based only on the state of the parameters, and (b) data-driven heuristics, which
prune depending upon the evaluation of the model on a given batch of data. What sets these two heuristics
apart is the fact that, while data-free heuristics lead to a fast enucleation of the connections to be pruned,
data-driven techniques let a larger bunch of criteria be used for determining the weights to remove: for
instance, information flow in the network (Thimm and Fiesler, 1995), gradient flow and hessian (LeCun
et al., 1989), etc.

In this study, we will be using both types of heuristic. Namely, we will be using least-magnitude
pruning (LMP) (Bishop, 1995; Han et al., 2015), a data-free technique which removes connections
exhibiting a small magnitude, and variants of contribution variance pruning (CVP) (Thimm and Fiesler,
1995), a data-driven heuristic which deletes parameters having low variance (possibly re-integrating the
average in the bias term corresponding to the same layer). In addition to that, we will also be employing
further data-driven heuristics based on the value or magnitude of the signal passing through the synapse.
Finally, we will consider random pruning as a further technique to construct a “control group” for the
pruning heuristics. A more extensive overview of the selected techniques is presented in Section 4.

These pruning techniques are usually introduced within the realm of gradient-based ANN training,
like (Stochastic) Gradient Descent (SGD). When the network is improved via iterative training proce-
dures, we can further distinguish between in-training sparsification techniques and after-training ones
(Hoefler et al., 2021). With reference to the former, maybe the most famous approach at in-training prun-
ing is the LASSO, originally introduced in linear models (Santosa and Symes, 1986; Tibshirani, 1997);
later its L1-norm-based penalty term was translated to ANNs (Bengio et al., 2006). A more recent
method (Lin et al., 2020) uses feedbacks to reactivate precociously deleted connections. Regarding
after-training techniques, we can find here the vast majority of pruning schemes, both structured and

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 5

unstructured, like the aforementioned LMP. In this case, these procedures require the ANN to be fully
trained before pruning is applied. The immediate effect of pruning is possibly a loss of performance,
which has to be recovered through a retraining of the now-sparser model (LeCun et al., 1989). This can
give rise to an iterative scheme where the network is trained, pruned, retrained, repruned, etc. Various
methods differ on retraining schedules and there is still not a clear indication on which practice leads to
better results. For instance, concerning LMP, it is debated whether full re-training (Frankle & Carbin,
2019; Renda et al., 2020) or fine-tuning (Liu et al., 2019) or hybrid methods (You et al., 2019; Zullich
et al., 2021) obtain higher accuracy. In addition to this, it is a still matter of debate what are the effects
of pruning and successive retraining schedules on the features learned by the pruned models (Ansuini
et al

∫
. 2020a,b). From a computational viewpoint, in-training procedures pose certainly an advantage

as only one training pass is required, but, usually, after-training schemes are able to reach higher per-
formance also at high sparsity, despite a recent work seem to have greatly reduced the gap: Liu et al.
(2021) show that, by drawing inspiration from biological pruning, specifically from the concept of neu-
roreconstruction, that is, the ability of a biological neural network to reconstruct previously removed
synapses, in-training pruning can lead to performance almost as high as the dense ANN. Concurrently,
the same work also sets a new state-of-the art for the so called sparse-to-sparse training, which refers to
the training of pruned ANNs whose parameters have been randomly re-initialized: indeed, all methods
cited previously rely on either (a) retraining a pruned ANN while keeping the same parameters as the
previous training, or (b) retraining a pruned ANN whose parameters have been rewound to the values
they had before the unpruned network was trained.

2.3 Pruning ANNs in the context of neuroevolution
The concept of iterative pruning can hardly be fit to neuroevolution as it does not employ an iterative
training strategy like SGD; instead, the parameters and the structure of the ANN are varied making use
of evolutionary variation operators, like crossover or mutation (or both). There is no proper training
phase; rather, ANNs are subject to random variations at each generation. For instance, the main staple
of neuroevolution, NEAT (Stanley and Miikkulainen, 2002), incorporates both crossover and mutation,
enabling structural growth in addition to the modification of the weight of synapses. This implies that,
usually, when evolving an ANN with NEAT, the starting network is rather small and it grows as new
generations are produced. This contrasts with the prevailing paradigm in Deep Learning, which consists
in starting off with a very large, overparametrized ANN, as large models exhibit higher generalization
capabilities (Neyshabur et al., 2019), especially in the Natural Language Processing domain (Brown
et al., 2020).

This does not necessarily mean that pruning cannot be incorporated into the evolutionary process. For
instance, Real et al. (2017) incorporated a phase of parameter removal (which corresponds to pruning) in
their evolutionary algorithm. Also EANT (Kassahun and Sommer, 2005), a NEAT variant, incorporates
pruning as a structural modification of the ANN.

Pruning techniques do not necessarily need to be tied to a neuroevolution algorithm, as they are essen-
tially oblivious to the training or evolutionary method, and can be decoupled from it, as we propose in
this work. For example, Siebel et al. (2009) operate pruning on neural controllers employing a tech-
nique inspired from LeCun et al. (1989). More recently, Gerum et al. (2020) operated random pruning
on neural controllers, concluding that this practice improved generalization when these controllers were
tasked with navigating agents through a maze. This work is maybe the closest example to ours, although
our conclusions are different, having noticed that random pruning was detrimental in our observations.

2.4 Pruning biologically inspired ANNs
Spiking neural networks (SNNs) (Gerstner & Kistler, 2002) are a variant of ANNs in which (a) informa-
tion (inputs and outputs) is encoded as a sequence of temporal spikes, and (b) a neuron activates when
its membrane potential exceeds a given threshold. As such, SNNs have deeper biological inspiration
with respect to regular ANNs. In addition to that, due to the discrete nature of the input, the loss

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

6 G. Nadizar et al.

Figure 1. Frames of the two VSR morphologies used in the experiments. The color of each voxel encodes
the ratio between its current area and its rest area: red indicated contraction, yellow rest state, and green
expansion. The circular sector drawn at the center of each voxel indicates the current sensed values:
subsectors represent sensors and are, where appropriate, internally divided into slices according to the
sensor dimensionality m. The rays of the vision sensors are shown in red.

function in SNNs is not differentiable with respect to the parameters, hence gradient-free techniques are
used, like the unsupervised Hebbian neuroplasticity (Hebb, 2005). Moreover, due to the inapplicability
of gradient-based optimization in SNNs, there exists a large body of works showing how the training of
these models can be enhanced using various neuroevolution techniques (Floreano et al., 2008; Qiu et al.,
2018; Elbrecht & Schuman, 2020), while Pontes-Filho and Nichele (2019) propose an approach to mix
neuroevolution with Hebbian learning, thus highlighting that SNNs synergize well with neuroevolution.

Inspired by the discoveries on human brain connectivity introduced in Section 2.1, there exist works
having applied pruning to SNNs. For example, Iglesias et al. (2005) pruned SNNs with a criterion
similar to CVP in order to observe the connectivity patterns after various iterations of pruning. In addi-
tion to that, Shi et al. (2019) applied LMP to SNNs mid-training, without being able to recuperate the
performance of the original, unpruned networks.

3 Voxel-based soft robots
In this study, we employ voxel-based soft robots (VSRs) (Hiller & Lipson, 2012), a kind of modular
robots composed of several soft cubes (voxels). Such robots achieve movement thanks to the contraction
and expansion of the voxels, in a similar way to the muscular tissue of living organisms. To ease simu-
lation and optimization, we consider a 2D variant of VSRs in which voxels are actually squares rather
than cubes, but we argue that our findings are conceptually portable to the 3D case.

A VSR is defined by a morphology, or body, and a controller, or brain. The morphology describes
how the VSR voxels are arranged in a 2D grid and which sensors each voxel is equipped with. The
controller is in charge of processing sensory information in order to determine how the area of each
voxel varies over the time.

3.1 VSR morphology
The morphology of a VSR is a grid arrangement of voxels, that is, deformable squares in the 2D case
that we consider in this study. Figure 1 displays two examples of VSR morphologies, both composed of
10 voxels.

To achieve movement, the size of each voxel varies over time, due to external forces, that is, forces
caused by its interaction with other connected voxels and the ground, and to an actuation value that
causes the voxel to actively contract or expand. Namely, at each simulation time step, the actuation

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 7

value of each voxel is assigned by the controller and is defined in [− 1, 1], where −1 corresponds to
maximum requested expansion and 1 corresponds to maximum requested contraction.

More precisely, the size variation mechanism depends on the mechanical model of the voxel, either
physically implemented or simulated. In this study, we experiment with 2D-VSR-Sim (Medvet et al.,
2020), that models each voxel with four masses at the corners, some spring-damper systems, which
confer softness, and ropes, which limit the maximum distance two bodies can have. In this simulator,
actuation is modeled as a variation of the rest-length of the spring-damper systems which is linearly
dependent on the actuation value.

