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We investigate theoretically the breakup dynamics of an elasto-visco-plastic filament
surrounded by an inert gas. The filament is initially placed between two coaxial disks,
and the upper disk is suddenly pulled away, inducing deformation due to both constant
stretching and capillary forces. We model the rheological response of the material with
the Saramito–Herschel–Bulkley (SHB) model. Assuming axial symmetry, the mass and
momentum balance equations, along with the constitutive equation, are solved using the
finite element framework PEGAFEM-V, enhanced with adaptive mesh refinement with
an underlying elliptic mesh generation algorithm. As the minimum radius decreases,
the breakup dynamics accelerates significantly. We demonstrate that the evolution of
the minimum radius, velocity and axial stress follow a power-law scaling, with the
corresponding exponent depending on the SHB shear-thinning parameter, n. The scaling
exponents obtained from our axisymmetric simulations under creeping flow are verified
through asymptotic analysis of the slender filament equations. Our findings reveal three
distinct breakup regimes: (a) elasto-plastic, (b) elasto-plasto-capillary, both with finite-
time breakup for n < 1, and (c) elasto-plasto-capillary with no finite-time breakup for
n = 1. We show that self-similar solutions close to filament breakup can be achieved by
appropriate rescaling of length, velocity and stress. Notably, the effect of the yield stress
becomes negligible in the late stages of breakup due to the local dominance of high elastic
stresses. Moreover, the scaling exponents are independent of elasticity, resembling the
breakup behaviour of finite extensible viscoelastic materials.
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1. Introduction
Yield stress (YS) fluids are a class of complex materials that exhibit dual behaviour
depending on the magnitude of applied stress. When this magnitude is below a certain
threshold they behave like solids, but when it exceeds this threshold, they deform like
liquids. This critical threshold is known as the YS (Frigaard 2019). The boundary
separating the solid and fluid regions is referred to as the yield surface. The yield surface
becomes particularly significant in free-surface flows, and its accurate determination is
essential in several scenarios. For example, during the pinch-off of a viscoplastic filament
it influences both the final filament shape and the precise location of the pinch point
(Moschopoulos et al. 2020). Moreover, in the flow of a YS fluid down an inclined plate
it governs the evolution of the free surface, and its final shape (Chambon et al. 2020),
while in the viscoplastic dam break set-up it determines the final arrested interface shape
(Liu et al. 2016). Understanding the flow characteristics of YS materials is crucial, because
they are encountered in nature, as in lava and wet avalanches (Freydier, Chambon &
Naaim 2017), and in personal care, cosmetics, food, building, oil and other industries, with
products like shaving cream (Huisman, Friedman & Taborek 2012), toothpaste, ice cream,
mayonnaise (Ma & Barbosa-Cánovas, 1995), fresh concrete and crude oil (Dimitriou &
McKinley 2014). Several models have been developed to describe the transition from
solid-like to fluid-like behaviour. The first such model was the Bingham model, which is a
generalised Newtonian fluid model with constant viscosity upon yielding. Later, to account
for material shear thinning, the Herschel–Bulkley model was introduced (Frigaard 2019).
Despite their relative simplicity, these two models require computationally expensive
algorithms to accurately resolve regions where the magnitude of the strain-rate tensor
approaches zero (Moschopoulos et al. 2022), otherwise they require a regularisation
parameter to avoid the stress singularity developing as the yield surface is approached.

Over the past two decades, several experimental studies have attempted to clarify the
behaviour of YS materials using Carbopol (Putz et al. 2008; Niedzwiedz et al. 2009;
Freydier et al. 2017; Luu, Philippe & Chambon 2017), an anionic, high molecular weight
polymer composed of acrylic acid cross-linked with an ether, which is transparent, making
it more appropriate for experimental observations and measurements. Other experimental
studies with YS materials have observed distinct patterns, which are characteristic of
viscoelastic fluids, such as the inverted teardrop shape of a rising bubble (Mougin, Magnin
& Piau 2012) or the generation of a negative wake by a sedimenting sphere (Putz et al.
2008; Holenberg et al. 2012). To capture theoretically these observations, an elastic
component had to be incorporated into the two original YS fluid models by Saramito
(2007, 2009). These new models, known as elasto-visco-plastic (EVP) models, have
been used to successfully explain the above-mentioned observations and several others.
For example, Fraggedakis, Dimakopoulos & Tsamopoulos (2016) successfully captured
the negative wake and the loss of fore-and-aft symmetry in a sedimenting spherical
particle in Carbopol. Moreover, Moschopoulos et al. (2021) and Kordalis, Dimakopoulos
& Tsamopoulos (2024) captured the teardrop shape during the rise of a single or a pair
of bubbles in strain-rate-thinning EVP fluids. More recently, Esposito, Dimakopoulos &
Tsamopoulos (2024) studied a buoyancy driven motion of a drop in an EVP material.

The buoyancy-driven motions mentioned above involve mixed, shear and elongation
flows. To better isolate and control extensional flow, Varchanis et al. (2020a) studied
experimentally the flow of a Pluronic aqueous solution (another EVP fluid) in the
optimised shape cross-slot extensional rheometer, conducted simulations using Saramito’s
model (Saramito 2009) and obtained excellent agreement between experiments and
simulations. Filament stretching is another procedure to create a flow field dominated
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by extension. The way the filament deforms, and breaks is of paramount importance for
many industrial processes, such as coating flows, food processing, spraying of pesticides,
direct ink-jet printing and additive manufacturing. In all of them, EVP fluids may be
involved (Van Der Kolk, Tieman & Jalaal 2023). The easiest way to isolate such a
configuration is to place a small amount of material between two coaxial disks of equal
radius and pull the upper disk vertically upward. The material elongates, thins and, finally,
pinches off primarily driven by capillarity. To probe the filament stretching dynamics,
especially when very short relaxation times need to be measured, several instruments have
been developed, like the capillary breakup extensional rheometer (Arnolds et al. 2010)
(CaBER), the Rayleigh Ohnesorge jetting extensional rheometer (Keshavarz et al. 2015)
and dripping onto substrate (Rosello et al. 2019). The process of filament stretching may
be separated into the initial or bulk dynamics and the final or pinching dynamics. In the
following we will briefly review the literature that is related either to filament stretching of
non-Newtonian, and particularly YS fluids, or to the pinching dynamics.

Filament breakup has been studied with Newtonian (Zhang, Padgett & Basaran 1996)
and generalised Newtonian fluids (Yildirim & Basaran 2001) . In both types of materials,
a short neck is formed, and the filament breaks in finite time. Viscoelastic materials have
been studied quite extensively and early on under extensional flow (McKinley & Sridhar
2002), due to their widespread use and importance in practical applications, as well as the
intriguing phenomena that arise. When a viscoelastic filament thins, strong tensile stresses
develop that oppose the necking of the fluid thread. This increases the lifetime of the
bridge and leads to the formation of a quite longer and cylindrical thread that connects the
two drops that remain in contact with the corresponding disk (Clasen et al. 2006). Under
specific material properties and in the presence of elastic and inertia effects a small satellite
drop may develop in the middle of the filament (Bhat et al. 2010; Varchanis et al. 2018).

Turning our attention to filaments of YS materials, initially Martinie, Buggisch &
Willenbacher (2013), and Niedzwiedz, Buggisch & Willenbacher (2010) tried to measure
the so-called extensional YS using the CaBER. However, their measurements did not agree
with the ideal viscoplastic theory that predicted the extensional YS to be

√
3 times the

shear YS. This deviation was caused because the elastic stresses in the von Mises criterion
were neglected (Varchanis et al. 2020a). Furthermore, Balmforth, Dubash & Slim (2010a)
investigated the primarily extensional flow taking place in drips and bridges of different YS
materials and compared their experimental results with the viscoplastic slender theory they
developed. Then, they used this theory to study the pinching dynamics of YS materials
(Balmforth, Dubash & Slim 2010b). Interestingly, they showed that, just before pinching,
the breakup dynamics became universal, and was dictated by a simple power law, the
exponent of which coincided with the exponent of power-law fluids (Doshi et al. 2003;
Suryo & Basaran 2006), and that the YS had almost no effect on the scaling law. On the
other hand, Huisman et al. (2012) and Niedzwiedz et al. (2010) observed experimentally
that, although YS stress materials followed the scaling laws of shear-thinning materials,
they also formed a longer cylindrical neck connecting the upper and lower conical parts
of the bridge, without examining whether the material in the bridge actually exhibited
elastic properties. More recently, Moschopoulos et al. (2020) performed two-dimensional
simulations assuming axial symmetry of the bulk and pinching dynamics of a thread
with viscoplastic properties. Thus, they confirmed the above-mentioned scaling laws for
viscoplastic materials (Balmforth et al. 2010b). However, their simulations did not capture
the cylindrical neck that had been experimentally observed, (Niedzwiedz et al. 2010). This
shortcoming was alleviated by Moschopoulos et al. (2023), when they included material
elasticity by using the Saramito–Herschel–Bulkley model and predicted the formation of
a long and slender neck that connected the upper and lower parts of the Carbopol filament
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undergoing stretching. Nevertheless, they did not investigate the pinching dynamics in
detail and whether it is governed by similarity solutions. Such analysis has been developed
for Newtonian, viscoplastic and viscoelastic materials.

Understanding the underlying physics during pinching (Tuladhar & Mackley 2008;
Townsend et al. 2019; Van Der Kolk et al. 2023) is crucial for advancing industrial tools,
notably those used in inkjet or 3D printing, for controlling the droplet size, which may
be created after filament breakup or reducing food residuals during the filling process
in designing production lines. While stretching the fluid thread, the mass conservation
and capillarity on its free surface shrink the filament radius to zero somewhere along
the filament. At this location and time instant the governing equations become singular.
Thus, stress and velocity diverge, making the dynamics independent of the boundary
conditions governing the earlier bulk dynamics. Hence, the local dynamics in the abruptly
thinning filament will exhibit universality, and self-similarity could be achieved at the
vicinity of the singular point. This idea of universality was proposed first by Keller
& Miksis (1983), assuming potential flow in the filament. Since then, various authors
have described the pinch-off dynamics of Newtonian liquids (Eggers 1993; Eggers &
Dupont 1994; Papageorgiou 1995; Brenner, Lister & Stone 1996; Chen, Notz & Basaran
2002), with or without inertia. Concerning complex fluids, numerous studies have been
conducted following and extending the ideas for Newtonian liquids to describe pinching
when the rheological model of the filament is a power law (Doshi et al. 2003; Renardy &
Renardy 2004; Suryo & Basaran 2006), viscoelastic (Bechtel, Cao & Forest 1992; Anna
& McKinley 2001; Renardy 2002b; Fontelos & Li 2004; Clasen et al. 2006; Turkoz et al.
2018) or viscoplastic (Balmforth et al. 2010b; Moschopoulos et al. 2020).

