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Abstract

We show that holomorphic singular codimension one foliations of the complex projective
space with a Kupka singular set of radial type and verifying some global hypotheses have
rational first integral. The generic elements of such pencils are Calabi–Yau.

1. Introduction

1.1 Let F be a codimension one holomorphic singular foliation of the complex projective space P
n.

The foliation is defined by a class of sections ω ∈ H0(Pn,Ω1(d + 2)), where d = d(F) is its degree,
that is, the number of tangencies of leaves of F with a generic projective line. It is always possible
to suppose that codimC(ω)0 � 2 and we put sing(F) := {p ∈ P

n | ω(p) = 0}.
In this paper we consider dimension n � 3 and our main hypothesis is that there is a codimension

two connected component of sing(F) which is a Kupka set K(F), defined by

K(F) := {p ∈ P
n | ω(p) = 0, dω(p) �= 0}.

We consider compact Kupka sets of foliations of P
n. From [GL90] and references therein, it is known

that there is an open covering {Ui}i of K(F) and a collection of submersions ψi : Ui → C
2 with

K(F) ∩ Ui = ψ−1
i (0, 0), as well as a holomorphic 1-form ηpq := px dy − qy dx, with isolated zero at

(0, 0), such that F|Ui
is represented by ψ∗

i (ηpq), where p, q are integers with 1 � p < q, (p, q) = 1
or p = q = 1. The transversal type of K(F) is given by ηpq and the radial type corresponds to
p = q = 1; we denote in this case K(F) = R(F).

It follows from the local product structure that K(F) is smooth and that the other components
of sing(F) do not intersect K(F).

1.2 A fundamental fact about foliations of P
n with a Kupka set is that F has the global rational

first integral if and only if K(F) is a complete intersection (scheme theoretically) [CL94].
Furthermore, it is conjectured that K(F) is always a complete intersection. There are already

several partial positive answers to this conjecture. In fact, in [Cal99, Theorem 3.5] it is proven that
a codimension one foliation of P

n, n � 3, whose Kupka set is not of radial type, has a rational first
integral. Also, for any transversal type, it is proven in [CAS94, Corollary 4.5] that the Kupka set of
a foliation is a complete intersection, under the extra hypotheses d(F) � 2n and n � 6. At last, in
[Bal95] and [Bal99] we find the hypothesis n � 6.

In order to state our result we recall some definitions.
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1.3 The canonical bundle of a k-dimensional algebraic variety S is defined by KS :=
∧k TS∗, where

TS∗ is its cotangent bundle. The triviality of KS is a main feature of Calabi–Yau varieties. Smooth
hypersurfaces of P

n with degree n + 1 are the first examples of Calabi–Yau varieties (see [GHJ03]
for the general theory of Calabi–Yau threefolds).

1.4 Let M be an n-dimensional projective smooth variety with a codimension one holomorphic
singular foliation F with codimCsing(F) � 2. Let TF be the tangent sheaf of F and consider the
line bundle

∧n−1 T ∗
F which is the dual of the top exterior power. We remark that local sections of∧n−1 T ∗

F correspond to top degree holomorphic forms along the leaves of F .

1.5 We recall that a line bundle L of M is called nef if c1(L) ·C � 0 for all curves C, where c1(L)
means the first Chern class of L.

We remark that the nefness condition is weaker than ampleness, which has already been used
in the theory of holomorphic foliations (e.g. [GL90, Cal99]). For information on the geometrical
meaning of Nefness of cotangent bundles of foliations we refer to [McQ00], [Bru04] and [BM01].

At last, we call sectional Baum–Bott indices the usual indices of singularities of foliations by
curves [Bru04] induced in generic plane sections of a codimension one foliation.

Theorem. Let F be a codimension one singular foliation of P
n, for n � 3. Suppose that d(F) = 2n

and that F has a compact connected Kupka set of radial transversal type R(F).

Denote by Sn−2(F) its codimension two singular set and suppose that Sn−2(F) \ R(F) has
non-positive sectional Baum–Bott indices.

Consider σ : M → P
n the blowing up along R(F) and F̂ the transformed foliation of F by σ,

with codimCsing(F̂) � 2 on M . Suppose that
∧n−1 T ∗

F̂ is Nef.

Then Sn−2(F) = R(F) and degR(F) = (n + 1)2. Moreover, F is a pencil of hypersurfaces of
degree n+ 1 which are smooth along the base locus R(F).

Remark 1. When F is a generic pencil of hypersurfaces of degree m � n+1 (for instance, a Lefschetz
pencil) then

∧n−1 T ∗
F̂ is Nef.

Remark 2. The Theorem is motivated by [MS02, Theorem 2] applied to a degree 4 foliation F of P
2.

The hypotheses of that paper imply that the transformed foliation F̂ under blow up of k radial
points has Morse singularities and that T ∗

F̂ is Nef. The conclusion is that F is a pencil of cubics,
smooth at the k = 9 base points.

On the other hand, there is an example [Lin02] of a one parameter family of foliations Fλ of
degree 4 in the plane such that the singularities are either 12 radial points or singularities with local
holomorphic first integral (and non-positive Baum–Bott indices). But only for a countable set of
parameters are such foliations pencils of elliptic curves. In this example, T ∗

F̂λ
are not Nef.