Moreover, a VSR can be equipped with sensors, that are located in its voxels. At each time step, the
output of a sensor S, that is, the sensor reading, is rS ∈ [0, 1]m, where m is the dimensionality of the
sensor type. Here, we employ four types of sensors, which provide the VSR with information about its
state and about the surrounding environment:

• Sensors of type area perceive the ratio between the current area of the voxel and its rest area
(m = 1).

• Sensors of type touch sense if the voxel is in contact with the ground or not and output a value
being 1 or 0, respectively (m = 1).

• Sensors of type velocity perceive the velocity of the center of mass of the voxel along the x- and
y-axes (m = 2) of voxel itself.

• Sensors of type vision perceive the distance towards close objects, as the terrain or any obstacle,
within some field of view, i.e., along a set of directions. For each direction, the corresponding
element of the sensor reading rS is the distance of the closest object, if any, from the voxel center
of mass of the voxel along that direction. If the distance is greater than a threshold d, it is clipped
to d. We use the vision sensor with the following directions with respect to the voxel positive

x-axis: −1

4
π , −1

8
π , 0,

1

8
π ,

1

4
π ; the dimensionality is hence m = 5.

Velocity and vision sensors employ a soft normalization of the outputs, using, respectively, the tanh
function and rescaling, to ensure that the output is defined in [0, 1]m.

3.2 VSR controller
The VSR controller is, in general, a parametric multivariate function, fθ , which computes the actuation
value for each voxel given some inputs, for example, the sensor readings, at every simulation time step.
Given a morphology and a parametric function, a VSR can be optimized for a given task by optimizing
the controller parameters θ .

In this study, we experiment with two architectures of neural controllers, that is, controllers based on
ANNs, taking inspiration from (Talamini et al., 2019) and (Medvet et al., 2020).

3.2.1 Centralized neural controller
The first controller architecture we experiment with is the one proposed by Talamini et al. (2019). The
controller function fθ is implemented by a fully connected feedforward ANN, also known as multilayer
perceptron, where the number of input neurons corresponds to the overall number of sensor readings,
and the number of outputs corresponds to the number of voxels in the VSR.

At each time step, this controller processes the concatenation r = [
rS1 rS2 . . .

]
of the current sensor

readings and uses its output a ∈ [− 1, 1]n = fθ (r) as actuation values for the n voxels composing the VSR.
We use tanh as the activation function in the neurons of the ANN.

We call this variant a centralized controller as there is a single central ANN processing the sensory
information coming from each voxel to compute all the actuation values of the VSR.

The centralized controller parameters coincide with the synaptic weights of the ANN, θ ∈R
p, with p

depending on the ANN topology, that is, the number and size of the ANN layers—we recall that the size

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

8 G. Nadizar et al.

Figure 2. A schematic representation of the centralized controller for a 3 × 1 VSR with two sensors in
each voxel. Blue and red curved arrows represent the connection of the ANN with inputs (sensors) and
outputs (actuators), respectively.

of the input and output layers are determined by the sensors the VSR is equipped with and the number
of voxels, respectively.

A schematic representation of a centralized controller for a simple VSR composed of three voxels
is shown in Figure 2. In this example, each voxel is equipped with two sensors and the ANN has one
hidden layer consisting of 5 neurons. As a result, this centralized controllers has p = |θ | = (6 + 1) · 5 +
(5 + 1) · 3 = 53 parameters, the +1 being associated with the bias.

3.2.2 Distributed neural controller
The second controller architecture we consider is the distributed controller developed by Medvet et al.
(2020) to exploit the intrinsic modularity of VSRs. The key idea is that each voxel is equipped with an
ANN, which processes local inputs to produce the actuation value for said voxel. Hence fθ is the ensemble
of the functions f i

θ i
implemented by each ANN. In order to enable the transfer of information along the

body of the VSR, neighboring voxels are connected by means of nc communication channels. Namely,
each ANN reads the sensors values together with the 4nc values coming from adjacent voxels, and in
turn outputs an actuation signal and 4nc values to feed to contiguous voxels. Note that this controller
architecture results in an overall recurrent ANN, which is responsible for introducing an additional
dynamics to the one deriving from the mechanical model of the VSR.

More in detail, each ANN takes as input a vector xi = [
ri

S iN iE iS iW

]
where ri

S are the local sensor
readings, and ii

N , ii
E, ii

S, ii
W (each one ∈R

nc) are the input communication values coming from the adjacent
voxel placed above, right, below, left—if the voxel is not connected to another voxel on a given side, the
corresponding vector of communication values is the zero vector 0 ∈R

nc . Each ANN outputs a vector
yi = f i

θ i

(
xi

) = [
a oi

N oi
E oi

S oi
W

]
where a is the local actuation value, and oi

N , oi
E, oi

S, oi
W are the vectors of

nc output communication values going towards the adjacent voxel placed above, right, below, left of the
voxel.

Figure 3 shows a scheme of a distributed neural controller for a 3 × 1 VSR.
Output communication values produced by the ANN of a voxel at time step k − 1 are used by the

adjacent voxels ANNs at k, which introduces some delay in the propagation of signals across the VSR
body. Not only could such propagation delay be beneficial, as shown by Cheney et al. (2014), but it also
has a biological foundation (Segev and Schneidman, 1999).

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 9

Figure 3. A schematic representation of the distributed controller for a 3 × 1 VSR with two sensors
in each voxel and nc = 1 communication channel per side. Blue and red curved arrows represent the
connection of the ANN with inputs (sensors and input communication channels) and outputs (actuator
and output communication channels), respectively.

Concerning the controller parameters, they consist of the concatenation of the parameters of each
voxel ANN: θ = [θ 1 θ 2 . . . θ n], where n is the number of voxels composing the VSR.

The distributed controller in a VSR can be instantiated according to two design choices: (a) there
could be an identical ANN in each voxel, both in terms of architecture and weights (homo-distributed),
or (b) each voxel can have its own independent ANN that can differ from others in weights, hidden layers,
and number of inputs and outputs (hetero-distributed). The main differences between the two proposed
configurations regard the optimization process and the allowed sensor equipment of the VSRs. Namely,
for a VSR controlled by a homo-distributed controller, each voxel needs to have the same amount of
sensor readings to pass to the controller, to ensure the number of inputs fed to the ANN is the same. In
addition, evolving a single ANN for each voxel requires less exploration, given the reduced number of
parameters to optimize (all θ i are the same), but likely requires more fine-tuning to make it adequate for
controlling each voxel and achieve a good global performance. On the contrary, the hetero-distributed
architecture leaves more freedom, allowing any sensor configuration, but has a much larger search space
in terms of number of parameters to optimize.

The distributed neural controllers for VSRs used in this work have a similarity with neural cellular
automata (NCA) techniques (Nichele et al., 2017; Mordvintsev et al., 2020), in which the lookup table
of each cellular automaton (CA) cell is replaced by an ANN. The ANN therefore defines the cell next
state by processing the local information of its nearest neighbors. NCA have been successfully used
to grow and replicate CA shapes and structures with neuroevolution (Nichele et al., 2017) and with
differentiable learning (Mordvintsev et al., 2020), to produce self-organising textures (Niklasson et al.,
2021), to grow 3D artifacts (Sudhakaran et al., 2021), for regenerating soft robots (Horibe et al., 2021),
and for controlling reinforcement learning agents (Variengien et al., 2021).

4 Pruning techniques
We consider different forms of pruning of a fully connected feed-forward ANN. They share a common
working scheme and differ in three parameters that define an instance of the scheme: the scope, that is, the
subset of connections that are considered for the pruning, the criterion, defining how those connections
are sorted in order to decide which ones are to be pruned first, and the pruning rate, that is, the rate of
connections in the scope that are actually pruned. In all cases, the pruning of a connection corresponds
to setting to 0 the value of the corresponding element θi of the network parameters vector θ .

Since we are interested in the effects of pruning of ANNs used as controllers for robotic agents, we
assume that the pruning can occur during the life of the agent, at a given time tp. As a consequence, we

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

10 G. Nadizar et al.

Algorithm 1 The algorithm for pruning a vector θ of ANN parameters
given the parameters scope, criterion, and pruning rate ρ.

may use information related to the working of the network up to the pruning time, as, for example, the
actual values computed by the neurons, when defining a criterion.

Algorithm 1 shows the general scheme for pruning. Given the vector θ of the parameters of the ANN,
we first partition its elements, that is, the connections between neurons, using the scope parameter (as
detailed below): in Algorithm 1, the outcome of the partitioning is a list (h1, . . . , hn) of lists of indices
of θ . Then, for each partition, we sort its elements according to the criterion, storing the result in a list
of indices h. Finally, we set to 0 the θ elements corresponding to an initial portion of h: the size of the
portion depends on the pruning rate ρ and is �|h|ρ�.

We explore three options for the scope parameter and five for the criterion parameter; concerning the
pruning rate ρ ∈ [0, 1], we experiment with many values (see Section 5).