However, efforts to describe the bulk and pinch-off dynamics of a bridge composed of
an EVP material are very limited. We are aware only of the work by Moschopoulos et al.
(2023), who studied the bulk dynamics thoroughly and filament thinning only to some
extent but did not examine the asymptotics or self-similarity close to breakup. The present
study aims to fill this gap by determining the breakup asymptotics, the existence of self-
similar solutions by employing two-dimensional (2-D) axisymmetric simulations coupled
with a sharp interface tracking method, while fluid inertia is neglected.

The paper is organised as follows: in § 2, the problem formulation is presented, the
equations and boundary conditions governing the axisymmetric flow are introduced,
followed by the slender filament (1-D) equations. In § 3, we very briefly review the solution
method, postponing to Appendix A certain important techniques about mesh generation,
refinement, restructuring and variable interpolation between different meshes. We dedicate
§ 4 to extracting asymptotic pinch-off scales from the slender filament equations. In the
same section we include the approximate solution under the assumption that the filament
undergoes a strictly uniaxial extension. In § 5, we present our 2-D results concerning
filament pinching, self-similar solutions,- and we conduct a parametric study. Finally, we
summarise our findings in § 6.

2. Problem formulation

2.1. General two-dimensional formulation
In what follows, variables or parameters with tilde (˜) over them, are denoted as
dimensional while their dimensionless counterparts are presented without tilde. We
consider a 2-D, axisymmetric liquid bridge of an EVP material held captive between two
parallel and coaxial disks. The initial separation of the two disks is L̃0 and their common
radius is h̃0, both of which are of the order of a few millimetres, at the most, making
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Figure 1. Schematic of the axisymmetric EVP filament stretching geometry.

gravitational effects very small from the beginning of the process. The material is pinned
to the disk’s perimeter, so that the initial radius of the fluid thread is also h̃0. At time
t̃ = 0+, the upper plate starts to move with constant velocity in the positive z̃-direction.
As time proceeds, the capillary force and material stress components start to grow, and a
neck is formed in the filament. We monitor the time evolution of the minimum radius of
the filament as it shrinks to zero, h̃min → 0, along with the dominant velocity and stress
components. The negligible gravity force allows us to assume a symmetry plane at z̃ = 0,
making it possible to simulate only the top half of the filament. Figure 1 shows a schematic
of the axisymmetric EVP bridge being stretched with symmetry plane imposed at z̃ = 0.

The characteristic scales used for making the variables dimensionless are those proposed
by Moschopoulos et al. (2023) for the bulk dynamics of an EVP filament stretching. The
radius of the disk h̃0 and the capillary force (σ̃ /h̃0), scale all lengths and pressure or stress
components, respectively. Balancing capillarity and viscous stresses results in the visco-
capillary time, which is used as the characteristic time scale, t̃vc = (k̃h̃0/σ̃ )

(1/n), where
k̃ (Pa sn) is the consistency index, and n is the shear-thinning exponent of the Saramito–
Herschel–Bulkley (SHB) model. The velocity scale is h̃0/t̃vc. Another form of stress scale,
equivalent to the one given earlier, is k̃/(t̃vc)

n . Introducing these characteristic scales in the
governing equations results in the dimensionless numbers for the present analysis, which
are given in table 1.

With these characteristic quantities, the dimensionless mass and momentum
conservation equations become

Oh−2 Du
Dt

= −∇ p + ∇ · τ + ∇ · τ s − Bo ez, (2.1)

∇ · u = 0, (2.2)

where D/Dt is the substantial derivative, u the velocity vector, ∇ the gradient operator, τ s
the Newtonian solvent stress, τ the polymeric extra stress tensor, p the pressure and ez the
unit vector in the positive z-direction. In this study, the Newtonian solvent contribution is
taken to be zero, hence τ s = 0. Furthermore, in this study we will neglect inertial effects,
setting Oh−2 = 0. The polymeric extra stress tensor is described by the SHB (Saramito
2009) EVP model for the rheological response of the material

Ec
∇
τ + max(0, |τ d | − Ys)

1
n

τ

|τ d | = γ̇ . (2.3)
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Definition Name Physical interpretation

Oh = k̃
1
n√

ρ̃h̃

(
3− 2

n

)
0 σ̃

(
2
n −1

) Ohnesorge number Ratio of viscous forces to combined inertia
and surface tension forces. The parameter
Oh−2 is often called the capillary Reynolds
number, because it uses the visco-capillary
scale for velocity.

Ys = τ̃y h̃0

σ̃
Dimensionless YS Ratio of YS to capillarity.

Bo = ρ̃ g̃h̃2
0

σ̃
Bond number Ratio between gravitational and surface

tension (capillary) forces. With h̃0 up to a
mm, Bo is up to 0.1, making the
gravitational force negligible.

Ec = σ̃

G̃h̃0
Elasto-capillary
number

Ratio of surface tension force to elastic
modulus. Higher Ec leads to more
pronounced elastic stresses.

V = Ṽ

h̃3
0

Dimensionless
bridge volume

Scales the volume of the material held
between the two plates with plate radius.

L = L̃

h̃0
Bridge aspect ratio Scales the height of the bridge in the

direction of stretching with the plate radius.

Table 1. Dimensionless numbers.

The first term in this model is the elastic contribution and the second one is the
viscoplastic contribution to the total rate of deformation tensor, γ̇ = ∇u + (∇u)T . In the

above model,
∇
τ is the upper-convected derivative of extra stress tensor, which is defined

as
∇
τ = ∂τ

∂t
+ u · ∇τ − (∇u)T · τ − τ · ∇u. (2.4)

Also, τ d = τ − (tr(τ )/tr(I)) is the deviatoric part of extra stress tensor with magnitude
|τ d | = √

(1/2)τ d : τ d , and (∇u)T indicates the transpose of the velocity gradient. The
max term determines the transition from a solid-like to a fluid-like region by incorporating
the von Mises criterion. If |τ d | exceeds Ys , the material yields and deforms like a
viscoelastic fluid with shear thinning, otherwise it behaves like a neo-Hookean solid. The
free surface of the filament, S f , is in contact with air, which is assumed to have negligible
viscosity and density. In our formulation, nodes on S f are treated in a Lagrangian sense,
hence the velocity of the mesh and the velocity of the fluid particle on S f in the direction
normal to S f must be equal. This is the so-called kinematic boundary condition and serves
as a boundary condition on the free surface. Furthermore, the total stress from the fluid
side acting on S f must balance capillarity, given that air is dynamically inert. This is the
so-called traction boundary condition. These two boundary conditions are

n · (u − um)= 0, on S f , (2.5)
n · T = (2H) n, on S f , (2.6)

where um is the velocity of the mesh nodes and n the outward unit vector normal
to S f ; T the total stress tensor, defined as T = −p I + τ , with I the unit tensor;
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2H= −∇s · n is twice the mean curvature of S f and lastly ∇s = (I − nn) · ∇
is the surface gradient operator (Deen 2012). We have assumed axial symmetry with axis
at r = 0, or on SA and planar symmetry at z = 0, or on Sp. On these boundaries the
no-shear and no-penetration boundary conditions are applied

n · T · t = 0, on SA and SP , (2.7)
n · u = 0, on SA and SP , (2.8)

where t is the unit vector tangential to either SA or Sp. The fluid in contact with the two
solid disks, initially at rest, follows the no-slip and no-penetration boundary conditions and
when t > 0, the upper solid disk starts to move suddenly with dimensionless velocity U{

t = 0, u = 0
t > 0, u = U ez

at z = L , (2.9)

u = 0, at z = 0, (2.10)
where L = L0 + Ut is the disk separation at time t. The contact point on the intersection
between the free surface S f and the solid disks is pinned

h0 = 1, at z = L and z = 0. (2.11)

Due to the hyperbolic nature of the SHB model (and similarly for most other constitutive
laws for polymeric liquids), the boundary conditions for the extra stress tensor are needed
only at the inflow (Van Der Zanden & Hulsen 1988). In this problem, no inflow conditions
exist, and no stress boundary conditions are required, except for n · T · t = 0 at the axis of
symmetry and the symmetry plane along with the force balance at the free interface.

2.2. Slender thread equations
Assuming that to highest order the variation of all flow variables in the radial direction,
r , is negligible compared with that in the axial direction, z (except for ur , and τr z , which
vary linearly with r ), the interface S f can be described as a function of z alone, S f ,

r = h(z, t), disallowing any overturning of the free surface. Then the previously presented
2-Dl equations can be reduced to a much simpler, 1-D equation set. These are the so-called
slender filament equations. The reduced mass and momentum equations, still neglecting
solvent viscosity, are (Bechtel et al. 1992; Clasen et al. 2006)

∂h2

∂t
+ ∂

∂z

(
uzh2)= 0, (2.12)

Oh−2
(
∂uz

∂t
+ uz

∂uz

∂z

)
= ∂

∂z
(2H)+ 1

h2
∂

∂z

(
h2(τzz − τrr)

)
, (2.13)

2H= hzz(
1 + h2

z

) 3
2

− 1

h
(
1 + h2

z

) 1
2
, (2.14)

where uz(z, t) is the axial velocity, 2H is twice the mean curvature of the free surface,
now explicitly written in the cylindrical coordinate system and the subscript z next to h,
as in hz , indicates partial differentiation; in this case, (∂h/∂z). Please note that in § 2.2 all
variables have retained their usual symbols but depend only in the axial direction z and
time, t . Equation (2.13) is the reduced form of the dominant momentum balance in the
axial direction, in which pressure has been eliminated in favour of the curvature term via
the normal force balance and the next-order term of the axial velocity has been eliminated
via the tangential force balance. As stated in the previous section, we will analyse the
slender filament equations ignoring inertia. Although the computational effort to solve the
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1-D equations is considerably smaller than the effort to solve their 2-D counterparts, the
former equations are not accurate enough to capture the flow field under certain conditions
(Suryo & Basaran 2006; Turkoz et al. 2018). In this study, we avoid conducting 1-D
simulations; we will use the slender filament equations only to derive the asymptotic decay
of the radius and growth of the stress in the pinch-off regime.

