

Foliations with radial Kupka set and pencils of Calabi–Yau hypersurfaces

Omegar Calvo-Andrade, Luís Gustavo Mendes and Ivan Pan

Dedicated to Professor César Camacho on the occasion of his 60th birthday

Abstract

We show that holomorphic singular codimension one foliations of the complex projective space with a Kupka singular set of radial type and verifying some global hypotheses have rational first integral. The generic elements of such pencils are Calabi–Yau.

1. Introduction

1.1 Let \mathcal{F} be a codimension one holomorphic singular foliation of the complex projective space \mathbb{P}^n . The foliation is defined by a class of sections $\omega \in \mathrm{H}^0(\mathbb{P}^n, \Omega^1(d+2))$, where $d = d(\mathcal{F})$ is its degree, that is, the number of tangencies of leaves of \mathcal{F} with a generic projective line. It is always possible to suppose that $\mathrm{codim}_{\mathbb{C}}(\omega)_0 \geq 2$ and we put $\mathrm{sing}(\mathcal{F}) := \{p \in \mathbb{P}^n \mid \omega(p) = 0\}$.

In this paper we consider dimension $n \ge 3$ and our main hypothesis is that there is a codimension two connected component of $\operatorname{sing}(\mathcal{F})$ which is a Kupka set $K(\mathcal{F})$, defined by

$$K(\mathcal{F}) := \{ p \in \mathbb{P}^n \mid \omega(p) = 0, d\omega(p) \neq 0 \}.$$

We consider *compact* Kupka sets of foliations of \mathbb{P}^n . From [GL90] and references therein, it is known that there is an open covering $\{U_i\}_i$ of $K(\mathcal{F})$ and a collection of submersions $\psi_i : U_i \to \mathbb{C}^2$ with $K(\mathcal{F}) \cap U_i = \psi_i^{-1}(0,0)$, as well as a holomorphic 1-form $\eta_{pq} := px \, dy - qy \, dx$, with isolated zero at (0,0), such that $\mathcal{F}_{|U_i|}$ is represented by $\psi_i^*(\eta_{pq})$, where p,q are integers with $1 \leq p < q, (p,q) = 1$ or p = q = 1. The *transversal type* of $K(\mathcal{F})$ is given by η_{pq} and the *radial type* corresponds to p = q = 1; we denote in this case $K(\mathcal{F}) = R(\mathcal{F})$.

It follows from the local product structure that $K(\mathcal{F})$ is smooth and that the other components of $\operatorname{sing}(\mathcal{F})$ do not intersect $K(\mathcal{F})$.

1.2 A fundamental fact about foliations of \mathbb{P}^n with a Kupka set is that \mathcal{F} has the global rational first integral if and only if $K(\mathcal{F})$ is a complete intersection (scheme theoretically) [CL94].

Furthermore, it is conjectured that $K(\mathcal{F})$ is always a complete intersection. There are already several partial positive answers to this conjecture. In fact, in [Cal99, Theorem 3.5] it is proven that a codimension one foliation of \mathbb{P}^n , $n \ge 3$, whose Kupka set is *not* of radial type, has a rational first integral. Also, for any transversal type, it is proven in [CAS94, Corollary 4.5] that the Kupka set of a foliation is a complete intersection, under the extra hypotheses $d(\mathcal{F}) \le 2n$ and $n \ge 6$. At last, in [Bal95] and [Bal99] we find the hypothesis $n \ge 6$.

In order to state our result we recall some definitions.

Received 20 July 2004, accepted in final form 10 May 2006.

Keywords: holomorphic foliation, fibration, Calabi–Yau manifold.

²⁰⁰⁰ Mathematics Subject Classification 37F75 (primary), 14D05 (secondary).

The first author is partially supported by CNRS 405180G; the others are partially supported by CNPq – Brazil. This journal is © Foundation Compositio Mathematica 2006.