For the scope, we have:

• Network: all the connections are put in the same partition.
• Layer: connections are partitioned according to the layer of the destination neuron.
• Neuron: connections are partitioned according to the destination neuron (also called post-synaptic

neuron).

For the criterion, we have:

• Weight: connections are sorted according to the absolute value of the corresponding weight. This
corresponds to LMP (see Section 2).

• Signal mean: connections are sorted according to the mean value of the signal they carried from
the beginning of the life of the robot to the pruning time.

• Absolute signal mean: similar to the previous case, but considering the mean of the absolute value.
• Signal variance: similar to the previous case, but considering the variance of the signal. This

corresponds to CVP (see Section 2).
• Random: connections are sorted randomly.

All criteria work with ascending ordering: lowest values are pruned first. Obviously, the ordering does
not matter for the random criterion. When we use the signal variance criterion and prune a connection,
we take care to adjust the weight corresponding to the bias of the neuron the pruned connection goes to by
adding the signal mean of the pruned connection: this basically corresponds to making that connection
carry a constant signal.

We highlight that the three criteria based on the signal are data-driven; on the contrary, the weight and
the random criteria are data-free. In other words, signal-based criteria operate based on the experience
the ANN acquired up to the pruning time. As a consequence, they constitute a form of adaptation acting
on the time scale of the robot life, that is shorter than the adaptation that occurs at the evolutionary

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 11

time scale; that is, they are a form of learning. As such, we might expect that, on a given robot that
acquires different experiences during the initial stage of its life, the pruning may result in different
outcomes. Conversely, the weight criterion always results in the same outcome, given the same robot.
In principle, hence, signal-based criteria might result in a robot being able to adapt and perform well
also in conditions that are different than those used for the evolution. We experimentally verified this
hypothesis: we discuss the results in Section 5.

5 Experiments and results
We performed various experiments to the extent of answering the following research questions:

RQ1 Is the evolution of effective VSR controllers hindered by pruning? What are the factors that
mostly influence the effects of pruning?

RQ2 Does pruning have an impact on the adaptability of the evolved VSR controllers to different
tasks? Is the impact of pruning dependent on the same factors highlighted for RQ1?

RQ3 Can evolution find a path towards VSR controllers that are life-long effective, that is,
effective both before and after pruning? How do these controllers perform in terms of
adaptability?

For answering these questions, we experimented with evolving the controller parameters of various
combinations of controller architectures, ANN topologies, and VSR morphologies. During the evolu-
tion, we enabled different variants of pruning, including, as a baseline, the case of no pruning. We
considered the task of locomotion, in which the goal for the robot is to travel as fast as possible on a
terrain. We describe in detail the experimental procedure and discuss the results in Section 5.2.

Each evolved VSR was then re-evaluated on different terrains to measure its adaptability, as described
in Section 5.3.

In order to evaluate whether a VSR could evolve to be effective both with and without pruning,
we repeated the experimental procedure presented for RQ1 and RQ2, with some minor variations,
thoroughly detailed in Section 5.4.

For evolved VSRs, we also examined the resulting behaviors, performing a systematic analysis based
on the features proposed by Medvet et al. (2021), which should capture the different gaits achieved by
VSRs. We provide a brief description of the analysis pipeline and of the aforementioned features together
with the obtained results in Section 5.5.

In order to reduce the number of variants of pruning to consider when answering RQ1, RQ2, and
RQ3, we first performed a set of experiments to assess the impact of pruning in a static context, that is,
in ANNs not subjected to evolutionary optimization and not used to actually control a VSR. We refer to
these conditions as static and disembodied and present the experiments and the corresponding findings
in the next section.

5.1 Characterization of pruning variants in static and disembodied conditions
We aimed at evaluating the effect of different forms of pruning on ANNs in terms of how the output
changes with respect to no pruning, given the same input. In order to make this evaluation significant
with respect to the use case of this study, that is, ANNs employed as controllers for VSRs, we considered
ANNs with topologies that resemble the ones used in the next experiments and fed them with inputs that
resemble the readings of the sensors of a VSR doing locomotion.

In particular, for the ANN topology we considered three input sizes ninput ∈ {10, 25, 50} and three
depths nlayers ∈ {0, 1, 2}, resulting in 3 · 3 = 9 topologies, all with a single output neuron. For the topolo-
gies with inner layers, we set the inner layer size to the size of the input layer. In terms of the
dimensionality p of the vector θ of the parameters of the ANN, the considered ANN topologies cor-
respond to values ranging from p = (10 + 1) · 1 = 11, for ninput = 10 and nlayers = 0, to p = (50 + 1) ·

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

12 G. Nadizar et al.

Figure 4. Mean absolute difference e between the output of a pruned ANN and the output of the corre-
sponding unpruned ANN vs. the pruning rate ρ, for different ANN structures and with different pruning
criteria (color) and scopes (linetype).

(50 + 1) · (50 + 1) · 1 = 132 651, for ninput = 50 and nlayers = 2, where the +1 is the bias. We instanti-
ated 10 ANNs for each topology, setting θ by sampling the multivariate uniform distribution U(− 1, 1)p

of appropriate size, hence obtaining 90 ANNs.
Concerning the input, we fed the network with sinusoidal signals with different frequencies for each

input, discretized in time with a time step of �t = 1/10 s. Precisely, at each time step k, with t = k�t,
we set the ANN input to x(k), with x(k)

i = sin
(

k�t
i+1

)
, and we read the single output y(k) = fθ

(
x(k)

)
.

We considered the 3 · 5 pruning variants (scope and criteria) and 20 values for the pruning rate ρ,
evenly distributed in [0, 0.75]. We took each one of the 90 ANNs and each one of the 300 pruning
variants, we applied the periodic input for 10 s, triggering the actual pruning at tp = 5 s, and we measured
the mean absolute difference e between the output fθ

(
x(k)

)
during the last 5 s, that is, after pruning, and

the output fθ̂
(
x(k)

)
of the corresponding unpruned ANN:

e = 1

50

k=100∑

k=50

∥∥fθ
(
x(k)

) − fθ̂
(
x(k)

)∥∥ . (1)

Figure 4 summarizes the outcome of this experiment. It displays one plot for each ANN topology
(i.e., combination of nlayer and ninput) and one line showing the mean absolute difference e, averaged
across the 10 ANNs with that topology, vs. the pruning rate ρ for each pruning variant: the color of the
line represents the criterion, the line type represents the context. Larger ANNs are shown in the bottom
right of the matrix of plots.

By looking at Figure 4, we can do the following observations. First, the factor that appears to have the
largest impact on the output of the pruned ANN is the criterion (the color of the line in Figure 4). Weight
and absolute signal mean criteria consistently result in lower values for the difference e, regardless of
the scope and the pruning rate. On the other hand, with the signal mean criterion, e becomes large even

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 13

Figure 5. Comparison of the output of pruned and unpruned versions of two ANNs of different
structures: ninput = 10, nlayers = 0, above, and ninput = 100, nlayers = 2, below. Pruning occurs at tp = 5 s.

with low pruning rates: for ρ > 0.1 there seems to be no further increase in e. Interestingly, the random
criterion appears to be less detrimental, in terms of e, than signal mean in the vast majority of cases.
We explain this finding by the kind of input these ANNs have been fed with, that is, sinusoidal signals:
the mean of periodic signals with a period shorter enough than the time before pruning is close to 0 and
this results in connections actually carrying some information to be pruned. We recall that we chose to
use sinusoidal signals because they are representative of the sensor readings a VSR doing locomotion
could collect, in particular when exhibiting an effective gait, that likely consists of movements that are
repeated over the time.

Second, apparently, there are no bold differences among the three values for the scope parameter. As
expected, for the shallow ANNs (with nlayers = 0), the scope parameter does not play any role, since there
is one single layer and one single output neuron (being the same destination for all connections).

Third, the pruning rate ρ impacts on e as expected: in general, the larger ρ, the larger e. However, the
way e changes by increasing ρ seems to depend on the pruning criterion: for weight and absolute signal
mean, Figure 4 suggests a linear dependency. For the other criteria, e quickly increases with ρ and then
remains stable, for signal mean, or increases more slowly, for signal variance and random.

Fourth and finally, the ANN topology appears to play a minor role in determining the impact of
pruning. The ANN depth (i.e., nlayers) seems to impact slightly on the difference between pruning variants:
the deeper the ANN, the fuzzier the difference. Concerning the number of inputs ninput, by looking at
Figure 4 we are not able to make any strong claim.

Based on the results of this experiment, summarized in Figure 4, we decided to consider only weight,
absolute signal mean, and random criteria and only the network scope for the next experiments.

To better understand the actual impact of the chosen pruning variants on the output y(k) of an ANN,
we show in Figure 5 the case of two ANNs. The figure shows the value of the output of the unpruned
ANN (in gray), when fed with the input described above (up to t = 20s), and the outputs of the 3 · 4
pruned versions of the same ANN, according to the three chosen criteria and four values of ρ.