3. Finite element solution
Our numerical algorithm for solving the 2-D equation set is based on the recently
developed Petrov–Galerkin finite element formulation for viscoelastic free-surface
flows. This method allows us to use equal-order linear interpolants for all variables,
circumventing the requirement for mixed finite element formulations for velocity, pressure
and stress to satisfy the Ladyzhenskaya–Babuška–Brezzi conditions, and simultaneously
does not suffer from the high Weissenberg number problem. To achieve all these
advantages, Varchanis et al. (2019b) have carefully chosen specific stabilising terms for
the weak form of the governing equations. Coupling this method with the quasi-elliptic
mesh generator (Dimakopoulos & Tsamopoulos 2003; Chatzidai et al. 2009) allows
us to obtain stable numerical solutions even in highly deformed meshes and for very
high values of fluid elasticity (Varchanis et al. 2020b). This method has been tested in
benchmark flows and many other studies with steady and moving boundary problems,
confirming its accuracy and robustness (Moschopoulos et al. 2021; Varchanis et al. 2021;
Kordalis et al. 2023; Moschopoulos et al. 2024; Kordalis et al. 2024)

To solve the set of partial differential equations in this problem, the domain is discretised
into elements, altogether forming the mesh. According to Moschopoulos et al. (2023),
we prefer linear three-node triangular elements to linear quadrangles for their better
representation of the free surface. Additionally, we utilise right-angle triangles for mesh
construction, as they exhibit better convergence behaviour compared with other types of
domain triangulation methods. For accurately tracking the displacement of free surface,
we employ the arbitrary Lagrangian Eulerian formulation. In this method the normal
displacement of the free surface is dictated by its Lagrangian movement, whereas all other
nodes inside the liquid domain are positioned arbitrarily to achieve a smooth mesh for
solution accuracy. To optimise the mesh within the domain, we selected the quasi-elliptic
grid generation scheme proposed by Dimakopoulos & Tsamopoulos (2003). As suggested
in previous studies (Notz & Basaran 2004; Suryo & Basaran 2006; Bhat et al. 2010),
using a highly non-uniform mesh where elements are densely concentrated in the necking
region is essential for accurate and efficient computation of breakup problems. However,
even in a densely packed mesh generated by the quasi-elliptic grid generation scheme, the
elements will become highly distorted, leading to divergence of the numerical algorithm
as hmin → 0. To address this issue, we introduce additional nodes on radial cross-sections
to maintain the quality of the mesh as breakup is approached. Computational experiments
indicate that full domain remeshing introduces significantly larger errors during solution
transfer from the previous to the new mesh than simply adding nodes. Therefore, we do not
use full domain remeshing. This approach allows us to start computations with a relatively
coarse mesh and progressively refine it as hmin → 0, while ensuring a smooth mesh and
an accurate solution.

For the time integration and iterative scheme to solve the matrix system assembled by
the finite element formulation, we employ the same procedure reported by Moschopoulos
et al. (2023). Convergence of Newton’s iterations at each time step is accepted if the
Euclidean norm of both the residual and the Newton’s correction vector falls below of
10−6. Certain important ideas about mesh refinement and variable interpolation between
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Figure 2. The evolution of minimum radius vs. time, for parameter values
n = 0.45, Ec = 0.14, Ys = 1.25, U = 0.39.

meshes are given in Appendix A. In the supplementary material SM1, we present the
evolution of the mesh either for the entire domain, or in the neck where continuous mesh
refinement takes place.

4. Asymptotic analysis for an EVP thread

4.1. Asymptotic analysis near filament pinching at the symmetry plane via the slender
thread equations following the SHB model

Since we are seeking a self-similar solution in the vicinity of the singular point, where
hmin → 0, we introduce two new local variables, Z and T , which are defined as

Z = z − z0, (4.1)
T = t0 − t. (4.2)

In the above expressions, Z denotes the axial distance from the singular point (the
location of hmin), the axial coordinate of which is z0. Having set Oh−2 = 0, to neglect
inertia in the momentum equation, we find z0 = 0 in all our simulations and z is probed
where h = 1.01hmin. Here, T is the time until the breakup time, which is denoted as t0.
Preliminary 2-D results indicate that the time evolution of the minimum radius follows the
pattern shown in figure 2.

This figure clearly demonstrates that the breakup time of the filament is finite, a trend
observed in all our simulations for values of n less than unity. This should have been
expected, because the SHB model predicts a finite extensible material, which is known to
have a finite breakup time as opposed to the Oldroyd-B fluid, which approaches breakup
exponentially (Renardy 1995; McKinley 2005). Hence, we introduce self-similar forms
with power-law functions for the axial position, axial velocity and axial component of
extra stress tensor

h (Z , T )= T α1 φ (ξ) , (4.3)
uz (Z , T )= T α2 ψ (ξ) , (4.4)
τzz (Z , T )= T α3Ω (ξ) , (4.5)

ξ = Z

T δ
. (4.6)
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Please note that in § 4 all variables have retained their previous symbols but now are
functions of Z , T . Moreover, ξ denotes the similarity variable and the exponent δ controls
the time dependence of the extent of the similarity region. When the filament radius
becomes extremely small, both uz(Z , T ) and τzz(Z , T ) in the vicinity of the singular
point grow increasingly fast. Under these conditions, the nonlinear terms in the EVP
constitutive equation become dominant. From now on, we will refer to this regime as
the highly nonlinear regime. Next, we substitute the self-similar forms of h(Z , T ) and
uz(Z , T ), in the continuity equation, (2.12), and enforce time invariance to obtain

δ − α2 = 1, φ′ = φ

α1 − ψ ′

2
ψ + δξ

. (4.7)

Given that the axial momentum equation is the dominant momentum balance and τzz
the dominant stress component, we analyse the z-component of the constitutive equation,
which according to the SHB model is

∂τzz

∂t
+ uz

∂τzz

∂z
= 2

∂uz

∂z
τzz + 2

Ec

∂uz

∂z
− max(0, |τ d | − Ys)

1
n

Ec

τzz

|τ d | . (4.8)

According to its definition, |τ d | is

|τ d | =
√√√√1

2

((
τrr − tr (τ )

3

)2

+ 2τ 2
r z +

(
τzz − tr (τ )

3

)2

+
(
τθθ − tr (τ )

3

)2
)
. (4.9)

In regions of high nonlinearity tr(τ )≈ τzz, yielding

|τ d | ≈
√√√√(1

2

) [(
−τzz

3

)2 +
(

2τzz

3

)2

+
(
−τzz

3

)2
]

=
√

1
3
τ 2

zz = 1√
3

|τzz| . (4.10)

Moreover, in the same region |τzz| � Ys , while in the upper half of the thread that
we examine τzz ≥ 0, simplifying the max term in the EVP constitutive equation to
(1/

√
3τzz)

1/n . Therefore, the YS does not enter the dominant balance in the constitutive
law and the entire thread is yielded in all examined cases. By assuming that the normal
z-component of the stress tensor in the EVP thread is constant, we neglect the convective
part of the substantial derivative in (4.8). The rest of the terms in the EVP constitutive
equation are approximated following ideas in Renardy (1995) and Fontelos & Li (2004),
resulting in

∂τzz

∂t
= 2

∂uz

∂z
τzz −

(
1√
3
τzz

) 1
n

Ec

√
3. (4.11)

Substituting the assumed forms for the similarity variables and enforcing time
invariance yields

α3 = n

n − 1
, −α3Ω + δξΩ ′ = 2φ′Ω − 1

Ec
(√

3
)n−1Ω

1
n . (4.12)

Considering inertialess physics, the slender momentum equation, (2.13), becomes
∂

∂z

(
h + h2(τzz − τrr)

)= 0. (4.13)
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For this balance to be consistent, τzz must grow like 1/h so we can conclude that

α1 = −α3 = n

1 − n
. (4.14)

Turning our attention again to the mass conservation equation, we obtain

φ′ = φ

α1 − ψ ′

2
ψ + δξ

. (4.15)

The denominator will be zero where ψ = −δξ , for ξ = ξ0. Therefore, as in the
Newtonian (Doshi et al. 2003; Eggers 1993) or the power-law material (Doshi et al. 2003),
a smooth solution exists only if, at ξ = ξ0, the following hold:

ψ (ξ0)= −δξ0, (4.16)
ψ ′ (ξ)= 2α1. (4.17)

Hence, a Taylor series expansion in ξ about ξ = ξ0 as in Doshi et al. (2003) results in

φ (ξ − ξ0)= φ0 + φ2 (ξ − ξ0)
2 + φ4 (ξ − ξ0)

4 + . . . , (4.18)

ψ (ξ − ξ0)= −δξ0 + 2α1 (ξ − ξ0)+ψ3 (ξ − ξ0)
3 + . . . , (4.19)

where φ0, φ2, . . . andψ3, . . . are the coefficients of the expansion. In all our simulations,
the value of the axial velocity is zero at the plane of symmetry, which arises at ξ0 = 0 for
inertialess flow physics. Therefore, φ and ψ are even and odd functions, respectively. The
minimum value of φ is φ0. Hence, the minimum radius takes the following power-law
form:

hmin (t)= φ0 T α1, (4.20)

where φ0 depends on physical properties and can be determined numerically. In this study,
because of the dual nature of the material, and particularly the max term in the constitutive
model, the flow is more complicated, and we do not determine analytically the value of
φ0. This could be pursued in future studies. The main focus of this study is the breakup
asymptotic forms and the existence of self-similarity. In a nutshell, the results for the
scalings in the capillary breakup regime are given by (4.7a) and (4.14).