1.3 The canonical bundle of a k-dimensional algebraic variety S is defined by $K_S := \bigwedge^k TS^*$, where TS^* is its cotangent bundle. The triviality of K_S is a main feature of Calabi–Yau varieties. Smooth hypersurfaces of \mathbb{P}^n with degree n + 1 are the first examples of Calabi–Yau varieties (see [GHJ03] for the general theory of Calabi–Yau threefolds).

1.4 Let M be an n-dimensional projective smooth variety with a codimension one holomorphic singular foliation \mathcal{F} with $\operatorname{codim}_{\mathbb{C}}\operatorname{sing}(\mathcal{F}) \geq 2$. Let $T_{\mathcal{F}}$ be the *tangent sheaf* of \mathcal{F} and consider the line bundle $\bigwedge^{n-1} T_{\mathcal{F}}^*$ which is the dual of the top exterior power. We remark that local sections of $\bigwedge^{n-1} T_{\mathcal{F}}^*$ correspond to top degree holomorphic forms along the leaves of \mathcal{F} .

1.5 We recall that a line bundle \mathcal{L} of M is called nef if $c_1(\mathcal{L}) \cdot C \ge 0$ for all curves C, where $c_1(\mathcal{L})$ means the first Chern class of \mathcal{L} .

We remark that the nefness condition is weaker than ampleness, which has already been used in the theory of holomorphic foliations (e.g. [GL90, Cal99]). For information on the geometrical meaning of Nefness of cotangent bundles of foliations we refer to [McQ00], [Bru04] and [BM01].

At last, we call *sectional* Baum–Bott *indices* the usual indices of singularities of foliations by curves [Bru04] induced in generic plane sections of a codimension one foliation.

THEOREM. Let \mathcal{F} be a codimension one singular foliation of \mathbb{P}^n , for $n \ge 3$. Suppose that $d(\mathcal{F}) = 2n$ and that \mathcal{F} has a compact connected Kupka set of radial transversal type $R(\mathcal{F})$.

Denote by $S_{n-2}(\mathcal{F})$ its codimension two singular set and suppose that $S_{n-2}(\mathcal{F}) \setminus R(\mathcal{F})$ has non-positive sectional Baum-Bott indices.

Consider $\sigma: M \to \mathbb{P}^n$ the blowing up along $R(\mathcal{F})$ and $\widehat{\mathcal{F}}$ the transformed foliation of \mathcal{F} by σ , with $\operatorname{codim}_{\mathbb{C}}\operatorname{sing}(\widehat{\mathcal{F}}) \geq 2$ on M. Suppose that $\bigwedge^{n-1} T^*_{\widehat{\mathcal{F}}}$ is Nef.

Then $S_{n-2}(\mathcal{F}) = R(\mathcal{F})$ and $\deg R(\mathcal{F}) = (n+1)^2$. Moreover, \mathcal{F} is a pencil of hypersurfaces of degree n+1 which are smooth along the base locus $R(\mathcal{F})$.

Remark 1. When \mathcal{F} is a generic pencil of hypersurfaces of degree $m \ge n+1$ (for instance, a Lefschetz pencil) then $\bigwedge^{n-1} T^*_{\widehat{\mathcal{F}}}$ is Nef.

Remark 2. The Theorem is motivated by [MS02, Theorem 2] applied to a degree 4 foliation \mathcal{F} of \mathbb{P}^2 . The hypotheses of that paper imply that the transformed foliation $\widehat{\mathcal{F}}$ under blow up of k radial points has Morse singularities and that $T^*_{\widehat{\mathcal{F}}}$ is Nef. The conclusion is that \mathcal{F} is a pencil of cubics, smooth at the k = 9 base points.