5.2 RQ1: impact on the evolution
In order to understand if the evolution of VSR controllers is hindered by pruning, we performed various
experiments.

First, we evaluated the effect of pruning on different controller architectures and ANN topologies. To
this extent, we evolved nine VSR controllers, resulting from the combination of three architectures and
three ANN topologies, and one morphology.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

14 G. Nadizar et al.

Table 1. Number of parameters to be optimized by the EA for
each controller architecture and ANN topology

nlayers Centralized Hetero-dist. Homo-dist.
0 360 1125 117
1 1620 2623 273
2 2880 4121 429

We experimented with the three controller architectures presented in Section 3.2: centralized,
homo-distributed, and hetero-distributed. We combined each of these with different ANN topologies,
considering ANNs with nlayers ∈ {0, 1, 2}. For the ANNs with hidden layers, we set the size of those lay-
ers to match the size of the input layer. Regarding the distributed controllers, we set nc = 2, and for the
hetero-distributed architecture we kept the amount of hidden layers homogeneous throughout the entire
VSR.

Concerning the VSR morphology, we employed the biped, which consists of 10 voxels arranged in a
4 × 3 grid, as shown in Figure 1a. We experimented with two different sensor configurations: uniform,
where each voxel is equipped with velocity, touch, and area sensors; and spined-touch-sighted, with area
sensors in each voxel, velocity sensors in the voxels in the top row, touch sensors in the voxels in the
bottom row, and vision sensors in the voxels of the rightmost column. These two configurations resulted
in 40 and 35 overall sensor readings, respectively.

We combined the spined-touch-sighted configuration with the centralized and the hetero-distributed
controller architectures, whereas we used the uniform configuration in conjunction with the homo-
distributed architecture due to its requirements of having the same amount of sensors in each voxel.
Table 1 summarizes the number of parameters to be optimized for each VSR controller we evolved.

For each of the nine combinations of controller architecture and ANN topology, we used three
different pruning criteria: weight, absolute signal mean, and random, all with network scope, as thor-
oughly described in Section 4. For each criterion, we employed the following pruning rates: ρ ∈
{0.125, 0.25, 0.5, 0.75}. We remark that for distributed controllers, we applied pruning separately for
each voxel ANN. Furthermore, we evolved, for each combination, a controller without pruning to have
a baseline for meaningful comparisons.

To perform evolution, we used the simple evolutionary algorithm (EA) described in Algorithm 2,
a form of evolutionary strategy. At first, npop individuals, that is, numerical vectors θ , are put in the
initially empty population, all generated by assigning to each element of the vector a value sampled
from the uniform distribution U(− 1, 1). Subsequently, ngen evolutionary iterations are performed. On
every iteration, which corresponds to a generation, the fittest quarter of the population is chosen to
generate npop − 1 children, each obtained by adding values sampled from a normal distribution N(0, σ)
to each element of the element-wise mean μ of all parents. The generated offspring, together with the
fittest individual of the previous generation, end up forming the population of the next generation, which
maintains the fixed size npop.

We used the following EA parameters: npop = 48, ngen = 416 (corresponding to 20 000 fitness evalua-
tions), and σ = 0.35. We verified that, with these values, evolution was in general capable of converging
to a solution, that is, longer evolutions would have resulted in negligible fitness improvements.

We optimized VSRs for the task of locomotion: the goal of the VSR is to travel as fast as possi-
ble on a terrain along the positive x-axis. We quantified the degree of achievement of the locomotion
task of a VSR by performing a simulation of duration tf and measuring the VSR average velocity

vx = x(tf) − x(ti)

tf − ti

, x(t) being the position of the robot center of mass at time t and ti being the initial

time of assessment. In the EA of Algorithm 2, we hence used vx as fitness for selecting the best indi-
viduals. We set tf = 60 s and ti = 20 s to discard the initial transitory phase. For the controllers with
pruning, we set the pruning time at tp = 20 s: this way the evaluation of the fitness of the VSR only takes
into consideration the velocity after pruning. In section Section 5.4, instead, we investigate the effects
of determining the VSR fitness considering both the pre- and the post-pruning velocities (ti < tp).

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 15

Algorithm 2 The EA, a form of evolutionary strategy, used for
neuroevolution.

We remark that the EA of Algorithm 2 constitutes a form of Darwinian evolution with respect to
pruning: the effect of pruning on an individual does not impact on the genetic material that is passed to
the offspring by that individual. More precisely, the element-wise mean μ is computed by considering
the parents θ vectors before the pruning.

For favoring generalization, we evaluated each VSR on a different randomly generated hilly terrain,
that is, a terrain with hills of variable heights and distances between each other. To avoid propagating
VSRs that were fortunate in the random generation of the terrain, we re-evaluated, on a new terrain, the
fittest individual of each generation before moving it to the population of the next generation.

For each of the 3 · 3 · (3 · 4 + 1) combinations of controller architecture, ANN topology, pruning
criterion, and pruning rate (the +1 being associated with no pruning), we performed 10 independent, that
is, based on different random seeds, evolutionary optimizations of the controller with the aforementioned
EA. We hence performed a total of 1170 evolutionary optimizations. We used 2D-VSR-Sim (Medvet
et al., 2020) for the simulation, setting all parameters to default values.

5.2.1 Impact of the controller architecture and the ANN topology
Figure 6 summarizes the findings of this experiment. In particular, the plots show how the pruning rate
ρ impacts the fitness of the best individual of the last generation, for the different controller architectures
and ANN topologies employed in the experiment.

The most remarkable trait of the plots is that individuals whose controllers have been pruned with
weight or absolute signal mean criteria significantly outperform those who have undergone random
pruning. This suggests that randomly pruning controllers at each fitness evaluation is detrimental to
their evolution. In fact, individuals with a good genotype could perform poorly after the removal of
important connections, while others could surpass them thanks to a luckier pruning, hence the choice
of fittest individuals for survival and reproduction could be distorted. Moreover, Figure 6 confirms that
the heuristics employed, based on weight and absolute signal mean criteria (Section 4), successfully
choose connections that are less important for the controller to be removed, thus limiting the damage of
connection removal.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

16 G. Nadizar et al.

Figure 6. Fitness vx (median with lower and upper quartiles across the 10 repetitions) vs. pruning
rate ρ, for different pruning criteria (color), controller architectures (plot row), and ANN topologies
(plot column).

In addition, comparing the subplots of Figure 6, there are no bold differences between the rows, which
leads us to conclude that the architecture of the controller does not play a key role in determining the
impact of pruning on the performance of the controller.

Similarly, different ANN topologies are not affected much diversely by pruning, as we notice no sharp
distinctions between the columns of the plots. The first subplot, however, stands out from the others, as
the trend of the lines seems to suggest that for the centralized controller architecture with no hidden
layers pruning could have a beneficial effect. However, the upper and lower quartiles reveal that the
distribution of the fitness vx is spread across a considerably large interval, hence it is difficult to draw
any sharp conclusion on the possible benefits of pruning for such controller.

For all other subplots, we can note that a higher pruning rate ρ leads to weaker performance of the
controller. In this case, the result is in line with expectations, as an increasing ρ means that we are
removing more connections from the ANN, thus reducing its expressiveness. Nevertheless, controllers
pruned with a proper heuristic have evolved to achieve results comparable to those who have not under-
gone pruning during their evolution, considered here as baseline. We performed a Mann–Whitney U test
with the null hypothesis that, for each combination of controller architecture, ANN topology, pruning
criterion, and pruning rate ρ, the distribution of the best fitness is the same as obtained from the corre-
sponding baseline controller, that is, with the same controller architecture and ANN topology, evolved
without pruning, and we found that the p-value is greater than 0.05 in 66 out of 108 cases.

5.2.2 Impact of the VSR morphology
Having noticed no significant difference between the centralized and distributed controller architec-
tures, we decided to assess the impact of pruning on different VSR morphologies using only the
centralized controller architecture. To do so, we performed the evolutionary optimization of three addi-
tional VSRs, combining the three ANN topologies employed in the previous experiment with the worm
morphology.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 17

Figure 7. Fitness vx (median with lower and upper quartiles across the 10 repetitions) vs. pruning
rate ρ, for different pruning criteria (color), VSR morphologies (plot row), and ANN topologies (plot
column).

Such morphology consists of 10 voxels arranged in a 5 × 2 grid, as displayed in Figure 1b. We
equipped the VSR with the spined-touch-sighted sensor configuration, similarly to what we have done
in the previous experiment with the centralized controller architecture and the biped morphology. The
amount of parameters to be optimized is the same as in the first column of Table 1, as the two VSR
morphologies share the same amount of voxels and sensor readings, hence the number of inputs and
outputs of the controller ANNs is the same in both cases.

We repeated the exact experimental pipeline as before, employing the same pruning criteria and prun-
ing rates, without changing any hyper-parameter. For each of the 3 · (3 · 4 + 1) combinations of ANN
topology, pruning criterion, and pruning rate, we performed 10 independent evolutionary optimizations,
for a total of 390 runs.