The asymptotes derived above are similar with those derived by Renardy, (2002a) for
a generalised form of the viscoelastic Phan–Thien–Tanner (G-PTT) model. The G-PTT
fluid described in Renardy, (2002a) in dimensional form can be written as follows:

λ̃
∇
τ̃ + τ̃ + νλ̃a−1

η̃a−1
p

(tr (τ̃ ))a−1 τ̃ = η̃p˜̇γ , (4.21)

where a > 1 is the exponent of the G-PTT model, λ̃ is the relaxation time, η̃p is the
polymeric viscosity and ν is a positive dimensionless number, playing the same role as
the mobility factor in the Giesekus model. The z-component of G-PTT model where τzz is
the dominant stress component is

∂τ̃zz

∂ t̃
= 2

∂ ũz

∂ z̃
τ̃zz − νλ̃a−2

η̃a−1
p

τ̃ a
zz. (4.22)

Equation (4.22) reduces to (4.11) if the exponent a in (4.22) is replaced by (1/n). Hence,
it is expected that the G-PTT model will have the same asymptotes as the SHB model
in the breakup regime. According to Renardy, (2002a), the asymptotes of the G-PTT
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model are

α1 = 1
a − 1

, α2 = −1, α3 = 1
1 − a

, if 1< a <
7
3
, (4.23)

α1 = 1
4a − 8

, α2 = −1, α3 = 1
1 − a

, if
7
3
< a < 3. (4.24)

For (7/3) < a < 3 (0.33< n < 0.43), surface tension has no influence on breakup, and
pinching enters a new regime, the so-called elastic breakup regime. Our numerical results
are consistent with this finding, as we will demonstrate in § 5.5.2. Integration of (4.13)
yields

h + h2τzz = F (t) , (4.25)

where F(t) is the total force acting on the filament cross-section. In the elastic
breakup regime, the first term on the left-hand side is associated with capillarity and is
subdominant. Substituting α1 and α3, as given in (4.24), into the asymptotic forms of (4.3)
and (4.5), one obtains

F (t)∼ h2τzz ∼ (t0 − t)2α1+α3 ∼ (t0 − t)
2n−6n2

(n−1)(4−8n) . (4.26)

For the force to be finite, requires that (2n − 6n2)/(n − 1)(4 − 8n) > 0 which yields
n > 1/3. Indeed, our code did not converge for values n < 0.33. Furthermore, Renardy
suggests that δ = 0, α2 = −1, but our 2-D numerical results slightly deviate from this
value. The reason for this difference is probably caused by the fact that Renardy has
neglected any radial dependence of uz, p, τzz, τrr and τθθ and completely neglected
ur , τr z , which is not entirely correct, as will be seen in § 5. On the other hand, our solution
of the 2-D equations may include numerical error. We calculate the following scaling
exponents for axial velocity and axial position numerically:

α2 = n

n − 1
(< 0) , δ = n

n − 1
+ 1(< 0), if n > 0.5, (4.27)

where and

α2 → −1, δ→ 0, if n ≤ 0.5 and n → 0.4. (4.28)

In late stages of breakup, since τzz is dominant over τrr, the asymptotic behaviour of the
transient extensional viscosity ηext = (τzz − τrr)/ε̇local yields

ηext ∼ (t0 − t)
2n−1
n−1 . (4.29)

Clearly, for n > 0.5, ηext diverges to infinity, while for n < 0.5, ηext tends to 0,
indicating transient extension-rate-thickening and -thinning behaviours, respectively. It
is noteworthy that the exponents in EVP fluids are different from those in power-law
or viscoplastic fluids. Similar deviations have been observed in experiments with shear-
thinning viscoelastic materials where scalings do not follow expected asymptotes of a
power-law material (Moon et al. 2024). In all our simulations, the scaling exponent for
the axial position, denoted as δ, is found to be negative. We are probing the axial position
at z where h = 1.01hmin. The negative sign of δ implies that the neck length increases as
breakup is approached, instead of decreasing, as is usually the case with δ > 0. Moreover,
the magnitude of the scaling exponent of the minimum radius, |α1|, consistently exceeds |δ|
in our simulations. Hence, the thinning of the thread occurs faster than the growth of the
length of the neck. Consequently, although breakup still occurs at z = 0, the axial extent of
fast thinning increases. This has been called ‘breakup at a finite axial length’ by Renardy,
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(2002a) who found that δ = 0, analytically for the G-PTT fluid. This implies that the neck
length remains constant. Consequently, the inertialess breakup of EVP fluids occurs over
a finite length, whereas in power-law or viscoplastic fluids, it takes place at a single point.
These ideas will be discussed and supported further in § 5.5.4.

4.2. Ideal uniaxial extension of an EVP material under highly nonlinearity conditions
To further validate the derived scaling exponents for h and τzz, we solve numerically
an ideal uniaxial extension flow with the EVP constitutive equation. This simplification
reduces the slender jet equations to those for a perfectly cylindrical liquid jet under
extension. Thus, the strain rate becomes

ε̇ = ∂uz

∂z
= −2

h

dh

dt
. (4.30)

Assuming the power-law asymptote for the radius, the local strain rate reduces to

h = φ0 (t0 − t)α1 =⇒ ε̇ = 2α1

t0 − t
≈ 2

T
. (4.31)

We note that assuming (2α1)/(t0 − t)≈ 2/T will not affect the high nonlinearity trend.
In uniaxial extension

ur = −0.5ε̇r, uθ = 0, uz = ε̇z. (4.32)

In this ideal flow, the velocity gradient ∇u and γ̇ are

∇u = ε̇ diag
(

−1
2
,−1

2
, 1
)
, γ̇ = ∇u + (∇u)T = ε̇ diag (−1,−1 , 2) . (4.33)

The problem is reduced to solving the two components of the momentum balance in the
r - and z-directions, noting that there is no spatial dependence under this idealised flow
condition

dτzz

dt
= 2ε̇τzz + 2

Ec
ε̇ − max(0, |τ d | − Ys)

1
n

Ec

τzz

|τ d | , (4.34)

d
(
τrr
τθθ

)
dt

= −ε̇
(
τrr

τθθ

)
− 1

Ec
ε̇ − max(0, |τ d | − Ys)

1
n

Ec

(
τrr
τθθ

)
|τ d | . (4.35)

The system of the three ordinary differential equations is solved numerically. The time
evolution of τzz is shown on figure 3, for n = 0.45. The important finding from this
simple analysis is that τzz scales like (t0 − t)n/n−1, irrespective of other parameters, like
Ec, or YS in extreme nonlinearity, in other words it depends only on n.

The same figure demonstrates that elasticity through Ec affects only the prefactor of the
asymptotic form, or, in other words, the intersection points of the asymptotic lines with the
ordinate. Reducing Ec will require longer time to reach the region of high nonlinearity,
where τzz scales as we calculated, but at the same point in time the axial stress is smaller.

Moreover, multiple tests were conducted by varying the exponent n with the same
extension rate ε̇ = (2/T ), and with Ec = 0.1 and Ys = 1 to determine if the exponent in
the scale (t0 − t)α3 will agree with our prediction of (n/n − 1). Figure 4, clearly shows
that this is the case for n ∈ [0.3, 0.8].

5. Solution of the two-dimensional equations
We begin this section by validating the numerical algorithm we developed through a test
case. Following this, we present the computed solution for the base material, including
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Figure 3. Evolution of the axial normal stress, τzz, vs. time to pinch in uniaxial extension flow with
ε̇ = 2/t0 − t . The other EVP parameters are n = 0.45, YS = 1, resulting in n/n − 1 = −0.8181.
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Figure 4. The scaling exponent of axial normal stress, τzz, vs. the SHB strain-rate-thinning exponent (n). The
other EVP parameters are Ec = 0.1, YS = 1.

detailed examination of stress and velocity fields near the pinch point. We analyse the
presence of universality and self-similar profiles. We conclude it by examining the impact
of material parameters on the asymptotic behaviour.

5.1. Accuracy of the numerical method
To validate our numerical method, we compare our simulation results with those reported
by Suryo & Basaran (2006) for a power-law material. In such a material, the viscosity is
expressed as

μ̃
(˜̇γ )= k̃

∣∣˜̇γ ∣∣n−1
, (5.1)

where μ̃ is the apparent power-law viscosity, k̃ is the consistency index and n is the power-
law exponent. For flow without inertia, the aforementioned study predicts different flow
regimes, depending on the value of n. Among them the most challenging one to capture
is the so-called non-slender viscous power-law regime arising for n < 0.54, because the
filament loses its slenderness and as n decreases, the strongly shear-thinning behaviour of
the material leads to very fast pinch-off of the thread under capillary action. In this regime,
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Figure 5. Pinching of a power-law thread with n = 0.4, Oh−2 = 0, L = 2, U = 0; (a) interface profile of the
entire filament just before the breakup, (b) close-up near the pinch-off point, (c) minimum radius, axial position
and velocity plotted as a function of time to pinch. The calculated slopes are in perfect agreement with the ones
reported in Suryo & Basaran (2006).

the asymptotic scales are
h ∼ T n, (5.2)
Z ∼ T n, (5.3)

uz ∼ T n−1. (5.4)

We select n = 0.4, Oh−2 = 0, L = 2 to validate our numerical framework. The initial
interface height is set as h(z, 0)= 1 − 0.8 cos(π z/2). This perturbed interface suffices to
initiate instability, even with a stationary upper disk (uplate = 0), because of the absence
of plasticity. Figure 5(a) shows the interface profile just before the breakup obtained with
our numerical method and figure 5(b) illustrates a close-up view of the interface near the
pinch point. Furthermore, figure 5(c) depicts the scaling of the minimum radius, axial
velocity and axial position for the power-law thread. All scales in this figure are in perfect
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Oh−2 n Ys Ec U L0

0 0.45 1.25 0.14 0.39 2

Table 2. Parameters for the base case study.

agreement with those reported in Suryo & Basaran (2006). This demonstrates the validity
and accuracy of our calculations.

5.2. General time Evolution of an EVP filament
We use the 0.2 % Carbopol solution produced and rheologically characterised by Lopez
et al. (2017), as the material for our base case study. We used a nonlinear regression to
determine the material parameters from their flow curve and frequency sweep test at 1 %
strain amplitude, and we achieved close agreement with the rheological measurements. For
a more detailed description, the reader is referred to Moschopoulos et al. (2021, 2023). The
resulting parameter values for the base case study, are given in table 2, except for setting
Oh−2 = 0, to simulate flow physics without inertia.