On the other hand, there is an example [Lin02] of a one parameter family of foliations \mathcal{F}_{λ} of degree 4 in the plane such that the singularities are either 12 radial points or singularities with local holomorphic first integral (and non-positive Baum–Bott indices). But only for a countable set of parameters are such foliations pencils of elliptic curves. In this example, $T^*_{\widehat{\mathcal{F}}_{\lambda}}$ are not Nef.

2. Preliminaries

2.1 An adjunction formula

A codimension one foliation \mathcal{F} of an *n*-dimensional smooth projective variety M can be represented by a non-trivial integrable section of $\Omega^1_M \otimes N_{\mathcal{F}}$ where $N_{\mathcal{F}}$ is the normal bundle of \mathcal{F} .

For instance, in \mathbb{P}^n we have $N_{\mathcal{F}} = \mathcal{O}_{\mathbb{P}^n}(d(\mathcal{F}) + 2)$, where $d(\mathcal{F})$ is its degree. From the exact sequence of sheaves

$$0 \to T_{\mathcal{F}} \to T_M \to \mathcal{J}_{\operatorname{sing}(\mathcal{F})} \cdot N_{\mathcal{F}} \to 0,$$

by dualising and taking the top exterior powers, we obtain the following isomorphism of line bundles of M:

$$\bigwedge^{n} TM^{*} = \bigwedge^{n-1} T_{\mathcal{F}}^{*} \otimes N_{\mathcal{F}}^{*}.$$

Hence we have

$$\bigwedge^{n-1} T_{\mathcal{F}}^* = K_M \otimes N_{\mathcal{F}}.$$

2.2 Blowing up of a radial Kupka set

Let $\sigma_{R(\mathcal{F})}: M \to \mathbb{P}^n$ be the blow up along the radial Kupka set of \mathcal{F} (as remarked, $R(\mathcal{F})$ is a smooth variety).

Let $E = \sigma_{R(\mathcal{F})}^{-1}(R(\mathcal{F}))$ be the exceptional divisor, and denote by $\widehat{\mathcal{F}}$ the transformed foliation of \mathcal{F} by $\sigma_{R(\mathcal{F})}$ (with singularities of codim ≥ 2). We assert the following line bundle isomorphism:

$$N_{\widehat{\mathcal{F}}} = \sigma^*_{R(\mathcal{F})}(N_{\mathcal{F}}) \otimes \mathcal{O}_M(-2E).$$

In fact, on open sets $U = (x, y, z_1, \ldots, z_{n-2})$, with local submersion $\psi : U \to \mathbb{C}^2 = (x, y)$, $\mathcal{F}_{|U}$ can be induced by $\psi^*(\eta)$, where $\eta = (x + \text{h.o.t}) dy - (y + \text{h.o.t}) dx$. In local coordinates we have

$$\sigma_{R(\mathcal{F})}(x,t,z_1,\ldots,z_{n-2}) = (x,xt,z_1,\ldots,z_{n-2}) = (x,y,z_1,\ldots,z_{n-2}),$$

thus $\sigma^*_{R(\mathcal{F})}(\psi^*(\eta)) = x^2 \cdot \hat{\omega}$, where locally $E = \{x = 0\}$ and $\hat{\omega}$ induces $\widehat{\mathcal{F}}$. Therefore

$$\sigma_{R(\mathcal{F})}^*(N_{\mathcal{F}}^*) = N_{\widehat{\mathcal{F}}}^* \otimes \mathcal{O}_M(-2E)$$

and dualising we prove the assertion. On the other hand, as is well known,

$$K_M = \sigma^*_{R(\mathcal{F})}(K_{\mathbb{P}^n}) \otimes \mathcal{O}(E).$$

Combining these line bundle isomorphisms with our adjunction formula we obtain

$$\bigwedge^{n-1} T^*_{\widehat{\mathcal{F}}} = \sigma^*_{R(\mathcal{F})} \left(\bigwedge^{n-1} T^*_{\mathcal{F}}\right) \otimes \mathcal{O}_M(-E).$$

3. Proof of the Theorem

LEMMA 3.1. Let \mathcal{F} be a codimension one foliation of \mathbb{P}^n satisfying the hypotheses of the Theorem. Then deg $R(\mathcal{F}) = (n+1)^2$.