The results are displayed in Figure 7, together with the outcomes of the previous experiment for
the centralized controller architecture for the biped morphology. The conclusions we can draw from this
matrix of plots are rather similar to what we have observed for Figure 6, both in terms of pruning criteria
and in terms of differences among the various ANN topologies employed. We can assess the effect of
pruning on different VSR morphologies by comparing the rows of the figure, deducing that the biped
and the worm are impacted in a substantially equal manner by pruning.

As before, controllers pruned with a proper heuristic achieve results comparable to those who have not
undergone pruning during their evolution. To confirm this, we performed a Mann–Whitney U test with
the null hypothesis that, for each combination of VSR morphology, ANN topology, pruning criterion,
and pruning rate ρ, the distribution of the best fitness is the same as obtained from the corresponding
baseline controller, that is, with the same VSR morphology and ANN topology, evolved without pruning,
and we found that the p-value is greater than 0.05 in 30 out of 72 cases.

5.2.3 Pruning after the evolution
Based on the results of Figure 6 and Figure 7, we speculate that controllers pruned with weight and
absolute signal mean criteria look robust to pruning because they result from an evolution in which
VSRs are subjected to pruning, rather than because those kinds of pruning are, per se, not particularly
detrimental. To test this hypothesis, we carried out an additional experiment. We took the best individuals
of the last generations for the centralized controller with the biped morphology and we re-assessed them
(on a randomly generated hilly terrain similar to the one used in evolution). For the individuals that were

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

18 G. Nadizar et al.

Figure 8. Median, lower quartiles, and upper quartiles of re-assessment velocity vx vs. re-assessment
pruning rate ρ of individuals evolved with and without pruning for different ANN topologies for the
centralized controller and biped morphology.

evolved without pruning, we performed 3 · 4 additional evaluations, introducing pruning after tp = 20 s
with the previously mentioned 3 criteria and 4 rates ρ.

Figure 8 shows the outcome of this experiment, that is, vx on the re-assessment plotted against the
re-assessment pruning rate ρ for both individuals evolved with (solid line) and without (dashed line)
pruning. The foremost finding is that individuals who evolved with pruning visibly outperform the ones
whose ancestors have not experienced pruning, for almost all pruning rates. This corroborates the expla-
nation we provided above, that is, VSRs whose ancestors evolved experiencing pruning are more robust
to pruning than VSRs that evolved without pruning.

Besides analyzing the aggregate results, we also examined the behavior of a few evolved VSRs in
a comparative way, that is, with and without pruning in re-assessment. We found that, interestingly, in
some cases the VSR starts to move effectively only after pruning: this might suggest that pruning shaped
the evolutionary path at the point that the lack of pruning becomes detrimental, similarly to what happens
in the brain of complex animals (see Section 2). We provide videos of a few VSRs exhibiting a change
in their behavior after pruning at https://youtu.be/-HCHDEb9azY, https://youtu.be/oOtJKri6vyw, and
https://youtu.be/uwrtNezTrx8. We speculate that choosing ti = tp might be a contributing cause to this
neat behavioral shift, hence in Section 5.4 we investigate the effects of setting ti < tp.

5.3 RQ2: impact on the adaptability
For the sake of this research question, we defined VSR controllers as adaptable if they are able to
effectively accomplish locomotion on terrains that none of their ancestors ever experienced locomotion
on. Hence, to assess the adaptability of evolved controllers, we measured the performance in locomotion
of the best individuals of the last generations on a set of different terrains. We experimented with the
following terrains: (a) flat, (b) hilly with 6 combinations of heights and distances between hills, (c)
steppy with 6 combinations of steps heights and widths, (d) downhill with 2 different inclinations, and
(e) uphill with 2 different inclinations (Figure 9). As a result, each individual was re-assessed on a total
of 17 different terrains. Note that, in this experiment, controllers were not altered in between evolution
and re-assessment, i.e., they were re-evaluated with the same pruning criterion, if any, and pruning rate
ρ as experienced during evolution.

Figure 10 displays the outcome of this experiment. Namely, for each of the different controller
architectures, VSR morphologies, ANN topologies, and pruning criteria, the re-assessment velocity
vx (averaged on the 17 terrains) is plotted against the pruning rate ρ. The results in Figure 10 are
coherent with the findings of Section 5.2: comparing the subplots, we can conclude that neither the
controller architecture nor the morphology of the VSR are relevant in determining the effect of pruning

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://youtu.be/-HCHDEb9azY
https://youtu.be/oOtJKri6vyw
https://youtu.be/uwrtNezTrx8
https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 19

Figure 9. Different types of terrains employed for measuring VSR adaptability.

on adaptability, whereas the ANN topology is somewhat of impact. More in details, for shallow net-
works, pruning seems to enhance adaptability for the centralized controller architecture, whereas it has
a slightly detrimental effect in all other cases.

Anyway, for controllers evolved employing weight or absolute signal mean pruning criteria, the re-
assessment results are comparable to those of controllers evolved without pruning. We performed a
Mann-Whitney U test with the null hypothesis that, for each combination of controller architecture,
VSR morphology, ANN topology, pruning criterion, and pruning rate ρ, the distribution of the average
re-assessment velocities across all terrains is the same as the one obtained from the re-assessment of
the corresponding baseline controller, i.e., with the same VSR morphology and ANN topology, evolved
without pruning, and we found that the p-value is greater than 0.05 in 79 out of 144 cases.

5.4 RQ3: life-long effectiveness
In the previous experiments, the behavior of the VSR before the pruning played no role in determining
the fitness of the robot, hence in driving the evolution. To determine whether evolution could eventually
find a path towards VSR controllers that are life-long effective, we repeated the experimental pipeline
described for RQ1, setting ti = 5 s and tp = 20 s for the velocity vx calculation—we still “discard” the
first 5 s of each simulation to avoid considering transient behaviors. This way, the VSR fitness is com-
puted by taking into account both phases of the life of the VSR, before and after the occurrence of
pruning. Such procedure has stronger biological resemblance than discarding the pre-pruning life for
fitness computation, as in nature the survival and mating likelihoods are estimated on the entire lifespan
of an individual, and not only after full brain development.

Since for RQ1 and RQ2 we have noticed no significant differences between the different controller
architectures, VSR morphologies, and ANN topologies, for this analysis we only experiment with the
centralized controller architecture with an ANN with one hidden layer on the biped morphology. Again,
we perform 10 independent evolutionary optimizations, each based on a different random seed.

Figure 11 displays the results for this experiment (right plot), paired with those obtained with the
corresponding configuration for RQ1 (left plot). Namely, for each pruning criterion, the median and
the quartiles of velocity at the end of evolution vx are plotted against the pruning rate. Observing the
plots, we can answer affirmatively to RQ3: evolution has indeed managed to find a successful path

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

20 G. Nadizar et al.

Figure 10. Median, lower quartiles, and upper quartiles of re-assessment velocity vx vs. pruning rate ρ

averaged across re-assessment terrains for different pruning criteria, VSR controller architectures, VSR
morphologies, and ANN topologies.

Figure 11. Fitness vx (median with lower and upper quartiles across the
10 repetitions) vs. pruning rate ρ, for controllers evolved with ti = tp = 20 s (first column) and
controllers evolved with ti = 5 s and tp = 20 s (second column). Both controllers share the centralized
architecture, the ANN topology with nlayers = 1, and the biped morphology.

towards controllers that can perform effectively both before and after pruning. Comparing the two plots
of Figure 11, there are no outstanding differences, so we can draw similar conclusions as for RQ1, in the
sense that pruning remains not significantly detrimental, provided that it is applied with proper heuristics
and not randomly.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 21

Figure 12. Median, lower quartiles, and upper quartiles of velocity vx vs. pruning rate ρ of individuals
before (solid line) and after (dashed line) pruning for different pruning criteria (color).

Figure 13. Average re-assessment velocity vx (median with lower and upper quartiles across the 10
repetitions) vs. pruning rate ρ, for controllers evolved with ti = tp = 20 s (first column) and controllers
evolved with ti = 5 s and tp = 20 s (second column). Both controllers share the centralized architecture,
the ANN topology with nlayers = 1, and the biped morphology.

To gain further insights, we considered the velocity of the evolved VSRs separately for the two phases
of life (before and after pruning). More in detail, we computed the pre-pruning velocity using ti = 5 s and
tf = 20 s and the post-pruning velocity with ti = 20 s and tf = 60 s. The results are shown in Figure 12,
where, similarly as before, the measured velocity is plotted against the pruning rate for each pruning
criterion applied. In the plots, the solid line indicates the pre-pruning velocities, while the dashed line
represents the post-pruning velocities. Comparing the two lines for each criterion, we can note that for
the weight and absolute signal mean criteria, there is a small gap between the two lines, which indicates
that most of the controllers abilities are retained after pruning. Contrarily, for the random criterion,
there is a significant performance decrease after the occurrence of pruning, which is in line with the
previous findings (Section 5.2). We explain this result as follows: since random pruning acts differently
on individuals of the same evolutionary lineage, evolution is not able to “guarantee” good performance
after pruning. However, since it is also driven by the performance before pruning, evolution produces
controllers that are effective in terms of prepruning velocity. Put simply, with random pruning, only one
of the two objective in a biobjective evolutionary optimization is actually improvable.