Figure 6 illustrates the time evolution of the EVP filament. Once the disks begin to
move, the material yields in most of its length, as seen for example at t = 1.32. Near the
disks though, the material only deforms elastically as a Kelvin–Voigt solid, because its
initial velocity and stresses were set to zero everywhere and the no-slip and no-penetration
conditions adhere the material to the disks, preventing the development of normal stresses
as well. To identify the yielded regions, we employ the von Mises criterion, as detailed
in § 2.1. Yielding occurs first at the plane of symmetry, where the stress magnitude is
maximised and with the assistance of capillarity they form a neck there. At all times,
the filament deformation retains the plane of symmetry at z = 0, because of the absence of
gravity and inertia. As stretching continues, the neck gets thinner there making the velocity
and stress gradients more pronounced. Simultaneously, rate thinning decreases the viscous
resistance there, making the deformation larger and more local, t = 2.75. Consequently,
deformation has to decrease away from the mid-plane, reducing the velocity and stress
gradients. Where the stress magnitude drops below the yield condition again, the material
will solidify, permitting deformation in a decreasing length of the bridge. This sequence
of events can be seen in the first three panels of figure 6.

When hmin reaches approximately O(10−2), the filament begins to deform even more
rapidly, now driven primarily by capillarity. The faster escape of the material from the
plane of symmetry through the increasingly smaller cross-section of the neck produces
a jet-like, larger axial velocity away from the pinching region. With its increased axial
velocity, this material now penetrates further inside the unyielded material away from the
necking region, and toward the top moving solid disk, compressing it more effectively.
In this area, the local increase in the radius is attributed to the continuous injection of
material. This complex kinematics leads to material yielding away from the neck with a
small unyielded area in between at time t = 2.8978. Before turning into the dynamics, we
note the following: Because of axial symmetry, the radial velocity is zero at the axis of
symmetry, but away from it and near the pinch point, at z = 0, it is negative following
the decrease in radius, whereas in the corner region (close to highest curvature of the
interface), it becomes positive. Consequently, close to the pinch point, τrr is negative but
it turns positive in the vicinity of the corner region, explaining the sign change of τrr in
this area; see figure 7 below. The same reasoning applies to the change of the sign of
τzz and τr z . The sign change of all stresses indicates that, close to the corner region, the
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t = 1.32 t = 2.75 t = 2.895 t = 2.8978 t = 2.8984
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Figure 6. Time evolution of filament under constant stretching with U = 0.39. The red and blue areas indicate
yielded and unyielded regions, respectively. The other parameters are Oh−2 = 0, n = 0.45, Ys = 1.25, Ec =
0.14, L0 = 2.

components of the deviatoric stress tensor will approach zero. Hence, the transition region
contains unyielded material that separates the yielded neck from the yielded island further
up. As the filament approaches breakup, velocity and stress magnitude increase even faster
and the unyielded area in the transition region shrinks in size and eventually disappears,
as shown in figure 6, at t = 2.8984. It is worth mentioning that this is observable in EVP
materials, because they can deform even in unyielded regions.

Figures 7(a) and 8(a) present contours of velocity and extra stress tensor components,
along with the second invariant of the extra stress tensor, just before pinch-off at
t = 2.8984. These plots clearly illustrate that extremely high velocity and stress
magnitudes arise in the necking region. Moving away from this region, all values rapidly
decrease until they match the boundary conditions imposed on the solid plate. Figures 7(b)
and 7(c) depict contours of velocity components focusing at the corner and necking regions
of the interface, respectively. In the necking region, the axial velocity uz dominates,
becoming three orders of magnitude larger than the radial velocity ur . This dominance
decreases when approaching the corner region, with its magnitude being only one order of
magnitude higher than that of ur .

As demonstrated in figures 7(c) and 7(d), the magnitudes of τrr and τθθ are nearly
identical in both magnified regions, with their extrema occurring at the necking region.
This is consistent with the fact that (dur/dr) and (ur/r) also attain their maximum value
in this region. The pressure magnitude in the necking region is proportional to (1/h),
implying that the high pressure within this region decreases progressively as the distance
from the symmetry plane increases. This trend is clearly illustrated in figures 8(b) and 8(c),
which show pressure contours in the magnified corner and necking regions, respectively.
The shear stress component τr z reaches its extremum in the corner region, approximately
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Figure 7. Contours of velocity and stress components of the filament under constant stretching with U = 0.39
just before pinch-off, at t = 2.8984. Other parameters are Oh−2 = 0, n = 0.45, Ys = 1.25, Ec = 0.14, L0 = 2.
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Figure 8. Contours of pressure and stress components of the filament under constant stretching with U = 0.39
just before pinch-off, at t = 2.8984. Other parameters are Oh−2 = 0, n = 0.45, Ys = 1.25, Ec = 0.14, L0 = 2.

at the point of highest interface curvature. Figure 8(b) further reveals that τr z exhibits
a magnitude comparable or even slightly higher than τrr and τθθ in this region. The
extension-dominated nature of filament breakup is evident in the contours of τzz in necking
and corner regions, as shown in figure 8(c) and 8(d). Similar to the axial velocity, τzz is
three orders of magnitude higher than all other stress components in the necking region
but rapidly decreases until it becomes comparable to τr z at the corner. The magnitude of
the second invariant of the extra stress tensor in the thread is approximately (1/

√
3)|τzz|,

see figure 8(c); However, this relation no longer holds beyond the neck region, as depicted

1020 A37-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
65

2 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10652


Journal of Fluid Mechanics

in figure 8(d). The variation in the radial direction inside the neck for all variables is
negligible. One may observe a small radial variation of ur , τr z and τrr, but only because
their magnitude is much smaller than that of the other variables and the range of colours
in each panel depends on the range of variation of the corresponding variable. In the
supplementary material SM2, we present the time evolution of the axial stress component
τzz and the axial velocity uz , where one can easily observe that they increase from O(1) to
O(105) without any oscillations in their contours, during the same simulation.

All these justify the assumptions made to derive the slender filament equations in the
necking region. However, we will not employ the slender filament equations for simulating
this flow. As stated by Moschopoulos et al. (2020), in stretching of viscoplastic filament,
the deviation between 2-D and slender filament simulations increases as the viscoplastic
character of the flow becomes more pronounced. We believe this applies for EVP material
as well and verifying the accuracy of the solution obtained by the slender equations
requires extensive analysis, particularly for different combinations of Ys and Ec. Moreover,
aside from the necking region, the filament is not slender throughout, particularly in
the corner region, necessitating a full 2-D analysis for accurate results. Additionally, the
slender filament approximation, neglects τr z , which is inappropriate given that τr z is of the
same order of magnitude or larger than τrr and τθθ in this region; see also Eggers, Herrada
& Snoeijer (2020).

5.3. Determination of pinch-off time, t0
Accurate approximation of the pinch-off time, t0, is most important, because even
a very small error in determining its value will lead to incorrect calculation of the
asymptotes. Moreover, in our arbitrary Lagrangian Eulerian formulation, breakup cannot
occur without external intervention, which must take place as close as numerically possible
and physically allowed to the pinch-off time. Computational experiments as well as other
studies suggest that, in order to accurately determine it, simulations have to be conducted
until the minimum radius becomes approximately five orders of magnitude smaller than
the initial radius, or, in the present dimensionless form, when hmin = 10−5. Then the
very last time instant of the simulation can be considered as pinch-off time and the
scalings are correctly determined. On the other hand, when the minimum radius reaches
approximately O(10−3), the EVP stresses grow very fast because of the viscoelastic nature
of the EVP material, making the resulting system of equations extremely stiff to solve.
Although reaching values as small as hmin = 10−5 may not be feasible, we have employed
a least-squares, nonlinear regression method to extrapolate the pinch-off time.

The extrapolation to the breakup time is based on the asymptotic form obtained in § 4.1
for hmin = φ0(t0 − t)α1 . Treating φ0, t0 and α1 as fitting parameters, we apply this power-
law function to the minimum radius data over the last 100 computed time steps. Figure 9
depicts the regression applied to the minimum radius as a function of time for the base
case study. The computed t0 for this case is found to be 2.8984063, while Φo ≈ 10.7 and
α1 = 0.8

The calculated t0 is then used to generate plots of hmin, z, uz, τzz versus T . According to
§ 4.1, the axial stress τzz should scale as (t0 − t)(n/n−1). Owing to conservation of momen-
tum and the balance between capillarity and axial stresses, the minimum radius should
decrease asymptotically as (1/τzz), in other words as hmin ∼ (t0 − t)(n/1−n). Furthermore,
to satisfy the slender jet continuity equation, the axial position and velocity must
scale like (tp − t)δ and (tp − t)1−δ , respectively. Figure 10 illustrates in log–log scales
hmin, z, uz, and τzz versus t0 − t for n = 0.45, Ec = 0.14, Ys = 1.25,U = 0.39. The linear
slope in figure 10 verifies that, indeed, a power-law relation exists for all variables. The
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Figure 9. Nonlinear regression employed to extract the pinch-off time, t0, from the numerical results of the
base case study, for Oh−2 = 0, n = 0.45, Ys = 1.25, Ec = 0.14, L0 = 2.
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Figure 10. Decay of the minimum radius, growth of axial velocity, axial position and axial stresses as pinching
time is approached for Oh−2 = 0, n = 0.45, Ec = 0.14, Ys = 1.25,U = 0.39 ((n/1 − n)= 0.818. The slopes
determine the corresponding exponents of the power-law scaling functions.

calculated slopes are hmin, Z , uz and τzz are 0.80 (≈ (n/1 − n)),−0.08 (= δ),−1.08 (=
δ − 1) and −0.81 (≈ n/n − 1), respectively. These slopes represent the exponents of
power-law scaling functions for the base material and they are in perfect agreement with
the asymptotes we derived with the elasto-capillary scalings, as discussed earlier.