2. Preliminaries

2.1 An adjunction formula

A codimension one foliation F of an n-dimensional smooth projective variety M can be represented
by a non-trivial integrable section of Ω1

M ⊗NF where NF is the normal bundle of F .

For instance, in P
n we have NF = OPn(d(F) + 2), where d(F) is its degree. From the exact

sequence of sheaves

0 → TF → TM → Jsing(F) ·NF → 0,
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by dualising and taking the top exterior powers, we obtain the following isomorphism of line bundles
of M :

n∧
TM∗ =

n−1∧
T ∗
F ⊗N∗F .

Hence we have
n−1∧

T ∗
F = KM ⊗NF .

2.2 Blowing up of a radial Kupka set

Let σR(F) : M → P
n be the blow up along the radial Kupka set of F (as remarked, R(F) is a

smooth variety).

Let E = σ−1
R(F)(R(F)) be the exceptional divisor, and denote by F̂ the transformed foliation of

F by σR(F) (with singularities of codim � 2). We assert the following line bundle isomorphism:

NF̂ = σ∗R(F)(NF ) ⊗OM (−2E).

In fact, on open sets U = (x, y, z1, . . . , zn−2), with local submersion ψ : U → C
2 = (x, y), F| U can

be induced by ψ∗(η), where η = (x+ h.o.t) dy − (y + h.o.t) dx. In local coordinates we have

σR(F)(x, t, z1, . . . , zn−2) = (x, xt, z1, . . . , zn−2) = (x, y, z1, . . . , zn−2),

thus σ∗R(F)(ψ
∗(η)) = x2 · ω̂, where locally E = {x = 0} and ω̂ induces F̂ . Therefore

σ∗R(F)(N
∗
F ) = N∗

F̂ ⊗OM (−2E)

and dualising we prove the assertion. On the other hand, as is well known,

KM = σ∗R(F)(KPn) ⊗O(E).

Combining these line bundle isomorphisms with our adjunction formula we obtain
n−1∧

T ∗
F̂ = σ∗R(F)

(n−1∧
T ∗
F

)
⊗OM (−E).

3. Proof of the Theorem

Lemma 3.1. Let F be a codimension one foliation of P
n satisfying the hypotheses of the Theorem.

Then degR(F) = (n+ 1)2.

Proof. If n > 3 any extra component of Sn−2(F) would intersect R(F), contradicting the local
product structure of F along R(F). Then it suffices to consider two cases:

(1) Sn−2(F) = R(F) and

(2) n = 3 and S1(F) �= R(F).

Case (1). Let H2 be a generic 2-plane in P
n, intersecting R(F) transversally. The tangencies of H2

with F , at non-singular points, give rise to Morse type singularities of G = i∗(F), where i : H2 → P
n

is the inclusion. Then the singularities of G are the tangencies of F with H2, denoted {q1, . . . , qr}
and the points of R(F)∩H2 = {p1, . . . , pm}, where m = degR(F), the pj being radial singularities
of G. By the Baum–Bott formula:∑

i

BB(G, qi) +
∑

j

BB(G, pj) = (d(G) + 2)2 = (d(F) + 2)2.
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On the other hand, the Morse singularities have zero Baum–Bott indices and for a radial singu-
larity the index is 4. Therefore we obtain

4 degR(F) = (d(F) + 2)2 = 4(n + 1)2.

Case (2). Let S1(F) = R(F) ∪ X, where X �= ∅ has non-positive sectional Baum–Bott indices.
Keeping the notation of Case (1), let R(F) ∩ H2 = {p1, . . . , pm}, X ∩ H2 = {r1, . . . , rs} and
q1, . . . , qr the Morse points of G = i∗(F). Again, the Baum–Bott formula gives

(d(F) + 2)2 =
∑

i

BB(G, qi) +
∑

j

BB(G, pj) +
∑

k

BB(G, rk) � 4 degR(F).

That is, degR(F) � 16.
Let σR(F) : M → P

3 be the blowing up of the Kupka set and H = σ∗R(F)(H2) the total transform

of H2. Since
∧2 T ∗

F̂ is Nef, by a theorem of Kleiman [K66] we have

0 � c1

( 2∧
T ∗
F̂

)2

· H.

If E = σ−1
R(F)(R(F)), we have (§ 2.2):

2∧
T ∗
F̂ = σ∗R(F)

( 2∧
T ∗
F

)
⊗OM (−E).

Hence

0 �
[
c1

(
σ∗R(F)

( 2∧
T ∗
F

))2

− 2 · c1
(
σ∗R(F)

(n−1∧
T ∗
F

))
· E + E2

]
· H

= c1

( 2∧
T ∗
F

)2

·H2 + E2 · H = c1

( 2∧
T ∗
F

)2

·H2 − degR(F),

where we have used the projection formula [Ful98, Proposition 2.5]. By § 2.1
2∧
T ∗
F = OP3(d(F) − 2) = OP3(4)

and therefore degR(F) � 16.