Having observed that, similarly to biological organisms, controllers can evolve to be effective both
before and after pruning, we decided to investigate the performance of such controllers also in terms of
adaptability. To this extent, we repeated the experimental pipeline described for RQ2.

Figure 13 shows the re-assessment velocities for this experiment (right plot), paired with those
obtained with the corresponding configuration for RQ2 (left plot). From the comparison of the two sub-
plots, individuals that were evolved in a more biologically plausible fashion, that is, taking into account
both the pre- and postpruning velocities for fitness evaluation, seem to be slightly more adaptable than
those whose evolution was carried out considering only the post pruning performance. However, the
difference between the two plots is not significant, hence we cannot draw sharp conclusions on this.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

22 G. Nadizar et al.

5.5 VSR behavior analysis
Having observed that pruning does not significantly affect the velocities of VSRs in locomotion, we
decided to investigate its behavioral impact. Namely, we aimed at systematically evaluating whether
the pre- and post-pruning behaviors of VSRs were substantially different. To this extent, we relied on
a consolidated data analysis procedure consisting of 1. feature extraction, 2. dimensionality reduction,
and 3. visualization.

The features we employed to capture a VSR behavior in locomotion (Medvet et al., 2021) are based
on the movement of the center of mass of the VSR over time and on the way the VSR touches the
ground during gait, i.e., its footprints. Here we provide just a brief description of the feature extraction
procedure—we refer the reader to (Medvet et al., 2021) for further details.

Concerning the center of mass movement, we extracted its signals on the x- and y-axis from a
sequence H of snapshots—a snapshot is the description of the spatial configuration of every voxel of
the VSR at a given time step—and we computed the signals of their first differences. From these, we
calculated the Fast Fourier Transforms (FFT), from which we took the magnitude and we filtered out
frequency components not in the range [0 Hz, 10 Hz]. Last, we re-sampled the obtained signals to have
nfreq = 100 components for each axis, constituting the final feature vector related to the center of mass
movement.

Regarding the footprints, for each snapshot at each time step k, we projected the minimal bounding
square of the VSR on the x-axis, that is, the smallest square parallel to the x-axis that completely contains
the VSR, and we partitioned the projection in 8 equal sections, from which we built a binary vector (of
size 8), the footprint, where each element was set to 1 iff the VSR was touching the ground for more
than half of the corresponding segment. To extract some features from the footprints, we considered a
sequence of snapshots H, which we processed in the following way:

1. We split H in a sequence of non-overlapping subsequences, each corresponding to �tfootprint =
0.5 s.

2. We computed the sequence M of footprints, where each element was obtained as the element-
wise mode of the footprints in the corresponding subsequence;

3. We considered all the non-overlapping n-grams of footprints in M, 2 ≤ n ≤ 10 occurring at least
twice, we computed their overall duration and we selected the main n-gram M� as the one with
the longest overall duration.

4. We processed M� to obtain the following descriptors: average touch area of the footprints in M�,
overall duration of all M� occurrences, length of the main n-gram |M�|, mode of the intervals
between consecutive occurrences of M�, and rate of intervals that are equal to the mode.

We obtained the feature vector related to the footprints of the VSR through the concatenation of the
features extracted from M�.

Given the concatenation of the feature vectors of the center of mass movement and of the footprints,
we performed dimensionality reduction using the principal component analysis (PCA) from 25 to 2
components, in order to visualize the results in scatter plots.

We exploited the aforementioned analysis pipeline to evaluate the impact of pruning on the behavior
of a VSR. In addition, we investigated whether changing the beginning evaluation time ti with respect to
the pruning time tp would result in more or less visible behavioral differences. To this extent, we focused
on the VSR configuration we employed both in RQ1 and RQ3, namely, the biped morphology with the
centralized controller architecture with an ANN with 1 hidden layer.

For each evolved VSR, we extracted the behavior features in a re-assessment performed on flat terrain,
in order to minimize the impact of any terrain irregularities on the features. To distinguish pre- and post-
pruning behaviors, we performed the feature extraction on two separate intervals of the VSR lifetime:
before pruning, from 5 s to 20 s, and after pruning, from 20 s to 60 s.

The results are shown in the scatter plots of Figure 14 and Figure 15, for VSRs evolved with ti = tp =
20 s (i.e., with the evolution driven only by post-pruning performance) and ti = 5 s and tp = 20 s (i.e., with

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 23

Figure 14. Scatter plots of the first two components resulting from the PCA analysis of the features
described in Section 5.5 for the biped VSR with a centralized controller. Each subplot corresponds
to a pruning criterion (row) and a pruning rate ρ (column); pruning is applied at tp = ti = 20 s. The
color of the bubble indicates whether the evaluation of velocity and feature extraction were performed
before or after the occurrence of pruning, while the size of the bubble is proportional to the achieved
velocity vx.

the evolution driven by life-long performance), respectively. Each point in the scatter plot corresponds
to a behavior defined by the aforementioned features, its size depends on the velocity achieved by the
VSR in the evaluation interval.

Comparing the two figures, the most outstanding trait is that in Figure 14 the distributions of behaviors
achieved after pruning seem to detach more from the pre pruning behaviors distributions, compared to
Figure 15, where the two distributions show in general a greater overlap—this difference is particularly
visible for small pruning rates. To give an explanation to this result, we recall that the VSRs of Figure 14
have been evolved with ti = tp = 20 s, hence the evaluation of fitness does not consider the prepruning
behavior of the robot. We hypothesize that in these circumstances evolution pushes the VSR towards
a reasonable postpruning behavior, but does not incentive prepruning effectiveness. Therefore, we can
notice a significant shift between the pre- and postpruning behaviors. Contrarily, VSRs of Figure 15
have been evolved with ti = 5 s, that is, driven by life-long performance. This explains the smaller shift
in behaviors, since the VSRs are required to achieve successful locomotion both before and after pruning.

Focusing on Figure 15, it can be seen that for large pruning rates pre- and postpruning distributions
seem to diverge more. Nevertheless, there is a small but non negligible behavior shift also for VSRs
whose controllers do not undergo pruning (first column, ρ = 0). Moreover, diversity among behaviors
of different robots evolved and re-assessed in the same conditions (i.e. markers of the same color in the
same plot) is itself quite large. Based on these considerations, we cannot spot any sharp general trend
concerning the effect of pruning on the behavior of evolved VSRs.

Concerning the behavioral shifts induced by different pruning criteria, we cannot draw any sharp
conclusion from the plots, either. Comparing the rows of Figure 15, we can notice that with ρ ≤ 0.25,
the greatest deviation is induced by the absolute signal mean criterion, while the VSRs still retain most
of their abilities. With a larger pruning rate, instead, the shifts caused by all criteria are comparable, but,
while the VSRs pruned with a proper heuristic generally preserve their velocities, the randomly pruned
ones suffer from a significant performance decrease.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

24 G. Nadizar et al.

Figure 15. Scatter plots of the first two components resulting from the PCA analysis of the features
described in Section 5.5 for the biped VSR with a centralized controller. Each subplot corresponds to
a pruning criterion (row) and a pruning rate ρ (column); pruning is applied at tp = 20 s (ti = 5 s). The
color of the bubble indicates whether the evaluation of velocity and feature extraction were performed
before or after the occurrence of pruning, while the size of the bubble is proportional to the achieved
velocity vx.

6 Concluding remarks
We analyzed the effects of incorporating pruning in the evolution of neural controllers for VSRs. In
particular, we aimed at evaluating whether this biologically inspired technique could impact artificial
agents similarly to living creatures, that is, favoring adaptability, or if it would prove detrimental for the
resulting individuals. To this extent, we considered the task of locomotion and we evolved the controller
of VSRs employing several pruning criteria and pruning rates. Overall, we investigated three controller
architectures (centralized, homo-distributed, and hetero-distributed), two VSR morphologies (biped and
worm), three ANN topologies, and two kinds of fitness measures (postpruning and life-long). Finally,
we carried out a behavioral analysis based on frequency domain and gait features.

Our experimental results show that the application of pruning with a limited rate and a proper criterion
during evolution can result in individuals that are comparable to those obtained without pruning, as
well as more robust to pruning than the latter ones. In addition, we have shown that individuals evolved
with pruning do not appear significantly less adaptable to different tasks, that is, locomotion on unseen
terrains, than those evolved without pruning. We believe, hence, that the potential advantages deriving
from reducing the network complexity by pruning, could be actually achieved without sacrificing the
effectiveness of evolved controllers.