5.4. Self-similar forms of the two-dimensional solutions
Given a distinct set of parameters (n, Ec, Ys), first we calculate the scaling exponents for
minimum radius, axial position, axial velocity and stress, as shown in figure 10, then we
rescale these variables accordingly at different times to verify their collapse onto a single
curve, completing in this way the demonstration of the existence of self-similarity. We
have observed that this holds for a range of power-law exponents, but, for conciseness,
next we present only a single set of parameters corresponding to the base case study.
The inset to figure 11 shows interface profiles for five different values of minimum radius
hmin. Figure 11 depicts that these transient interface profiles obtained by 2-D simulations
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Figure 11. (Inset) Transient interface shape obtained by 2-D simulations at five different hmin values. (Main
figure) Rescaled interface using the numerically determined scaling laws for the same five hmin values.
The main figure illustrates convergence to a self-similar interface profile. The very large difference in the
magnitudes of h before and after scaling is noteworthy.

0.10

–0.10

–0.12

0.08

–0.08

0.06

–0.06

0.04

–0.04

0.02

–0.02

0

0.20 0.25

uz

–0.20 –0.15 –0.10 0.10 0.15–0.05 0.050

z̄

uz

0–0.1

0

–50 000

50 000

0.1
z

hmin = 8.5 × 10–4

hmin = 6.5 × 10–4

hmin = 4.5 × 10–4

hmin = 3.5 × 10–4

hmin = 2.5 × 10–4

¯

Figure 12. (Inset) Transient velocity variation along axial coordinate (z) at the interface obtained by 2-D
simulations at five different hmin values. (Main figure) Rescaled velocity plotted against rescaled axial
coordinate using the numerically determined scaling laws for the same five hmin values. The main figure
demonstrates convergence to a self-similar velocity profile. The very large difference in the magnitudes of
the velocity before and after scaling is noteworthy.

collapsing onto a single self-similar interface profile by rescaling the interface height
h = (h/(t0 − t)(n/1−n)) and the axial position Z = (z − z0/(t0 − t)δ), where δ ≈ −0.08.
Please note that the rescaled variables are denoted by an overbar () over the corresponding
variable symbol.

The inset to figure 12 shows the variation of axial velocity uz at the interface versus the
axial coordinate z for five different values of minimum radius hmin. Figure 12 depicts that
by rescaling the axial velocity as uz = (uz/(t0 − t)α2), with α2 = −1.08, the transient ve-
locity profiles collapse onto a single self-similar profile as the minimum radius hmin → 0.
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Figure 13. (Inset) Transient axial stress variation along axial coordinate (z) at the interface obtained by 2-D
simulations at five different hmin values. (Main figure) Rescaled axial stress plotted against rescaled axial
coordinate using the numerically determined scaling laws for the same five hmin values. The main figure
demonstrates convergence to a self-similar axial stress profile. The very large difference in the magnitudes
of stress before and after scaling is noteworthy.

Finally, the inset to figure 13 shows the axial stress τzz versus the axial coordinate
extracted from nodal values of 2-D calculations at the interface for five different values
of hmin. The rescaled axial stress τ zz = (τzz/(t0 − t)(n/n−1)) vs. rescaled axial coordinate
does converge to a self-similar profile, as shown on figure 13.

The plots in this section show good collapse near Z = 0; however, the quality of the
collapse diminishes as Z increases. This can be attributed to the negative value of the
exponent δ, which leads to smaller values of Z compared with cases where δ > 0. As
illustrated in the scaling plot of figure 10, the axial position increases as breakup is
approached. Consequently, in self-similarity plots, the span of Z is reduced relative to
other constitutive equations, such as Newtonian or power-law fluids, for which δ > 0.

Moreover, we have extracted numerically scaling laws for the variables in the corner
region. However, they do not follow a universal scaling law, we were unable to derive
analytically these scalings nor could we obtain self-similar solutions. It is possible that this
is caused by the fact that the corner region involves in the thread side yielded material until
the very late stages of breakup, much later than when asymptotic behaviour of the neck
starts, but unyielded material in the other side toward the disc. Consequently, derivation of
the asymptotics is not straightforward, because the material exhibits dual behaviour in this
region. Additionally, since the solvent viscosity is set to zero in this study, the dominant
balance and self-similar form of the governing equations become more complex than those
reported by Fontelos & Li (2004) for the Giesekus fluid.

5.5. Parametric analysis
We will separate this section based on the value of the power-law index. When 0.43<
n < 1, surface tension is the main driving force causing breakup. This range of values
is examined in § 5.5.1. Although for n > 0.5, the SHB model predicts extension rate
hardening, which is not expected for Carbopol (Kordalis et al. 2021), we will examine
values of n up to one for a more complete study. Values of 0.33< n < 0.43 will be
examined separately in § 5.5.2, because then capillarity plays no role in pinching-off,
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Figure 14. Profiles of the entire filament (a) and closeup views in the corner (b) and necking (c) regions for
four different values of n. In (b) we did not include the entire ‘local’ interface for n = 0.8, because it would
reduce the clarity of the rest. The remaining parameter values are Ys = 0.1, Ec = 0.14,U = 0.1.

while n = 1 will be examined in § 5.5.3, also separately, because, as we will demonstrate,
pinching-off does not take place in the Saramito–Bingham model (Saramito 2007). We
will examine the effect of n and Ec, where appropriate. Here, Ys has no effect, because
the thread during pinching-off is yielded throughout.

5.5.1. Elasto-plasto-capillary breakup regime, 0.43< n < 1
Although the YS does not enter the dominant balance determining the asymptotic
behaviour of the thread in this regime, the title includes the term ‘plasto’, because part
of the included elastic term is what remains from the viscoplastic contribution in the
constitutive law, see (3.11).

5.5.1.1. Effect of strain-rate-thinning exponent (n). We proceed by examining the effect of the
strain-rate-thinning exponent, n, on the pinch-off dynamics. Figure 14(a) depicts interface
profiles for four different values of n, recorded when hmin = 1.5 × 10−3.

As n increases, strain-rate thinning decreases, resulting in increasing elastic stresses,
including its radial normal component, which opposes capillarity. This leads to a longer
thread around the middle of the filament for the same hmin, as depicted more clearly in
figure 14(b). Given that the initial dimensions of the filament for all cases are the same, a
longer neck causes a slight increase in the total height of the filament (see figure 14a), when
it has reached the same hmin under the same constant stretching velocity. Additionally, the
increased opposing elastic force slows down the breakup rate, causing the EVP thread to
break later in time as n increases. Figure 14(c) shows that the interface profile close to
pinch off is almost a perfect cylinder for all values of n.

The dependence on time to pinch of the minimum radius, the axial normal stress and
axial velocity, as well as the length of the neck up to which its radius increases by only
1 % from its minimum value, are presented in figure 15. Figures 15(a) and 15(b) depict
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Figure 15. Effect of the exponent of strain-rate thinning on the scaling with respect to (to − t) of minimum
radius (a), axial stress (b), axial velocity (c) and axial length of neck (d). The rest of the parameter values are
Ys = 0.1, Ec = 0.14,U = 0.1.

the hmin decrease and the τzz increase as a function of time to pinch to − t . Focusing
on their values when they reach their asymptotic behaviour, one readily observes that
they follow very closely the power-law dependence on n, namely ±n/(1 − n) for all four
values of n. The calculated slopes, which represent the exponents of the power-law scaling
functions, are almost in perfect agreement with the proposed asymptotes. An error of
± 2 % from the earlier predicted asymptotes may be attributed to inaccuracies of the
numerical method and a slight radial dependence of the variables in the numerical solution
of the 2-D equations. As these exponents require, when n increases, the slopes of the
asymptotes of both variables increase. Figure 15(a) also shows that increasing n brings
hmin faster to a certain small value, although the time to breakup is delayed, since this
occurs at larger values of (to − t). Similarly, figure 15(c), demonstrates that the slope of
the asymptotic increase of vz increases with n, although for n < 0.5, the exponent does not
have an analytic relation with it; see (3.27) and (3.28). Finally, figure 15(d) indicates that
the thread of the filament becomes longer at a faster rate, when n increases. This length
extends from the plane of symmetry to the axial position where h = 1.01hmin , and it is
denoted as Z .

Altogether, figure 15 demonstrates that, for smaller n values, the asymptotic behaviour is
reached when calculations are carried out to times much closer to breakup. This leads to a
thinner neck, driven by higher velocity produced by higher axial stress. Another important
observation from these four panels is the sharp increase in the extreme values reached
by hmin, vz and τzz as n decreases. These values are ∼ 2 × 10−4, 2 × 104 and 5 × 104,
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Figure 16. Profiles of the entire filament (a) and closeup views in the corn (b) and necking (c) regions for
three different values of Ec. The rest of the parameter values are Ys = 0.1, n = 0.45,U = 0.1.

respectively, for n = 0.45, while their initial values are 1, 0 and 0, respectively. This makes
plain how challenging these calculations are and the importance of the new ideas adopted
in the particular numerical algorithm.

5.5.1.2. Effect of elastic modulus. We move on by examining the effect of the elasto-capillary
number, Ec, on the pinch-off dynamics. Figure 16 illustrates the different shapes of the
filament when hmin = 4.5 × 10−4.

Focusing on figure 16(a), we observe that increasing Ec generates both a shorter
filament and, hence, one that breaks faster, but a longer thread around the plane of
symmetry. This seemingly contradictory trend is explained as follows: increasing Ec
affects both the unyielded and yielded regimes of the filament in different ways. To start
with, when Ec increases, the filament deforms more as an elastic solid prior to yielding,
allowing for a more localised viscoelastic deformation in the region around the plane of
symmetry. This leads to earlier formation of the neck and earlier breakup of the filament,
although the opposing elastic forces also increase. All these lead to a shorter total filament
height at pinch-off time, figure 16(a). This increased elastic yielding has been reported
also by Moschopoulos et al. (2023), where the bulk dynamics has been studied. The same
increase in Ec increases τzz, which accelerates the evacuation of the neck and the decrease
of its radius. At the same time, the larger normal stresses generate a longer neck, because
they oppose neck thinning by capillarity, as shown on closeup view at the corner region,
figure 16(b). Figure 16(c) shows that the neck profile close to pinch off forms a nearly
perfect cylinder for all values of Ec.