Lemma 3.2. Under the hypotheses of the Theorem, if S is a hypersurface containing R(F) then
degS � n+ 1; moreover, if degS = n+ 1 then S is smooth along R(F).

Proof. Suppose R(F) ⊂ S and consider a plane section CS := S ∩ Π, with Π intersecting R(F)
transversally. Lemma 3.1 gives degR(F) = (n + 1)2 and CS contains the points p1, . . . , p(n+1)2 of
R(F) ∩ Π.

Denote by νi = ν(CS , pi) � 1 the algebraic multiplicity of CS at points of R(F) ∩ Π. Keeping
the notation of Lemma 3.1, let F̂ be the transformed foliation by σR(F). Denote by ĈS the strict
transform of Cs by σR(F) |Π̂ : Π̂ → Π, and let E ∩ Π̂ =

⋃
i=1Ei denote the union of exceptional

curves of Π̂. We have

c1

(n−1∧
T ∗
F̂

)
· ĈS = c1

(
σ∗R(F)

( n−1∧
T ∗
F

)
⊗OM (−E)

)
·
(
σR(F)

∗
|Π̂(CS) −

(n+1)2∑
i=1

νi ·Ei

)

= (n + 1) degCS −
(n+1)2∑

i=1

νi.
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The Nefness of
∧n−1 T ∗

F̂ implies that degCS � n+ 1, with equality only if νi = 1 for all i.

Note that by the same reasoning we can prove that there is no projective line l ⊂ Π passing by
more than (n+ 1) points of R(F) ∩ Π, there is no conic of Π passing by more than 2(n+ 1) points
of R(F) ∩ Π, etc.

We recall now some definitions that will be used in the proof of the next proposition (for more
details see [OSS78, ch. II]). Let V be a 2-bundle on P

n with even first Chern class c1(V ). Put

Vnorm := V

(
−c1(V )

2

)
;

in this case c1(Vnorm) = 0. By definition V is stable if H0(Pn, Vnorm) = 0; and V is semistable if

H0(Pn, Vnorm) �= 0 and H0(Pn, Vnorm(−1)) = 0.

On the other hand, the discriminant of V is the integer number

∆(V ) = c1(V )2 − 4c2(V ).

It is invariant with respect to tensoring with O(k); in particular ∆(V ) = ∆(Vnorm).

Proposition 3.3. Under the hypotheses of the Theorem, R(F) is a complete intersection of
hypersurfaces of degree n+ 1.

Proof. First, we show that R(F) is contained in some hypersurface S with degS = n+ 1.
In [CAS94] it is proven that Kupka sets are subcanonically embedded. From Serre’s construction

the normal bundle of R(F) extends as a rank two vector bundle V of P
n, having a holomorphic

section s with an exact sequence:

0 → OPn
·s−→ V → JR(F)(d(F) + 2) → 0, (1)

where JR(F) is the ideal sheaf associated to R(F) and total Chern class

c(V ) = 1 + (d(F) + 2) · h + degR(F) · h2 ∈ Z[h]/hn+1 	 H∗(Pn,Z).

Since d(F) = 2n and degR(F) = (n+ 1)2, we obtain

∆(V ) = c1(V )2 − 4c2(V ) = 0.

According to [Bar77], V is non-stable, that is, H0(Vnorm) �= 0.
Tensoring (1) by OPn(−n− 1) and taking the long exact sequence of cohomology we get

H0(O(−n− 1)) = 0 → H0(Vnorm) 	 H0(JR(F)(n+ 1)) → 0 = H1(O(−n− 1)),

from which follows the existence of S.
Secondly, let us prove that R(F) is a complete intersection.

Together with Lemma 3.2 we have concluded that n+1 is the minimum degree of hypersurfaces
containing R(F). By [OSS78, Lemma 1.3.4] this is equivalent to the semistability of V .

Let τ be a non-trivial holomorphic section of Vnorm and (τ)0 its scheme of zeroes. We assert that
(τ)0 does not have codimension one. In fact, if (τ)0 is a hypersurface of degree k, then from τ we
obtain a holomorphic section of Vnorm(−k), contradicting the semistability of V .

We consider now the exact sequence

0 → O ·τ−→ Vnorm → JZ → 0,
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where Z = (τ)0 (either Z is empty or has codimension two). If we suppose that Z is not empty,
then degZ = c2(Vnorm). But c1(Vnorm) = 0 and ∆(Vnorm) = ∆(V ) = 0 imply c2(Vnorm) = 0.
Then we conclude that Z = ∅. Hence Vnorm is defined by an extension of line bundles on P

n.
Then it splits as a sum of line bundles ([OSS78, ch. I, § 2]); the same is true for V . As known, V
splits if and only if R(F) is a complete intersection.

After Proposition 3.3, we conclude that F coincides with a pencil of degree n+ 1 hypersurfaces
using [CL94, Theorem A].

For n = 3, applying the Bertini theorem we conclude that the curves of singularities S1(F)\R(F)
intersect the base locus R(F), violating the local product structure of R(F). At this point we see
that Case (2) in the proof of Lemma 3.1 in fact does not exist. This completes the proof of the
Theorem.
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