As an extension of this work, it might be possible to explore the effects of pruning on more biologi-
cally plausible neural controllers as, e.g., those based on spiking neural networks (SNNs) (Pontes-Filho
and Nichele, 2019): we have already highlighted in Section 2.4 that SNNs have been successfully cou-
pled with neuroevolution, thus an extension toward that direction seems a natural continuation of our
experimentation. Moreover, the relationship between pruning and forms of regeneration of the controller
(Horibe et al., 2021) might be studied.

Acknowledgements. The experimental evaluation of this work has been supported by a Google Faculty Research Award granted
to E.M. and has been partially done on CINECA HPC cluster within the CINECA-University of Trieste agreement. This work

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 25

was partially funded by the Norwegian Research Council (NFR) through their IKTPLUSS research and innovation action under
the project Socrates (grant agreement 270961) and Young Research Talent program under the project DeepCA (grant agreement
286558). G.N. was supported by NordSTAR - Nordic Center for Sustainable and Trustworthy AI Research (OsloMet Project Code
202237-100).

Competing interests. The author(s) declare none.

References
Aerts, H., Fias, W., Caeyenberghs, K. & Marinazzo, D. (2016). Brain networks under attack: robustness properties and the impact

of lesions. Brain 139(12), 3063–3083.
Ansuini, A., Medvet, E., Pellegrino, F. A. & Zullich, M. (2020a). Investigating similarity metrics for convolutional neural networks

in the case of unstructured pruning. In International Conference on Pattern Recognition Applications and Methods, 87–111,
Springer.

Ansuini, A., Medvet, E., Pellegrino, F. A. & Zullich, M. (2020b). On the similarity between hidden layers of pruned and unpruned
convolutional neural networks. In ICPRAM, 52–59.

Anwar, S., Hwang, K. & Sung, W. (2017). Structured pruning of deep convolutional neural networks. ACM Journal on Emerging
Technologies in Computing Systems (JETC) 13(3), 1–18.

Arcuri, C., Mecca, C., Bianchi, R., Giambanco, I. & Donato, R. (2017). The pathophysiological role of microglia in dynamic
surveillance, phagocytosis and structural remodeling of the developing cns. Frontiers in Molecular Neuroscience 10, 191.

Bartoldson, B. R., Morcos, A. S., Barbu, A. & Erlebacher, G. (2019). The generalization-stability tradeoff in neural network
pruning. arXiv preprint arXiv:1906.03728.

Bassett, D. S. & Sporns, O. (2017). Network Neuroscience Nature Neuroscience 20(3), 353–364.
Bengio, Y., Le Roux, N., Vincent, P., Delalleau, O. & Marcotte, P. (2006). Convex neural networks. In Advances in Neural

Information Processing systems, 18, 123.
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Clarendon Press, chapter 9.5.3 - Saliency of Weights.
Bongard, J. C. (2011). Morphological and environmental scaffolding synergize when evolving robot controllers: artificial

life/robotics/evolvable hardware, 179–186.
Bordier, C., Nicolini, C. & Bifone, A. (2017). Graph analysis and modularity of brain functional connectivity networks: searching

for the optimal threshold. Frontiers in Neuroscience 11, 441.
Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. (1984). Classification and Regression Trees. CRC Press.
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,

A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C.,
Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A.,
Sutskever, I. & Amodei, D. (2020). Language models are few-shot learners. In Advances in Neural Information Processing
Systems, Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F. & Lin, H. (eds), 33. Curran Associates, Inc., 1877–1901.
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Cai, L., An, Z., Yang, C. & Xu, Y. (2021). Softer pruning, incremental regularization. In 2020 25th International Conference on
Pattern Recognition (ICPR), 224–230.

Cheney, N., Bongard, J. & Lipson, H. (2015). Evolving soft robots in tight spaces. In Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, 935–942, ACM.

Cheney, N., Clune, J. & Lipson, H. (2014). Evolved electrophysiological soft robots. In Artificial Life Conference Proceedings
14. MIT Press, 222–229.

Denève, S., Alemi, A. & Bourdoukan, R. (2017). The brain as an efficient and robust adaptive learner. Neuron 94(5), 969–977.
Elbrecht, D. & Schuman, C. (2020). Neuroevolution of spiking neural networks using compositional pattern producing networks.

In International Conference on Neuromorphic Systems 2020, 1–5.
Fedus, W., Zoph, B. & Shazeer, N. (2021). Switch transformers: scaling to trillion parameter models with simple and efficient

sparsity. arXiv preprint arXiv:2101.03961.
Floreano, D., Dürr, P. & Mattiussi, C. (2008). Neuroevolution: from architectures to learning. Evolutionary Intelligence 1(1),

47–62.
Frankle, J. & Carbin, M. (2019). The lottery ticket hypothesis: finding sparse, trainable neural networks. In International

Conference on Learning Representations. https://openreview.net/forum?id=rJl-b3RcF7.
Gerstner, W. & Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University

Press.
Gerum, R. C., Erpenbeck, A., Krauss, P. & Schilling, A. (2020). Sparsity through evolutionary pruning prevents neuronal networks

from overfitting. Neural Networks 128, 305–312.
Han, S., Pool, J., Tran, J. & Dally, W. (2015). Learning both weights and connections for efficient neural network. In Advances

in Neural Information Processing Systems 28, Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M. & Garnett, R. (eds).
Curran Associates, Inc., 1135–1143.

Hebb, D. O. (2005). The Organization of Behavior: A Neuropsychological Theory. Psychology Press.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id$=$\gdef &{$=$}\gdef no{no}\gdef yes{yes}rJl-b3RcF7
https://doi.org/10.1017/S0269888921000151

26 G. Nadizar et al.

Heiney, K., Huse Ramstad, O., Fiskum, V., Christiansen, N., Sandvig, A., Nichele, S. & Sandvig, I. (2021). Criticality, con-
nectivity, and neural disorder: a multifaceted approach to neural computation. Frontiers in Computational Neuroscience
15, 7.

Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated
cost. Proceedings of the National Academy of Sciences 109(Supplement 1), 10661–10668.

Hiller, J. & Lipson, H. (2012). Automatic design and manufacture of soft robots. IEEE Transactions on Robotics 28(2), 457–466.
Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N. & Peste, A. (2021). Sparsity in deep learning: pruning and growth for efficient

inference and training in neural networks. arXiv preprint arXiv:2102.00554.
Horibe, K., Walker, K. & Risi, S. (2021). Regenerating soft robots through neural cellular automata. In EuroGP, 36–50.
Iglesias, J., Eriksson, J., Grize, F., Tomassini, M. & Villa, A. E. (2005). Dynamics of pruning in simulated large-scale spiking

neural networks. Biosystems 79(1–3), 11–20.
Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience 2(7), 475–483.
Kassahun, Y. & Sommer, G. (2005). Efficient reinforcement learning through evolutionary acquisition of neural topologies. In

ESANN, 259–266.
Kriegman, S., Cheney, N. & Bongard, J. (2018). How morphological development can guide evolution. Scientific Reports 8(1),

13934.
Kriegman, S., Cheney, N., Corucci, F. & Bongard, J. C. (2018). Interoceptive robustness through environment-mediated

morphological development. arXiv preprint arXiv:1804.02257.
Laughlin, S. B., van Steveninck, R. R. d. R. & Anderson, J. C. (1998). The metabolic cost of neural information. Nature

Neuroscience 1(1), 36–41.
Laurenti, L., Patane, A., Wicker, M., Bortolussi, L., Cardelli, L. & Kwiatkowska, M. (2019). Global adversarial robustness

guarantees for neural networks.
LeCun, Y., Denker, J. S., Solla, S. A., Howard, R. E. & Jackel, L. D. (1989). Optimal brain damage. In NIPs, 2. Citeseer, 598–605.
Liao, X., Vasilakos, A. V. & He, Y. (2017). Small-world human brain networks: perspectives and challenges. Neuroscience &

Biobehavioral Reviews 77, 286–300.
Lin, T., Stich, S. U., Barba, L., Dmitriev, D. & Jaggi, M. (2020). Dynamic model pruning with feedback. In International

Conference on Learning Representations. https://openreview.net/forum?id=SJem8lSFwB.
Lipson, H., Sunspiral, V., Bongard, J. & Cheney, N. (2016). On the difficulty of co-optimizing morphology and control in evolved

virtual creatures. In Artificial Life Conference Proceedings 13. MIT Press, 226–233.
Liu, S., Chen, T., Chen, X., Atashgahi, Z., Yin, L., Kou, H., Shen, L., Pechenizkiy, M., Wang, Z. & Mocanu, D. C. (2021). Sparse

training via boosting pruning plasticity with neuroregeneration. arXiv preprint arXiv:2106.10404.
Liu, Z., Sun, M., Zhou, T., Huang, G. & Darrell, T. (2019). Rethinking the value of network pruning. In International Conference

on Learning Representations. https://openreview.net/forum?id=rJlnB3C5Ym.
Low, L. K. & Cheng, H.-J. (2006). Axon pruning: an essential step underlying the developmental plasticity of neuronal

connections. Philosophical Transactions of the Royal Society B: Biological Sciences 361(1473), 1531–1544.
Medvet, E., Bartoli, A., De Lorenzo, A. & Fidel, G. (2020). Evolution of distributed neural controllers for voxel-based soft robots.