The trends in hmin decay and τzz, vz, and Z growth are presented in figure 17. The slopes
of all four variables with respect to the time to pinch (to − t) in the asymptotic regime
depend only on n, but are independent from Ec. The elastocapillary number affects only
the intersection with the ordinate, via affecting the coefficient φ0 in (3.20). Even this effect
is weak for all variables, except for Z . Indeed, figure 17(d) indicates that the axial extent
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Figure 17. Effect of Ec on the scaling with respect to (to − t) of minimum radius (a), axial stress (b), axial
velocity(c) and axial length of neck (d). The rest of the parameter values are Ys = 0.1, n = 0.45,U = 0.1.

over which this scaling holds is longer, or, in other words, the neck is longer for higher
Ec, although its growth rate remains the same. The calculated slopes, which represent
exponents of the power-law scaling functions, are almost in perfect agreement with the
proposed asymptotes.

5.5.2. Elasto-plastic breakup regime, 0.33< n < 0.43
In this section we will examine the pinching dynamics of materials with smaller power-
law exponent 0.33< n < 0.43 and with as low n values (always positive) as our algorithm
allows with convergence in a reasonable time. As in the previous regime, the YS does
not enter the dominant balance in this regime either, but its title again includes the
term ‘plastic’, because part of the appearing elastic term is what remains from the
viscoplastic term in the constitutive law. A small decrease in n below 0.45 leads to a
significant deviation from the asymptotic result for the minimum radius. For the values
of 0.33< n < 0.43, the breakup mechanism is no longer governed by capillarity. Instead,
it is dictated purely by elastic stresses, which drive the breakup after the neck is formed.
This type of pinching-off has been identified by Renardy (2002a) for the generalised form
of PTT materials that he introduced. To further investigate this regime, we carried out
filament stretching simulations for three different values of n where 0.33< n < 0.43. In the
elasto-plastic breakup regime, the minimum radius follows a different asymptotic scaling
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Figure 18. Effect of the exponent of the strain-rate thinning (n) in elastic breakup regime on the scaling with
respect to t0 − t of minimum radius (a), axial stress (b), axial velocity (c) and axial length of neck (d). The rest
of the parameter values are Ys = 0.1, Ec = 0.14,U = 0.1.

hmin ∼ (t0 − t)(n/4−8n). However, since surface tension does not appear in the constitutive
equation, the scaling for τzz remains unchanged, following τzz ∼ (t0 − t)(n/n−1).

This is shown in figures 18(a) and 18(b), respectively. Additionally, our calculations
indicate that, by decreasing the value of n, the axial velocity and axial position scaling
exponents, α2 and δ approach the values of −1 and 0, respectively, as illustrated in
figures 18(c) and 18(d), respectively. The exponents in this regime do not depend on
Ec, similar to the capillary-driven regime, and the corresponding results are omitted for
conciseness. It is noteworthy that reaching the asymptotic range now requires getting even
closer to the breakup time (t0 − t) < 10−5 and fully capturing it requires approaching
small T values more than ever before, down to (t0 − t)∼ 10−8. All these necessitate
extremely small time steps for accurate predictions. Furthermore, the extreme values of
hmin, vz and τzz now become ∼ 3 × 10−4, 5 × 105 and 2 × 105, respectively, with the last
two approximately one order of magnitude larger than their values for n = 0.45. All these
observations reveal that the calculations become increasingly difficult as n decreases. The
deviation in the scaling exponent α1 for n = 0.4 is most pronounced among all cases
studied. Specifically, our numerical results yield α1 = 0.45, whereas the asymptotic scale
predicted from slender filament equations is 0.5. Even with a more refined mesh in the
necking region, including more than 10 000 axial elements results in the same value of
α1 = 0.45. We believe this deviation arises by the factors discussed earlier.
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n α1 δ α1 − δ

0.4 0.45 −0.0 0.45
0.45 0.81 −0.11 0.92
0.5 1.07 −0.18 1.25
0.6 1.55 −0.53 2.08
0.8 3.96 −2.95 6.91

Table 3. Values of exponents α1, δ and α − δ for five different SHB exponents. The rest of parameters are
Ys = 0.1, Ec = 0.14,U = 0.1.
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Figure 19. Self-similar interface profiles of EVP fluids with five different strain-rate-thinning exponents. The
rest of the parameters are Ys = 0.1, Ec = 0.14,U = 0.1.

5.5.3. Collapse of filament shapes and radial velocity asymptotes for all cases with, n < 1
Having analysed the scalings where the SHB exponent, n, is less than unity, we now
present self-similar interface profiles obtained by 2-D simulations for various values
of n, shown in figure 19. We have shown that z scales as (t0 − t)δ and that when n
increases, δ increases in absolute value, remaining negative. Consequently, the rescaled
axial coordinate Z spans a narrower region as n increases. Similarly, the span of h
decreases. Both are clearly seen in figure 19. The local slenderness of the necking region
decreases progressively with decreasing n. This trend can be understood by examining
the ratio of radial to axial length scale, given by (hmin/z)∼ (t0 − t)α1−δ . The variation
of the exponent α1 − δ is provided in table 3, revealing a sharp decrease from ∼ 7 to
0.45 as n decreases from 0.8 to 0.4. Consequently, the breakup dynamics in the necking
region exhibits an abrupt transition from a fully acceptable slender filament one to one that
increasingly approaches a non-slender breakup at n = 0.4.

Figure 20 shows the evolution of the radial velocity at the interface on the symmetry
plane as a function of remaining time to pinch, t0 − t . Results from 2-D simulations
reveal that, for all values of the SHB exponent (n) less than unity, the scale of ur is
α1 − 1. So, the radial velocity exhibits an asymptotic scale ur ∼ (hmin/(t0 − t)), being
valid for all cases where n < 1. Interestingly, as shown in figure 20, for SHB exponents
n > 0.5, the absolute radial velocity |ur | at the interface on the symmetry plane decreases
considerably as t0 − t → 0, indicating an increase in material’s resistance to breakup,
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Figure 20. Variation of the radial velocity magnitude at the intersection between the symmetry plane and the
interface with t0 − t . The rest of the parameters are Ys = 0.1, Ec = 0.14,U = 0.1.

which is a characteristic of extension-rate-thickening behaviour. Conversely, for n < 0.5,
|ur | increases toward breakup, reflecting a significant reduction in elastic resistance,
corresponding to extension-rate-thinning behaviour.

5.5.4. Discrimination between finite-length and point breakup
In this section we elaborate further on the discussion in § 4.1 concerning the finite-length
breakup. We investigate this phenomenon by examining the filament thickness h at two
axial locations; one at the plane of symmetry, where h attains its minimum value, and
another one slightly above it at z+ = 0.01. Initially, we attempted to demonstrate finite-
length breakup by plotting hz+ and hmin as functions of time t or time to breakup t0 − t .
However, the near perfect overlap of these curves hindered any definitive conclusion.
Next, we employed an alternative metric by plotting the normalised difference of filament
thickness probed at these two axial locations versus time to breakup

χh = hz+ − hmin

hmin
. (5.5)

This quantity may also be experimentally accessible. If a line is drawn connecting these
two points on the interface, one at z = 0 and the other at z = z+ = 0.01, the difference
hz+ − hmin is proportional to the absolute slope of that line, since �z is fixed. A decrease
in hz+ − hmin indicates that the filament shape is becoming more cylindrical. Meanwhile,
the decay rate of hmin characterises the rate at which breakup occurs at the symmetry plane.
Therefore, an increase in χh as t0 − t → 0 denotes that the rate of filament thinning leading
to point breakup exceeds the rate at which a cylindrical ‘inner thread’, if present, is formed.
In this context, a negative slope of χh plotted against t0 − t → 0 in log–log plot implies
that breakup will asymptotically precede the formation of a cylindrical neck, if such neck is
formed at all. Conversely, a positive or zero slope suggests finite-length breakup, wherein
the filament retains a finite axial extent close to breakup. Asymptotically, this implies that
the cylindrical neck forms either before breakup, if χh →0, or simultaneously with it, if
χh approaches a constant. As shown in figure 21, χh increases near breakup for both a
power-law material with n = 0.4 analysed in § 5.1 and a Newtonian fluid. Conversely, in
an EVP filament with n varying from 0.4 to 0.6, analysed in §§ 5.5.1 and 5.5.2, χh exhibits
a decreasing or constant trend, with a plateau at O(10−2 − 10−4) as breakup is approached.
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Figure 21. Evolution of χh = (hz+ − hmin)/hmin plotted against time to breakup t0 − t for EVP, power-law
and Newtonian fluids. Other parameters for the EVP fluid are Ys = 0.1, Ec = 0.14,U = 0.1, and those for the
power-law fluid are provided in § 5.1. Here, z+ = 0.01.

These observations suggest that the EVP filament retains an almost cylindrical shape very
near pinch-off, consistent with finite-length breakup behaviour.

5.5.5. Analysis of the local curvature at the symmetry plane
In addition to analysing the scaling laws for minimum radius, axial stress or axial
velocity at the interface on the symmetry plane z = 0, it is often important to examine
the interfacial curvature and its asymptotic behaviour at this location. This becomes
particularly relevant when it is important to distinguish between a SHB material with
n = 0.5 and a Newtonian fluid, because both exhibit a similar linear decay of the minimum
radius. As highlighted by Du et al. (2024), evaluation of the curvature at the mid-plane
offers a more comprehensive characterisation of the filament shape than the decay of the
minimum radius alone. Following this approach, we define the curvature ratio χ at the
interface on the symmetry plane as

χ = κz

κr
=

∣∣∣∣∣∣ hzz(
1 + h2

z

) 3
2

∣∣∣∣∣∣∣∣∣∣∣∣ 1

h
(
1 + h2

z

) 1
2

∣∣∣∣∣∣
. (5.6)

Substituting (3.3) and (3.6) into the above expression yields a general asymptotic scaling
form for χ

χ ∼ (t0 − t)2α1−2δ ∼ (hmin)
2− 2δ

α1 . (5.7)

Figure 22 shows the evolution of the curvature ratio, χ , as a function of the of minimum
radius hmin, neglecting inertial effects. It includes SHB fluids in the range of exponents
n ∈ [0.4, 0.6], as well a power-law fluid with n = 0.4 and a Newtonian fluid.