Proof. If n > 3 any extra component of $S_{n-2}(\mathcal{F})$ would intersect $R(\mathcal{F})$, contradicting the local product structure of \mathcal{F} along $R(\mathcal{F})$. Then it suffices to consider two cases:

- (1) $S_{n-2}(\mathcal{F}) = R(\mathcal{F})$ and
- (2) n = 3 and $S_1(\mathcal{F}) \neq R(\mathcal{F})$.

Case (1). Let H_2 be a generic 2-plane in \mathbb{P}^n , intersecting $R(\mathcal{F})$ transversally. The tangencies of H_2 with \mathcal{F} , at non-singular points, give rise to Morse type singularities of $\mathcal{G} = i^*(\mathcal{F})$, where $i : H_2 \to \mathbb{P}^n$ is the inclusion. Then the singularities of \mathcal{G} are the tangencies of \mathcal{F} with H_2 , denoted $\{q_1, \ldots, q_r\}$ and the points of $R(\mathcal{F}) \cap H_2 = \{p_1, \ldots, p_m\}$, where $m = \deg R(\mathcal{F})$, the p_j being radial singularities of \mathcal{G} . By the Baum–Bott formula:

$$\sum_{i} BB(\mathcal{G}, q_i) + \sum_{j} BB(\mathcal{G}, p_j) = (d(\mathcal{G}) + 2)^2 = (d(\mathcal{F}) + 2)^2.$$

1589

On the other hand, the Morse singularities have zero Baum–Bott indices and for a radial singularity the index is 4. Therefore we obtain

$$4 \deg R(\mathcal{F}) = (d(\mathcal{F}) + 2)^2 = 4(n+1)^2.$$

Case (2). Let $S_1(\mathcal{F}) = R(\mathcal{F}) \cup X$, where $X \neq \emptyset$ has non-positive sectional Baum-Bott indices. Keeping the notation of Case (1), let $R(\mathcal{F}) \cap H_2 = \{p_1, \ldots, p_m\}, X \cap H_2 = \{r_1, \ldots, r_s\}$ and q_1, \ldots, q_r the Morse points of $\mathcal{G} = i^*(\mathcal{F})$. Again, the Baum-Bott formula gives

$$(d(\mathcal{F})+2)^2 = \sum_i BB(\mathcal{G}, q_i) + \sum_j BB(\mathcal{G}, p_j) + \sum_k BB(\mathcal{G}, r_k) \leqslant 4 \deg R(\mathcal{F}).$$

That is, $\deg R(\mathcal{F}) \ge 16$.

Let $\sigma_{R(\mathcal{F})}: M \to \mathbb{P}^3$ be the blowing up of the Kupka set and $\mathcal{H} = \sigma^*_{R(\mathcal{F})}(H_2)$ the total transform of H_2 . Since $\bigwedge^2 T^*_{\widehat{\mathcal{F}}}$ is Nef, by a theorem of Kleiman [K66] we have

$$0 \leqslant c_1 \left(\bigwedge^2 T^*_{\widehat{\mathcal{F}}}\right)^2 \cdot \mathcal{H}.$$

If $E = \sigma_{R(\mathcal{F})}^{-1}(R(\mathcal{F}))$, we have (§ 2.2):

$$\bigwedge^2 T^*_{\widehat{\mathcal{F}}} = \sigma^*_{R(\mathcal{F})} \left(\bigwedge^2 T^*_{\mathcal{F}}\right) \otimes \mathcal{O}_M(-E).$$