In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 112–120.
Medvet, E., Bartoli, A., De Lorenzo, A. & Seriani, S. (2020). 2D-VSR-Sim: a simulation tool for the optimization of 2-D voxel-

based soft robots. SoftwareX 12.
Medvet, E., Bartoli, A., Pigozzi, F. & Rochelli, M. (2021). Biodiversity in evolved voxel-based soft robots. In Proceedings of the

Genetic and Evolutionary Computation Conference, 129–137.
Meunier, D., Lambiotte, R. & Bullmore, E. T. (2010). Modular and hierarchically modular organization of brain networks.

Frontiers in Neuroscience 4, 200.
Mordvintsev, A., Randazzo, E., Niklasson, E. & Levin, M. (2020). Growing neural cellular automata. Distill 5(2), e23.
Nadizar, G., Medvet, E., Pellegrino, F. A., Zullich, M. & Nichele, S. (2021). On the effects of pruning on evolved neural controllers

for soft robots. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, 1744–1752.
Naumov, M., Chien, L., Vandermersch, P. & Kapasi, U. (2010). Cusparse library. In GPU Technology Conference.
Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y. & Srebro, N. (2019). The role of over-parametrization in generalization of

neural networks. In International Conference on Learning Representations. https://openreview.net/forum?id=BygfghAcYX.
Nichele, S., Ose, M. B., Risi, S. & Tufte, G. (2017). Ca-neat: evolved compositional pattern producing networks for cellular

automata morphogenesis and replication. IEEE Transactions on Cognitive and Developmental Systems 10(3), 687–700.
Niklasson, E., Mordvintsev, A., Randazzo, E. & Levin, M. (2021). Self-organising textures. Distill 6(2), e00027–003.
Pfeifer, R. & Bongard, J. (2006). How the Body Shapes the Way We Think: A New View of Intelligence. MIT Press.
Pontes-Filho, S. & Nichele, S. (2019). Towards a framework for the evolution of artificial general intelligence. arXiv preprint

arXiv:1903.10410.
Power, J. D. & Schlaggar, B. L. (2017). Neural plasticity across the lifespan. Wiley Interdisciplinary Reviews: Developmental

Biology 6(1), e216.
Prakash, A., Storer, J., Florencio, D. & Zhang, C. (2019). Repr: Improved training of convolutional filters. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10666–10675.
Qiu, H., Garratt, M., Howard, D. & Anavatti, S. (2018). Evolving spiking neural networks for nonlinear control problems. In 2018

IEEE Symposium Series on Computational Intelligence (SSCI), 1367–1373, IEEE.
Raman, D. V., Rotondo, A. P. & O’Leary, T. (2019). Fundamental bounds on learning performance in neural circuits. Proceedings

of the National Academy of Sciences 116(21), 10537–10546.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://openreview.net/forum?id$=$\gdef &{$=$}\gdef no{no}\gdef yes{yes}SJem8lSFwB
https://openreview.net/forum?id$=$\gdef &{$=$}\gdef no{no}\gdef yes{yes}rJlnB3C5Ym
https://openreview.net/forum?id$=$\gdef &{$=$}\gdef no{no}\gdef yes{yes}BygfghAcYX
https://doi.org/10.1017/S0269888921000151

The Knowledge Engineering Review 27

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M. & Sutskever, I. (2021). Zero-shot text-to-image
generation. arXiv preprint arXiv:2102.12092.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V. & Kurakin, A. (2017). Large-scale evolution of image
classifiers. In International Conference on Machine Learning, 2902–2911. PMLR.

Renda, A., Frankle, J. & Carbin, M. (2020). Comparing fine-tuning and rewinding in neural network pruning. In International
Conference on Learning Representations.

Riccomagno, M. M. & Kolodkin, A. L. (2015). Sculpting neural circuits by axon and dendrite pruning. Annual Review of Cell
and Developmental Biology 31, 779–805.

Sakai, J. (2020). Core concept: how synaptic pruning shapes neural wiring during development and, possibly, in disease.
Proceedings of the National Academy of Sciences 117(28), 16096–16099.

Santosa, F. & Symes, W. W. (1986). Linear inversion of band-limited reflection seismograms. SIAM Journal on Scientific and
Statistical Computing 7(4), 1307–1330.

Schuldiner, O. & Yaron, A. (2015). Mechanisms of developmental neurite pruning. Cellular and Molecular Life Sciences 72(1),
101–119.

Segev, I. & Schneidman, E. (1999). Axons as computing devices: basic insights gained from models. Journal of Physiology-Paris
93(4), 263–270.

Shi, Y., Nguyen, L., Oh, S., Liu, X. & Kuzum, D. (2019). A soft-pruning method applied during training of spiking neural networks
for in-memory computing applications. Frontiers in Neuroscience 13, 405.

Siebel, N. T., Botel, J. & Sommer, G. (2009). Efficient neural network pruning during neuro-evolution. In 2009 International Joint
Conference on Neural Networks, 2920–2927, IEEE.

Sporns, O. (2013). Structure and function of complex brain networks. Dialogues in Clinical Neuroscience 15(3), 247.
Sporns, O., Chialvo, D. R., Kaiser, M. & Hilgetag, C. C. (2004). Complex networks: small-world and scale-free architectures.

Trends in Cognitive Sciences 9(8), 418–425.
Stanley, K. O. & Miikkulainen, R. (2002). Evolving neural networks through augmenting topologies. Evolutionary Computation

10(2), 99–127.
Strubell, E., Ganesh, A. & McCallum, A. (2019). Energy and policy considerations for deep learning in nlp. arXiv preprint

arXiv:1906.02243.
Sudhakaran, S., Grbic, D., Li, S., Katona, A., Najarro, E., Glanois, C. & Risi, S. (2021). Growing 3D artefacts and functional

machines with neural cellular automata. arXiv preprint arXiv:2103.08737.
Talamini, J., Medvet, E., Bartoli, A. & De Lorenzo, A. (2019). Evolutionary synthesis of sensing controllers for voxel-based soft

robots. In Artificial Life Conference Proceedings, MIT Press, 574–581.
Thimm, G. & Fiesler, E. (1995). Evaluating pruning methods. In Proceedings of the International Symposium on Artificial neural

networks, 20–25, Citeseer.
Thodberg, H. H. (1991). Improving generalization of neural networks through pruning. International Journal of Neural Systems

1(04), 317–326.
Tibshirani, R. (1997). The lasso method for variable selection in the cox model. Statistics in medicine 16(4), 385–395.
Variengien, A., Nichele, S., Glover, T. & Pontes-Filho, S. (2021). Towards self-organized control: Using neural cellular automata

to robustly control a cart-pole agent. arXiv preprint arXiv:2106.15240.
Vézquez-Rodrguez, B., Liu, Z.-Q., Hagmann, P. & Misic, B. (2020). Signal propagation via cortical hierarchies. Network

Neuroscience 4(4), 1072–1090.
Ye, S., Xu, K., Liu, S., Cheng, H., Lambrechts, J.-H., Zhang, H., Zhou, A., Ma, K., Wang, Y. & Lin, X. (2019). Adversarial

robustness vs. model compression, or both?. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
111–120.

You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X., Baraniuk, R. G., Wang, Z. & Lin, Y. (2019). Drawing early-bird tickets: Towards
more efficient training of deep networks. arXiv preprint arXiv:1909.11957.

Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Reviews Neuroscience 16(8), 487–497.
Zhang, B.-T. & Mühlenbein, H. (1993). Genetic programming of minimal neural nets using occam’s razor. In Proceedings of the

5th International Conference on Genetic Algorithms (ICGA’93). Citeseer.
Zullich, M., Medvet, E., Pellegrino, F. A. & Ansuini, A. (2021). Speeding-up pruning for artificial neural networks: introducing

accelerated iterative magnitude pruning. In 2020 25th International Conference on Pattern Recognition (ICPR), 3868–3875.
IEEE.

https://doi.org/10.1017/S0269888921000151 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888921000151

	Introduction
	Related work
	Synaptic pruning in the nervous system
	Pruning in ANNs
	Pruning ANNs in the context of neuroevolution
	Pruning biologically inspired ANNs
	Voxel-based soft robots
	VSR morphology
	VSR controller
	Centralized neural controller
	Distributed neural controller
	Pruning techniques
	Experiments and results
	Characterization of pruning variants in static and disembodied conditions
	RQ1: impact on the evolution
	Impact of the controller architecture and the ANN topology
	Impact of the VSR morphology
	Pruning after the evolution
	RQ2: impact on the adaptability
	RQ3: life-long effectiveness
	VSR behavior analysis
	Concluding remarks