According to Renardy (1994), the inertialess breakup asymptotic scaling exponents of
a Newtonian fluid are α1 = 1 and δ = 0.175, while for a power-law fluid with n = 0.4,
they are α1 = δ = 0.4, as discussed in § 5.1. Consequently, the asymptotic scaling of χ
is expected to follow (hmin)

1.65 for Newtonian fluid and remain constant for power-law
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Figure 22. Evolution of the curvature ratio against minimum radius for EVP, power-law and Newtonian
fluids. Other parameters for EVP fluid are Ys = 0.1, Ec = 0.14,U = 0.1, and those for the power-law fluid
are provided in § 5.1.

fluids under the assumption of negligible inertia. Notably, figure 22 reveals that the EVP
fluid with n = 0.5 exhibits a numerically determined scaling exponent of approximately
2.35, which is significantly higher than that of the Newtonian case despite the fact that
both fluids exhibit a similar linear decay in the minimum radius. This demonstrates that
the evolution of the curvature ratio with respect to the minimum radius can effectively
distinguish between the two cases, even though the formation of an elastic neck in the
EVP fluids may not be fully observable in experiments. It is noteworthy that, having
computed the curvature numerically, to evaluate curvature ratio χ , which involves the
second derivative of the interface shape, we have calculated the φ2 term in (3.18) as well.
We opted not to report it explicitly for conciseness.

5.5.6. Elasto-plasto-capillary regime with no breakup in finite time, n = 1
Increasing n to unity to examine numerically the asymptotics of the Saramito–Bingham
model, we revert to the asymptotes of the simpler Oldroyd-B fluids, which are known
to predict that all variables and in particular the minimum radius have an exponential
dependence on time to breakup. This is demonstrated in figure 23, where the minimum
radius depends exponentially on time t, and the coefficient of the exponent is the same
as the one for an Oldroyd-B fluid, −1/(3 × Ec × ln(10)), while the coefficient of τzz has
the opposite sign. The other two variables also have an exponential dependence on t with
the same coefficient between them, as required by the asymptotics. The final values of all
variables required to cover the asymptotic range are much smaller now than in cases with
n < 1, revealing that indeed the previous calculations are the most challenging ones. Once
again, the YS plays no apparent role in the asymptotes.

6. Concluding remarks
In this study, we examined the dynamics of EVP filament breakup, while neglecting
inertial effects as a first approach to understanding it. By utilising the SHB constitutive
model, we derived the asymptotic behaviour and self-similar forms of the variables as the
minimum filament radius approaches extremely small values. We show that the value of
the YS is irrelevant when examining the late-stage asymptotic behaviour. Interestingly, we
observed that the SHB model exhibits a similar asymptotic form as the G-PTT model,
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Figure 23. Effect of Ec on the scaling with respect to time (t) of minimum radius (a), axial stress (b), axial
velocity (c) and axial length of neck (d). The rest of the parameters are Ys = 0.1, n = 1.,U = 0.1.

previously analysed by Renardy, (2002a). We identified three distinct asymptotic regimes:
(a) elasto-plasto-capillary and (b) elasto-plastic in both of which breakup takes place in
finite time and (c) the elasto-plasto-capillary regime with no breakup in finite time. The
former two cases arise when n < 1 and the latter when n = 1. We did not examine cases with
n > 1, corresponding to shear-rate-thickening behaviour of the material. A comprehensive
summary of the derived asymptotes is presented in table 4. By employing our
recently developed numerical algorithm, PEGAFEM-V, we conducted 2-D axisymmetric
simulations to capture the breakup process. To achieve minimum radius values as small as
O(10−4 − 10−5), we developed a novel stabilised adaptive finite element method capable
of simulating any breakup scenario we encountered in this study. Using the 2-D simulation
results, we derived self-similar solutions for the interface shape, axial velocity and axial
stress by appropriately rescaling the variables, by scales presented in table 4.

We demonstrated that both the YS and the elasticity, represented by the coefficient of the
upper-convected derivative in the constitutive equation, do not affect the determination of
the asymptotic behaviour. The effect of Ys is implicit for all examined n values, while
the effect of Ec is implicit for n < 1, affecting only the intercept of the asymptotes
and explicit for n = 1. We expect that other variants of Saramito’s model, such as the
Saramito–Giesekus model, will also exhibit the asymptotic behaviour of their viscoelastic
counterpart during the late-stage breakup, as the YS becomes negligible in the dominant
stress balance in the constitutive equation. We presented a scaling analysis that offers
insights into experiments of extension of YS fluids with elastic properties, particularly
where thixotropic effects are negligible. This analysis is very relevant to extensional
rheology, where key quantities such as minimum filament radius or extensional viscosity
are commonly reported.
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Finite time breakup n < 1

Extension-rate thinning n < 0.5 and constant
extensional viscosity n = 0.5

Elasto-plastic breakup
0.33< n < 0.43

Elasto-plasto-capillary
breakup n ≥ 0.43

Extension-rate
thickening n > 0.5

No breakup in finite
time n = 1

hmin (to − t)
n

4−8n (to − t)
n

1−n (to − t)
n

1−n e− t
3Ec

uz (t0 − t)δ−1 (t0 − t)δ−1 (t0 − t)
n

n−1 eδ

Z (t0 − t)δ (t0 − t)δ (t0 − t)
2n−1
n−1 eδ

|ur | (to − t)
9n−4
4−8n (to − t)

2n−1
1−n (to − t)

2n−1
1−n e− t

3Ec

τzz (t0 − t)
n

n−1 e
t

3Ec

ηext (t0 − t)
2n−1
n−1 e

t
3Ec

ε̇ (t0 − t)−1 Constant

Table 4. Summary of scales of all variables for breakup of an EVP filament when Oh−2 = 0.

We did not perform numerical simulations with the 1-D slender EVP filament.
Following the findings of Moschopoulos et al. (2020) the slenderness of the filament
may be influenced by the presence of YS, even though YS does not affect the late-
time asymptotic behaviour. The final breakup shape and time might differ in 1-D slender
simulations due to the YS affecting the filament’s initial deformation up to the point very
close to breakup. Future studies could explore the comparison between the results derived
from 2-D and 1-D simulations across the full parameter space of YS and elasticity.

In future work, we will extend this study to provide a comprehensive understanding of
EVP filament breakup including inertia. We will assess whether this leads to interfacial
instabilities and the formation of bead-on-string structures in EVP filaments. Additionally,
we plan to investigate the impact of thixotropy on breakup dynamics through full 2-D
axisymmetric simulations of thixo-elasto-visco-plastic constitutive models, such as those
developed by Spyridakis et al. (2024) and Varchanis et al. (2019a).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10652.
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Figure 24. Schematic of h-adaptive mesh refinement. Nodes are added radially where any element exceeds
the adaptation criteria.

Appendix A

A.1. Mesh adaptation method
The initial mesh is a unit square of side length 1. Concerning the elliptic grid generation
scheme, the computational domain remains the unit square, and the physical domain
deforms based on the imposed velocity on the top plate and the deformation of the free
surface. The initial unit square is discretised into 500 axial elements and 30 radial elements
leading to 15 000 nodes and 135 000 unknowns. As the filament stretches and the neck
forms, the elements near and inside the neck will become skewed. To address this, we
add nodes in the radial cross-section in the middle of every element in the computational
domain if the minimum angle of the corresponding element in the physical domain falls
below 25 degrees. Figure 24 shows schematically the h-adaptive mesh refinement after
1 step of node insertion. The mesh is shown in the computational domain for simplicity.
However, adding nodes only based on the angle criterion may not be enough to have
good accuracy of the solution. To address this, and motivated by our Petrov–Galerkin
formulation, we define a characteristic pressure gradient for element k as follows:

∇ pk = �
nen
i=1

∥∥∇Ph
i

∥∥
nen

, (A1)

where nen denotes the number of nodes in the element and ‖∇Ph
i ‖ is the L2-norm of

the pressure gradient at each node. We use a pressure gradient-based error indicator
defined as

ηk = ∇ pk · (Area)k . (A2)

The error indicator ηk is normalised by the averaged error indication ηk over the domain

ηk = �
nel
i=1ηki

nel
. (A3)

where nel is the total number of elements. A node is added in the middle of every
element if the ratio (ηk/ηk) exceeds 2. An additional criterion is developed by trial and
error to prevent excessive node addition. Employing this error indicator results in less than
5 iterations per time step to reach the convergence criterion and achieve robust accuracy
of the computed solution. Figure 25 depicts the adapted mesh just before breakup which
contains more than 4 × 105 nodes and 3.6 × 106 unknowns.
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Figure 25. The adapted mesh with more than 400 000 nodes for the stretched filament; here
n = 0.45, Ys = 1.25, EC = 0.14 and U = 0.39.

A.2. Solution transfer method
After every adaptation step, values on the newly generated nodes must be computed.
One straightforward method is to use the interpolants of the parent element to calculate
these values. However, this method is not accurate enough, as we experienced in our
calculations. This linear interpolation introduces inaccuracy, particularly in the pressure
field, leading to spurious oscillations despite the use of a stabilised finite element
method. Hence, to calculate the flow variables on the newly generated nodes, we use the
conservative interpolation method introduced by Farrell & Maddison (2011). This method
is a local L2-Galerkin projection which tries to minimise the L2 norm of a field between
the old mesh and the new mesh by constructing a local supermesh. Supermesh is the
mesh of the intersections of the new and the old mesh. For further details, the reader is
referred to Farrell & Maddison (2011). The minimisation statement and the weak form of
interpolation between the two meshes are as follows:

Minimize ||qold − qnew||2 →
∫
Ωnew

qnewdΩ =
∫
Ωsupermesh

qolddΩ. (A4)

The integration on the left- and right-hand sides is conducted over the new mesh and
the supermesh, respectively. This method ensures local conservation of integrals at the
element level resulting in a smooth and continuous computed solution over time. The
h-adaption method described here is straightforward, simple, and eliminates the need
for the intersecting algorithm described in Farrell & Maddison (2011) to construct the
supermesh. Figure 26 illustrates the supermesh constructed after one step of the h-adaptive
mesh refinement. As the nodes of the old mesh, the new mesh and their local supermesh
are predefined, implementing a code to generate the supermesh is both intuitive and
computationally efficient.
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Figure 26. Constructed supermesh after one step of an h-adaptive mesh refinement.
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