Hence

$$0 \leq \left[c_1 \left(\sigma_{R(\mathcal{F})}^* \left(\bigwedge^2 T_{\mathcal{F}}^* \right) \right)^2 - 2 \cdot c_1 \left(\sigma_{R(\mathcal{F})}^* \left(\bigwedge^{n-1} T_{\mathcal{F}}^* \right) \right) \cdot E + E^2 \right] \cdot \mathcal{H}$$
$$= c_1 \left(\bigwedge^2 T_{\mathcal{F}}^* \right)^2 \cdot H_2 + E^2 \cdot \mathcal{H} = c_1 \left(\bigwedge^2 T_{\mathcal{F}}^* \right)^2 \cdot H_2 - \deg R(\mathcal{F}),$$

where we have used the projection formula [Ful98, Proposition 2.5]. By $\S 2.1$

$$\bigwedge^2 T_{\mathcal{F}}^* = \mathcal{O}_{\mathbb{P}^3}(d(\mathcal{F}) - 2) = \mathcal{O}_{\mathbb{P}^3}(4)$$

and therefore deg $R(\mathcal{F}) \leq 16$.

LEMMA 3.2. Under the hypotheses of the Theorem, if S is a hypersurface containing $R(\mathcal{F})$ then deg $S \ge n+1$; moreover, if deg S = n+1 then S is smooth along $R(\mathcal{F})$.

Proof. Suppose $R(\mathcal{F}) \subset S$ and consider a plane section $C_S := S \cap \Pi$, with Π intersecting $R(\mathcal{F})$ transversally. Lemma 3.1 gives deg $R(\mathcal{F}) = (n+1)^2$ and C_S contains the points $p_1, \ldots, p_{(n+1)^2}$ of $R(\mathcal{F}) \cap \Pi$.

Denote by $\nu_i = \nu(C_S, p_i) \ge 1$ the algebraic multiplicity of C_S at points of $R(\mathcal{F}) \cap \Pi$. Keeping the notation of Lemma 3.1, let $\widehat{\mathcal{F}}$ be the transformed foliation by $\sigma_{R(\mathcal{F})}$. Denote by \widehat{C}_S the strict transform of C_s by $\sigma_{R(\mathcal{F})|\widehat{\Pi}} : \widehat{\Pi} \to \Pi$, and let $E \cap \widehat{\Pi} = \bigcup_{i=1} E_i$ denote the union of exceptional curves of $\widehat{\Pi}$. We have

$$c_1 \left(\bigwedge^{n-1} T_{\widehat{\mathcal{F}}}^*\right) \cdot \widehat{C}_S = c_1 \left(\sigma_{R(\mathcal{F})}^* \left(\bigwedge^{n-1} T_{\mathcal{F}}^*\right) \otimes \mathcal{O}_M(-E)\right) \cdot \left(\sigma_{R(\mathcal{F})} |_{\widehat{\Pi}}^*(C_S) - \sum_{i=1}^{(n+1)^2} \nu_i \cdot E_i\right)$$
$$= (n+1) \deg C_S - \sum_{i=1}^{(n+1)^2} \nu_i.$$

1590

The Nefness of $\bigwedge^{n-1} T^*_{\widehat{\mathcal{F}}}$ implies that deg $C_S \ge n+1$, with equality only if $\nu_i = 1$ for all i.

Note that by the same reasoning we can prove that there is no projective line $l \subset \Pi$ passing by more than (n + 1) points of $R(\mathcal{F}) \cap \Pi$, there is no conic of Π passing by more than 2(n + 1) points of $R(\mathcal{F}) \cap \Pi$, etc.

We recall now some definitions that will be used in the proof of the next proposition (for more details see [OSS78, ch. II]). Let V be a 2-bundle on \mathbb{P}^n with even first Chern class $c_1(V)$. Put

$$V_{\text{norm}} := V\left(-\frac{c_1(V)}{2}\right);$$

in this case $c_1(V_{\text{norm}}) = 0$. By definition V is stable if $H^0(\mathbb{P}^n, V_{\text{norm}}) = 0$; and V is semistable if

 $H^0(\mathbb{P}^n, V_{\text{norm}}) \neq 0$ and $H^0(\mathbb{P}^n, V_{\text{norm}}(-1)) = 0.$

On the other hand, the *discriminant* of V is the integer number

$$\Delta(V) = c_1(V)^2 - 4c_2(V)$$

It is invariant with respect to tensoring with $\mathcal{O}(k)$; in particular $\Delta(V) = \Delta(V_{\text{norm}})$.

PROPOSITION 3.3. Under the hypotheses of the Theorem, $R(\mathcal{F})$ is a complete intersection of hypersurfaces of degree n + 1.

Proof. First, we show that $R(\mathcal{F})$ is contained in some hypersurface S with deg S = n + 1.

In [CAS94] it is proven that Kupka sets are subcanonically embedded. From Serre's construction the normal bundle of $R(\mathcal{F})$ extends as a rank two vector bundle V of \mathbb{P}^n , having a holomorphic section s with an exact sequence:

$$0 \to \mathcal{O}_{\mathbb{P}^n} \xrightarrow{\cdot s} V \to \mathcal{J}_{R(\mathcal{F})}(d(\mathcal{F}) + 2) \to 0, \tag{1}$$

where $\mathcal{J}_{R(\mathcal{F})}$ is the ideal sheaf associated to $R(\mathcal{F})$ and total Chern class

$$c(V) = 1 + (d(\mathcal{F}) + 2) \cdot \mathbf{h} + \deg R(\mathcal{F}) \cdot \mathbf{h}^2 \in \mathbb{Z}[\mathbf{h}]/\mathbf{h}^{n+1} \simeq H^*(\mathbb{P}^n, \mathbb{Z}).$$

Since $d(\mathcal{F}) = 2n$ and $\deg R(\mathcal{F}) = (n+1)^2$, we obtain

$$\Delta(V) = c_1(V)^2 - 4c_2(V) = 0.$$

According to [Bar77], V is non-stable, that is, $H^0(V_{\text{norm}}) \neq 0$.

Tensoring (1) by $\mathcal{O}_{\mathbb{P}^n}(-n-1)$ and taking the long exact sequence of cohomology we get

$$H^{0}(\mathcal{O}(-n-1)) = 0 \to H^{0}(V_{\text{norm}}) \simeq H^{0}(\mathcal{J}_{R(\mathcal{F})}(n+1)) \to 0 = H^{1}(\mathcal{O}(-n-1)),$$

from which follows the existence of S.

Secondly, let us prove that $R(\mathcal{F})$ is a complete intersection.

Together with Lemma 3.2 we have concluded that n+1 is the *minimum* degree of hypersurfaces containing $R(\mathcal{F})$. By [OSS78, Lemma 1.3.4] this is equivalent to the semistability of V.

Let τ be a non-trivial holomorphic section of V_{norm} and $(\tau)_0$ its scheme of zeroes. We assert that $(\tau)_0$ does not have codimension one. In fact, if $(\tau)_0$ is a hypersurface of degree k, then from τ we obtain a holomorphic section of $V_{\text{norm}}(-k)$, contradicting the semistability of V.

We consider now the exact sequence

$$0 \to \mathcal{O} \xrightarrow{\cdot \tau} V_{\text{norm}} \to \mathcal{J}_Z \to 0,$$

where $Z = (\tau)_0$ (either Z is empty or has codimension two). If we suppose that Z is not empty, then deg $Z = c_2(V_{\text{norm}})$. But $c_1(V_{\text{norm}}) = 0$ and $\Delta(V_{\text{norm}}) = \Delta(V) = 0$ imply $c_2(V_{\text{norm}}) = 0$. Then we conclude that $Z = \emptyset$. Hence V_{norm} is defined by an extension of line bundles on \mathbb{P}^n . Then it splits as a sum of line bundles ([OSS78, ch. I, §2]); the same is true for V. As known, V splits if and only if $R(\mathcal{F})$ is a complete intersection.

After Proposition 3.3, we conclude that \mathcal{F} coincides with a pencil of degree n+1 hypersurfaces using [CL94, Theorem A].

For n = 3, applying the Bertini theorem we conclude that the curves of singularities $S_1(\mathcal{F}) \setminus R(\mathcal{F})$ intersect the base locus $R(\mathcal{F})$, violating the local product structure of $R(\mathcal{F})$. At this point we see that Case (2) in the proof of Lemma 3.1 in fact does not exist. This completes the proof of the Theorem.

Acknowledgements

We thank the referee for his or her careful reading, suggestions and questions; in particular for indicating a simplified proof of our Lemma 3.1.

References

- Bal95 E. Ballico, A splitting theorem for the Kupka component of a foliation of \mathbb{P}^n , $n \ge 6$. Addendum to a paper by Calvo-Andrade and Soares, Ann. Inst. Fourier **45** (1995), 1119–1121.
- Bal99 E. Ballico, A splitting theorem for the Kupka component of a foliation of \mathbb{P}^n , $n \ge 6$. Addendum to an addendum to a paper by Calvo-Andrade and Soares, Ann. Inst. Fourier **49** (1999), 1423–1425.
- Bar77 W. Barth, Some properties of stable rank-2 vector bundles on \mathbb{P}^n , Math. Ann. **226** (1977), 125–150.
- BM01 F. A. Bogomolov and M. McQuillan, Rational curves on foliated varieties, Preprint, Inst. Hautes Études Sci. (2001).
- Bru04 M. Brunella, Birational geometry of foliations, Publicações Matemáticas do IMPA (Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 2004).
- Cal99 O. Calvo-Andrade, Foliations with a Kupka component on algebraic manifolds, Bol. Soc. Bras. Mat. 30 (1999), 183–197.
- CAS94 O. Calvo-Andrade and M. Soares, *Chern numbers of a Kupka component*, Ann. Inst. Fourier **44** (1994), 1219–1236.
- CL94 D. Cerveau and A. Lins Neto, Codimension one foliations in \mathbb{P}^n , $n \ge 3$ with Kupka components, Astérisque **222** (1994), 93–133.
- Ful98 W. Fulton, Intersection theory (Springer, Berlin, 1998).
- GL90 X. Gómez-Mont and A. Lins Neto, Structural stability of singular holomorphic foliations having a meromorphic first integral, Topology 30 (1990), 315–334.
- GHJ03 M. Gross, D. Huybrechts and D. Joyce, Calabi-Yau manifolds and related geometries (Springer, Berlin, 2003).
- K66 S. Kleiman, Toward a numerical theory of ampleness, Ann. of Math. (2) 84 (1966), 293-344.
- Lin02 A. Lins Neto, Some examples for the Poincaré and Painlevé problems, Ann. Sci. École Norm. Sup. (4) 35 (2002), 231–266.
- McQ00 M. McQuillan, Non-commutative Mori theory, Preprint, Inst. Hautes Études Sci. (2000).
- MS02 L. G. Mendes and P. Sad, On dicritical foliations and Halphen pencils, Ann. Sc. Norm. Super Pisa Cl. Sci. (5) 1 (2002), 93–109.
- OSS78 Ch. Okonek, M. Schneider and H. Spindler, *Vector bundles on complex projective spaces*, Progress in Mathematics, vol. 3 (Birkhäuser, Basel, 1978).

Foliations with Kupka set

Omegar Calvo-Andrade omegar@agt.uva.es

Luís Gustavo Mendes mendes@mat.ufrgs.br

Departamento Matemática, Univ. Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91509-900, Brazil

Ivan Pan pan@mat.ufrgs.br

Departamento Matemática, Univ. Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, CEP 91509-900, Brazil